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Abstract: In this article, the(G
′
/G)-expansion method has been implemented to find the travelling wave solutions of nonlinear

evolution equations of fractional order. For this, the fractional complex transformation method has been used to convert fractional
order partial differential equation to ordinary differential equation. Then,(G

′
/G)-expansion method has been implemented to celebrate

the series of travelling wave solutions to fractional orderpartial differential equations.
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1 Introduction

Investigating the new exact travelling wave solutions to
nonlinear evolution equations have been the area under
discussion in different branches of mathematical and
physical sciences such as in physics, biology, chemistry,
etc. The analytical solutions of such equations are of
fundamental importance since a lot of mathematical and
physical models are described by the nonlinear evolution
equations. Among the possible solutions nonlinear
evolution equations, certain special form solutions may
depend only on a single combination of variables such as
traveling wave variables.

The variety of techniques exists to construct the
travelling wave and find the numerical solutions to
nonlinear problems. Some of its cited here, the adomian
decomposition method [1] and generalized differential
transform method [2] have been used to find the
numerical solutions for the space- and time-fractional
coupled Burgers equations. The(G

′
/G)-expansion

method was introduced, by Wanget al. [3], and this
method was further extended [4] to find the solutions of
fractional order differential equations. The Jacobi elliptic
function expansion method [5], the tanh-function method
for finding solitary wave solutions [6], the homotopy
perturbation method [7], the extended fractional
subequation method [8] can also be applied to handle the
nonlinear evolution equationsetc.

In this article, a new approach has been used to find
the series of travelling wave solutions to nonlinear
evolution equations of fractional order using the
fractional complex transformation [9] and the
(G

′
/G)-expansion method [3]. For this, we first use the

fractional complex transformation, in the sense of
Jumaries modified Riemann-Liouville derivative, to
convert into ordinary differential equations. Then
obtained ODE can be converted into(G′/G) polynomial
form. Using the homogenous balance and second order
linear ordinary differential equation
G

′′
(ξ ) + λ G

′
(ξ ) + µG(ξ ) = 0 with the aid of

computation, the new travelling wave solutions of(G
′
/G)

polynomial form can be constructed. As application the
nonlinear PDE [10] with time-space fractional derivatives
foam has been considered of the form:

∂ 2α u
∂ t2α + a

∂ 2β u

∂x2β + bu+ cu3 = 0, t > 0, 0< α, β ≤ 1. (1)

The following equations can also be obtained for different
values ofa,b andc.i.e,

–If we take a = c = −1 andb = 1, then equation (1)
leads to Phi-Four equation:

∂ 2α u
∂ t2α − ∂ 2β u

∂x2β + u− u3 = 0, t > 0, 0< α, β ≤ 1. (2)
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–If we takea =−1,b = m2 andc = n, then equation (1)
leads to Klein-Gordon equation:

∂ 2α u
∂ t2α − ∂ 2β u

∂x2β +m2u+ nu3 = 0, t > 0, 0< α, β ≤ 1.(3)

–If we takea =−1,b =−m2 andc = n2, then equation
(1) leads to Landau-Ginburg-Higgs equation:

∂ 2α u
∂ t2α − ∂ 2β u

∂x2β −m2u+ n2u3 = 0, t > 0, 0< α, β ≤ 1.(4)

–If we take a = 0, then equation (1) leads to Duffing
equation:

∂ 2α u
∂ t2α + bu+ cu3 = 0, t > 0, 0< α, β ≤ 1. (5)

–If we takea =−1,b = 1 andc = −1
6 then equation (1)

leads to Sine-Gordon equation:

∂ 2α u
∂ t2α − ∂ 2β u

∂x2β + u− 1
6

u3 = 0, t > 0, 0< α, β ≤ 1.(6)

The rest of the article is organized as follows, in
section 2 the basic definitions and properties for the
fractional calculus are being considered regarding to
modified Riemann-Liouville derivative. In section 3, the
extended(G

′
/G)-expansion method has been proposed to

find the new travelling wave solutions for NPDEs of
fractional order with the help of fractional complex
transformation. As an application, the new travelling
wave solutions of nonlinear equation (1) have been
discussed in section 4. In the last section 5, the conclusion
has been drawn.

2 Background on Fractional Calculus

In this section, the proposed method has been applied in
the sense of the Jumaries modified Riemann-Liouville
derivative [11] of orderα. For this, some basic definitions
and properties of the fractional calculus theory are being
considered (for details see [12]). Thus, the fractional
derivatives can be defined following [11] as:

∂ α f (x)
∂xα =



























1/Γ (−α) d
dx

∫ x
0 (x− ξ )−α−1( f (ξ )− f (0))dξ ,

for α < 0;
1/Γ (1−α) d

dx

∫ x
0 (x− ξ )−1( f (ξ )− f (0))dξ ,

for 0< α < 1;
( f n(x))α−n,

for n ≤ α < n+1, n ≥ 1.

Moreover, some properties for the modified Riemann-
Liouville derivative have also been given as follows

∂ α xγ

∂xα =
Γ (1+ γ)

Γ (1+ γ −α)
xγ−α , (7)

∂ α(u(x)v(x))
∂xα = v(x)

∂ α u(x)
∂xα + u(x)

∂ α v(x)
∂xα , (8)

∂ α f [u(x)]
∂xα = f

′
u[u(x)]

∂ α u(x)
∂xα , (9)

∂ α f [u(x)]
∂xα =

∂ α f [u(x)]
∂xα (u

′
(x))α . (10)

As far as concerned about the above results (8)-(10), the
functionu(x) is said to be non-differentiable in equations
(8) and (9) and it is differentiable in (10). The function
v(x) is non-differentiable, andf (u) is differentiable in (9)
and non-differentiable in (10). Thus, the formulas (8)(10)
should be used carefully.

In view of [13], [1] the fractional complex
transformation can be defined as follows:

u(t,x,y) = u(ξ ), (11)

where ξ =
Ltα

Γ (α +1)
+

Kxβ

Γ (β +1)
+

Myγ

Γ (γ +1)
.

It helps us to convert the partial differential equation of
fractional order into an ordinary differential equation in
very simple and easy manner (whereK,L and M are
non-zero arbitrary constants). In the following section, the
(G

′
/G)-expansion method has been described to find the

travelling wave solutions.

3 Description of the(G
′
/G)-expansion

method

The (G
′
/G)-expansion method [4], [3] can be performed

using the following steps. For this, we consider the
following NPDE (nonlinear partial differential equation)
of fractional order

P

(

u,
∂ α u
∂ tα ,

∂ β u

∂xβ ,
∂ γ u
∂yγ , ...

)

= 0, (12)

whereu is an unknown function andP is a polynomial of
u and its partial fractional derivatives along with the
involvement of higher order derivatives and nonlinear
terms.
To find the exact solutions, the following steps can be
performed.

Step 1: First, we convert the NPDE of fractional order
into nonlinear ordinary differential equations using the
fractional complex transformation (11) introduced by Li
et al. [9]. Hence, the travelling wave variable, defined in
equation (11), permits us to reduce equation (12) to an
ODE of u = u(ξ ) in the following form

P(u,u
′
,u

′′
,u

′′′
, ...) = 0. (13)

If the possibility occurs, the above equation can be
integrated term by term once or more times.

Step 2:Suppose that the solution of equation (13) can be
expressed as a polynomial of(G

′
/G) in the following

form

u(ξ ) =
m

∑
i=−m

αi

(

G
′

G

)i

, αm 6= 0, (14)
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whereα ′
i s are constants andG(ξ ) satisfies the following

second order linear ordinary differential equation

G
′′
(ξ )+λ G

′
(ξ )+ µG(ξ ) = 0, (15)

with λ andµ as constants.

Step 3: The homogeneous balance can be used, to
determine the positive integerm, between the highest
order derivatives and the nonlinear terms appearing in
(13). After the substitution of equation (14) into equation
(15) and using equation (15), we collect all the terms with
the same order of(G

′
/G) together. Equate each

coefficient of the obtained polynomial to zero, yields the
set of algebraic equations forK,L,M,λ ,µ and
αi(i = 0,±1,±2, ...,±m).

Step 4: After solving the system of algebraic equations,
and using the equation (15), the variety of travelling wave
solutions can be obtained using the generalized solutions
of equation (15).

(

G
′

G

)

=































































−λ/2+
√

λ 2−4µ
2(

C1 sinh( ξ
2

√
λ 2−4µ)+C2 cosh( ξ

2

√
λ 2−4µ)

C1 cosh( ξ
2

√
λ 2−4µ)+C2 sinh( ξ

2

√
λ 2−4µ)

)

,

λ 2−4µ > 0;

−λ/2+
√

4µ−λ 2

2(

−C1 sin( ξ
2

√
4µ−λ 2)+C2 cos( ξ

2

√
4µ−λ 2)

C1 cos( ξ
2

√
4µ−λ 2)+C2 sin( ξ

2

√
4µ−λ 2)

)

,

λ 2−4µ < 0;
−λ/2+ C2

C1+C2ξ , λ 2−4µ = 0,

(16)

whereC1 andC2 are arbitrary constants.

4 Applications

In this section, the improved(G
′
/G)-expansion method

has been used to construct the new travelling wave
solutions for nonlinear space-time fractional equation (1).
For this, the following fractional complex transformation

u(x, t) = u(ξ ), ξ =
Kxβ

Γ (β +1)
+

Ltα

Γ (α +1)
(17)

where K and L are constants, permits to reduce the
equation (1) into the following ODE

(aK2+L2)u
′′
+ bu+ cu3 = 0 (18)

Now by calculating the homogeneous balance(i.e,
m = 1), between the highest order derivatives and
nonlinear term presented in the above equations (18), we
have the following form

u(ξ ) = α−1

(

G
′

G

)−1

+α0

(

G
′

G

)0

+α1

(

G
′

G

)1

, (19)

whereαi,(i = 0,1) are arbitrary constants. To determine
the constants substitute the equation (19) into the

equations (18), and by collecting all the terms with the
same power of(G

′
/G) together. After equating each

coefficient equal to zero, this yields a set of following
algebraic equations:

2α1(L2+aK2)+cα3
1 = 0,

3λα1(L2+aK2)+3cα0α2
1 = 0,

α1(λ 2+2µ)(L2+aK2)+bα1+3c(α−1α2
1 +α1α2

0) = 0,

λ (α−1+µα1)(L2+aK2)+bα0+c(α3
0 +3α0α1α−1) = 0,

α−1(λ 2+2µ)(L2+aK2)+bα−1+3c(α−1α2
0 +α1α2

−1) = 0,

λ µα−1(L2+aK2)+3cα0α2
−1 = 0,

2µ2α−1(L2+aK2)+cα3
−1 = 0.

After solving these algebraic equations with the help of
software Maple, yields the following families for the
values ofK,L,λ ,µ ,a(i),(i =−1,0,1).

Case 1:

a = a, b =−8µ(L2+ aK2), c = −2(L2+aK2)

α2
1

, K = K,

λ = 0, α−1 =−µα1, L = L, µ = µ , α0 = 0.

Where a,α1,K,L and µ are arbitrary constants with
α1 6= 0.

Case 2:

a = a, b =−λ 2(L2+ aK2), c = 0, K = K, λ = λ ,
α−1 = λ α0, L = L, α1 = 0, = 0, α0 = α0.

Wherea,α0,λ ,K andL are arbitrary constants.

Case 3:

a = a, b = 4µ(L2+ aK2), c = −2(L2+aK2)

α2
1

, K = K,

λ = 0, α(−1) =−µα1, L = L, µ = µ , α0 = 0.

Where a,α1,K,L and µ are arbitrary constants with
α1 6= 0.

Case 4:

a = a, b = 2
α2

1
(α2

0L2+α2
0aK2− µL2α2

1 − µaK2α2
1),

c = −2(L2+aK2)

α2
1

, K = K, λ = 2α0
α1

, α−1 = 0,L = L, µ = µ ,
α1 = α1, α0 = α0.

Where a,α0,α1,K,L and µ are arbitrary constants
with α1 6= 0.

Substituting the above results in equation (19) and
combining with the solution of equations (16), the new
series of exact travelling wave solutions to the equation
(1) can be constructed.

From Case 1, the following travelling wave solutions can
be obtained.
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Whenλ 2−4µ > 0, we have

u1(ξ ) =−µα1

[

− λ
2
+

√

λ 2−4µ
2

(

C1 sinh( ξ
2

√

λ 2−4µ)+C2 cosh( ξ
2

√

λ 2−4µ)
C1 cosh( ξ

2

√

λ 2−4µ)+C2sinh( ξ
2

√

λ 2−4µ)

)]−1

+α1

[

− λ
2
+

√

λ 2−4µ
2

(

C1 sinh( ξ
2

√

λ 2−4µ)+C2 cosh( ξ
2

√

λ 2 −4µ)
C1 cosh( ξ

2

√

λ 2−4µ)+C2sinh( ξ
2

√

λ 2 −4µ)

)]

,

where

ξ =
Kxβ

Γ (β +1)
+

Ltα

Γ (α +1)
.

Whenλ 2−4µ = 0, we have the solution of the form

u2(ξ ) =−µα1

[

−λ
2
+

C2

C1+C2ξ

]−1

+α1

[

−λ
2
+

C2

C1+C2ξ

]

,

where

ξ =
Kxβ

Γ (β +1)
+

Ltα

Γ (α +1)
.

Whenλ 2−4µ < 0, we have

u3(ξ ) =−µα1

[

−λ
2
+

√

4µ −λ 2

2
(

−C1sin( ξ
2

√

4µ −λ 2)+C2cos( ξ
2

√

4µ −λ 2)

C1cos( ξ
2

√

4µ −λ 2)+C2sin( ξ
2

√

4µ −λ 2)

)]−1

+α1

[

−λ
2
+

√

4µ −λ 2

2
(

−C1sin( ξ
2

√

4µ −λ 2)+C2cos( ξ
2

√

4µ −λ 2)

C1cos( ξ
2

√

4µ −λ 2)+C2sin( ξ
2

√

4µ −λ 2)

)

,

where

ξ =
Kxβ

Γ (β +1)
+

Ltα

Γ (α +1)
.

Especially, if we takeC2 = 0, in first solution, then the
following solution can be obtained.

u4(ξ ) =−µα1

[

−λ
2
+

√

λ 2−4µ
2

tanh

√

λ 2−4µ
2

ξ

]−1

+α1

[

−λ
2
+

√

λ 2−4µ
2

tanh

√

λ 2−4µ
2

ξ

]

.

And if we takeC2 = 0, in third solution, then the following

solution can be constructed.

u5(ξ ) =−µα1

[

−λ
2
−
√

4µ −λ 2

2
tan

√

4µ −λ 2

2
ξ

]−1

+α1

[

−λ
2
−
√

4µ −λ 2

2
tan

√

4µ −λ 2

2
ξ

]

.

Similarly, as the solutions have been constructed for case
1, we can construct the new travelling wave solutions for
cases 2, 3 and 4.

5 Conclusion

The extended(G
′
/G)-expansion method has been applied

to solve the fractional partial differential equation. As
applications, a series of new travelling wave solutions for
the space-time fractional order nonlinear partial
differential equations (Phi-Four equation, Klein-Gordon
equation, Landau-Ginburg-Higgs equation, Duffing
equation, Sine-Gordon equation) have been successfully
found. It may be observed that, the nonlinear fractional
complex transformation ensures that a certain fractional
order differential equation can be turned into ordinary
differential equation of integer order. Afterwards, the
obtained ODE can be expressed by a polynomial in
(G

′
/G), from where its solution can be obtained using the

second order equation(G
′′
/G)(ξ )+λ G

′
(ξ )+µG(ξ ) = 0

. Since, the homogeneous balancing principle has been
used, so we can claim that this method can be applied to
other fractional order partial differential equations where
the homogeneous balancing principle is satisfied.
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