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Abstract: In this article, the(G /G)-expansion method has been implemented to find the trageliave solutions of nonlinear
evolution equations of fractional order. For this, the fimeal complex transformation method has been used to cofreetional
order partial differential equation to ordinary differexiequation. Then@G'/G)-expansion method has been implemented to celebrate
the series of travelling wave solutions to fractional orgartial differential equations.
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1 Introduction In this article, a new approach has been used to find
the series of travelling wave solutions to nonlinear

Investigating the new exact travelling wave solutions to €volution equations of fractional order using the
nonlinear evolution equations have been the area unddfactional complex transformation 9] and the
discussion in different branches of mathematical and(G /G)-expansion method3]. For this, we first use the
physical sciences such as in physics, biology, chemistryfractional complex transformation, in the sense of
etc. The analytical solutions of such equations are ofJumaries modified Riemann-Liouville derivative, to
fundamental importance since a lot of mathematical ancconvert into ordinary differential equations. Then
physical models are described by the nonlinear evolutiorPbtained ODE can be converted int@’/G) polynomial
equations. Among the possible solutions nonlinearform. Using the homogenous balance and second order
evolution equations, certain special form solutions maylinear ordinary differential equation
depend only on a single combination of variables such a&s' (£) + AG (§) + uG(é) = 0 with the aid of
traveling wave variables. computation, the new travelling wave solutions 6f /G)

The variety of techniques exists to construct the polynomial form can be constructed. As application the
travelling wave and find the numerical solutions to nonlinear PDE 10] with time-space fractional derivatives
nonlinear problems. Some of its cited here, the adomiarfoam has been considered of the form:
decomposition methodl] and generalized differential
transform method 4] have been used to find the 9%°u  9%u
numerical solutions for the space- and time-fractionalmT+aa)(—23
coupled Burgers equations. ThéG' /G)-expansion ) ) ) )
method was introduced, by Wang al. [3], and this  The following equations can also be obtained for different
method was further extended][to find the solutions of Values ofa,bandc.i.e,
fractional order differential equations. The Jacobi ¢idip
function expansion method], the tanh-function method ~ —If we takea =c = —1 andb = 1, then equation (1)
for finding solitary wave solutions6], the homotopy leads to Phi-Four equation:
perturbation method 7], the extended fractional g2a 28
subgquatlon mgthO(BI can also be applied to handle the o7"u _o7u fu-=0,t>0,0<a, B<1 (2)
nonlinear evolution equatiorec. ot2a  gx2B

+but+c®=0,t>00<a, B<1 (1)
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—If we takea = —1,b = m? andc = n, then equation (1) As far as concerned about the above results (8)-(10), the

leads to Klein-Gordon equation: functionu(x) is said to be non-differentiable in equations
929y 928y (8) and (9) and it is differentiable in (10). The function
S2a 3w+ mu+nu®=0, t>0,0<a, B<13) V(x)is non-differentiable, andi(u) is differentiable in (9)

ot ox and non-differentiable in (10). Thus, the formulas (8)(10)

—If we takea= —1,b= —n? andc = n?, then equation  should be used carefully.
(1) leads to Landau-Ginburg-Higgs equation:

0%%u  9%fu ) 3 . .
0 9@ mu+n’w =0, t>0 0<a, B<14) In view of [13], [1] the fractional complex
X , . transformation can be defined as follows:

—If we takea = 0, then equation (1) leads to Duffing
equation: u(t,x,y) = u(§), (11)
0%y 3 Lte KxP My
i = <1. whereé = + + .
at2a+bu+cu 0,t>0,0<a,B<1 (5) ¢ FlasD TB+D Ty+D

—If we takea= —-1,b=1andc = %1 then equation (1) It helps us to convert the partial differential equation of
leads to Sine-Gordon equation: fractional order into an ordinary differential equation in
929y 928y very simple and easy manner (whekeL and M are

1
+u—=u*=0, t>0,0<a, B <16) non-zero arbitrary constants). In the following sectidre, t

20 Gy2B !
'?rt1e res?xof the ar?icle is oraanized as follows. in (G /G)-expansion method has been described to find the
9 ', travelling wave solutions.

section 2 the basic definitions and properties for the
fractional calculus are being considered regarding to

modified Riemann-Liouville derivative. In section 3, the - / .
extendedG'/G)-expansion method has been proposed to3 Description of the (G /G)-expansion

find the new travelling wave solutions for NPDEs of method

fractional order with the help of fractional complex ,

transformation. As an application, the new travelling The (G /G)-expansion method4], [3] can be performed
wave solutions of nonlinear equation (1) have beenusing the following steps. For this, we consider the
discussed in section 4. In the last section 5, the conclusioifollowing NPDE (nonlinear partial differential equation)

has been drawn. of fractional order
a B Y,
_ P<u, o a_:’ a—‘y’> -0, (12)
2 Background on Fractional Calculus ot oxP - dy

In this section, the proposed method has been applied inhereulls an “F‘k”OW” ]‘unctlon e}nﬂ}s a polynom|al of
u and its partial fractional derivatives along with the

the sense of the Jumaries modified Riemann-Liouville. | t of hiah der derivati q i
derivative [L1] of ordera. For this, some basic definitions Involvement of figher order derivalives and noniinear

and properties of the fractional calculus theory are bein Erms. . .
considered (for details seeld]). Thus, the fractional o find the exact solutions, the following steps can be
' performed.

derivatives can be defined following]] as:
M (—a)& [J(x—&)~9~Y(f(§)— f(0))dé, Step 1:First, we convert the NPDE of fractional order

fora <0; into nonlinear ordinary differential equations using the
0%f(¥) _ ) 1/ra—a)& [5(x—&)(f(E)—f(0))dE,  fractional complex transformation (11) introduced by Li
oxa forO< o <1, et al. [9]. Hence, the travelling wave variable, defined in
(fN(x))a—", equation (11), permits us to reduce equation (12) to an
forn<a<n+1 n>1. ODE ofu = u(&) in the following form
Moreover, some properties for the modified Riemann—P(u douu” )=0 (13)
Liouville derivative have also been given as follows T '
FLG r(i+y) If the possibility occurs, the above equation can be
= y—a ; .
@ iy a)x , @) integrated term by term once or more times.
9T (UV(X) (X)d"u(x) +U(X)3GV(X) (8  Step 2:Suppose that the solution of equation (13) can be
oxa oxa oxa ' expressed as a polynomial 66 /G) in the following
0% fu(x / 0%u(x form
I — w2 © |
ox ox m '
0%flux)]  9%flu(x)], ué) = ai| =], am#0, 14
aE(a ] _ aE(a ](U (X))a. (10) (E) i:Zm | G m?’é ( )
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wherea;s are constants an@(¢) satisfies the following  equations (18), and by collecting all the terms with the

second order linear ordinary differential equation same power of(G /G) together. After equating each
" / coefficient equal to zero, this yields a set of followin
G'(&)+AG (£) +HG(§) =0, (15) ¥ Y g

algebraic equations:
with A andu as constants.

201 (L% +aK?2) +cad =0,
Step 3: The homogeneous balance can be used, to 3Aay(L? +aK?) +3caga? =0,
determine the positive integan, between the highest
order derivatives and the nonlinear terms appearing in
(13). After the substitution of equation (14) into equation A (-1 +Ha1)(L?+aK?) +bao +c(ag + 3apara—1) =0,
(15) and using equation (15), we collect all the terms with a_1(A2 +2u)(L? +aK?) +ba_1 +3c(a_103 +a1a?,) =0,

a1(A2+2u)(L? +aK?) +bay +3c(a_1a? +a108) = 0,

the same order of(G/G) together. Equate each Apa1(L2 +aK?) + 3caga?, =0
coefficient of the obtained polynomial to zero, yields the 5 ) ) 3’1 ’
set of algebraic equations forK,L,M,A,u and 2pfa g (L7 +aK%) +cazy =0.

0i(i =0, %1, £2, .., =m). After solving these algebraic equations with the help of
Step 4: After solving the system of algebraic equations, \s/,g;‘ltjv(\alzrgﬂz/l ?_pl)s\a y|§I:j)s(itrle_ff ”(? vi/)mg families for the
and using the equation (15), the variety of travelling wave BA D), ==L0, ).

solutions can be obtained using the generalized solution&ase 1:

of equation (15). '

—2(L24aK?
A 24 A a=a, b=—8u(L2+akK?), c:%, K=K,
Cy sinh($ \/A2—4p)+Cy cost( §1/A2—4p) A=0,a.,=—pay, L=L, u=p, ap=0.
Cy cosh($1/A2—4p)+Cpsinh($1/A2—4p) )’ _ _
G A% —4u > 0; Where a,01,K,L and p are arbitrary constants with
_ a1 # 0.
(§) -1 2 vor ) ®7
7clsin(§2 4;17)\2)+Czcos(%s/4u7)\2) Case 2:
Crco8 $v/4u—A2)+Cosin(5\/4u—22) )’
A2 —4u < 0; a=a b=-A%L%2+aK?,c=0, K=K, A =2,
—/\/2+le—é2§, AZ—4u=0, a-1=Adp, L=L, 01 =0, =0, ap = apo.
whereC; andC, are arbitrary constants. Wherea, g, A, K andL are arbitrary constants.
Case 3:

4 Applications o,
a=a b=4u(L2+aK?), c= 2L4&) K —,

In this section, the improvedG'/G)-expansion method n

has been used to construct the new traveling wave A =0, @(—1)=—par, L=L, p=H, ao=0.

solutions for nonlinear space-time fractional equation (1

For this, the following fractional complex transformation
KxP Lt®

uxt)=u(é), &=

(xt)=u(§), § FErD Tt

where K and L are constants, permits to reduce the a—g p= %(angjLagaKz—uLzalz—uaKzaf),
equation (1) into the following ODE 1

Where a,01,K,L and p are arbitrary constants with
a1 # 0.

(17) Case 4:

" _ —2(L%24aK?) . _ 2a _ _ _
(aK?+L2)u" +bu+cu® =0 @) =" K=K A=3a1=0L=L u=yp,

Now by calculating the homogeneous balangee, a1 = 01, Ao = do.

m = 1), between the h?ghest order deri\_/atives and Where a,0p,a1,K,L and u are arbitrary constants
nonlinear term presented in the above equations (18), W§itp, oy # o

have the following form o ) .
Substituting the above results in equation (19) and

G -t G 0 G ! combining with the solution of equations (16), the new
ué)=a_ S +ap +m . (19)  series of exact travelling wave solutions to the equation

(1) can be constructed.
wherea;, (i = 0,1) are arbitrary constants. To determine From Case 1, the following travelling wave solutions can
the constants substitute the equation (19) into thebe obtained.

G

G
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WhenA?2 — 4u > 0, we have

A VAZ—4
u(§) = —pay *§+ > H

(Clsinh(%\/)\2—4u)+CzcosH§\/)\2—4u) ﬂ o

Clcosr(g /\2—4u)+czsinr‘(§ A2 —4u)

A AZ—4
+a1 *§+ 2 H

(Clsinh(é )\2—4u)+czcosr(§ )\2—4;1)”

Clcoshg\//\274u)+C25inr‘(%\//\2—4u)
where
KxP Lte
= + .
rg+1) r(a+1)

WhenA?2 — 4u = 0, we have the solution of the form

A c, 1°
u =—Uoy | —= 4+ ———
Z(E) Ha1 2+C1+C2£]
ia _£+L]
! 2 C+GCé¢ |’
where
KxP Lto

&= rB+y) T+l
WhenA? — 4u < 0, we have

A AU —A2
__+7
2 2
—Cysin(§ /A —A2) + Cocos b /ap—A2)\ ]
C1cog $ /31— A2) +Cosin($ /41— A2)
A AU —A2

2t 2

—Cy8in($ /31— A2) + Cyco8 §\/4p — A2)
Clcos(§\/4u—)\2)+Czsin(%\/4u—/\2) ’
where
KxB Lt®
&= + :
rg+1) r(a+1)

us(§) = —poy

+0a1

Especially, if we takeC, = 0, in first solution, then the

following solution can be obtained.

-1
A JAZ—4 VAZ—4
Us(§) = —Hay | —5 + - Etanh 3 “E}
/A2 _ /A2
+a1 —%+ )\2 4“tanh )‘2 4“6].

And if we takeC, = 0, in third solution, then the following

solution can be constructed.

—_ 22 2 |
Us(&) = —pan [—%—\/4“2 A tan‘/4“2 A 51

+a1

A VAU—A2 /Ay —A?
5~ 5 tan 5 &l

Similarly, as the solutions have been constructed for case
1, we can construct the new travelling wave solutions for
cases 2, 3 and 4.

5 Conclusion

The extendedG'/G)-expansion method has been applied
to solve the fractional partial differential equation. As
applications, a series of new travelling wave solutions for
the space-time fractional order nonlinear partial
differential equations (Phi-Four equation, Klein-Gordon
equation, Landau-Ginburg-Higgs equation, Duffing
equation, Sine-Gordon equation) have been successfully
found. It may be observed that, the nonlinear fractional
complex transformation ensures that a certain fractional
order differential equation can be turned into ordinary
differential equation of integer order. Afterwards, the
obtained ODE can be expressed by a polynomial in
(G'/G), from where its solution can be obtained using the

second order equatiq®’ /G)(£)+AG (§)+uG(£) =0

. Since, the homogeneous balancing principle has been
used, so we can claim that this method can be applied to
other fractional order partial differential equations e
the homogeneous balancing principle is satisfied.
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