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Abstract: Denoting by vthe velocity flow of a classical particle that is subject to a poteltjale demonstrate that the path-integral
formalism of non-relativistic quantum mechanics can be obtained byisypasing wave functions that are solutions of a wave equation
which in turn directly corresponds to the probability conservation equahidydyy) =
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1 Introduction Associated with each,vwe imagine to be given a
probability density functionp, which is thought to
In order to introduce the present paper’s subject matterspecify how likely it is for the given classical particle to
we denote byz, « the spatial coordinate of a classical be found on one of the flow lineg, x. That is to saypy is
particle of massn that moves in one spatial dimension in assumed to satisfy the following preservation equation:
the force field F= —[0V and satisfies the boundary
conditionsz; x(0) = y andz; x(t) = x. The restriction to div(pyy) = 0. 2
one spatial dimension is permissible because the
extension to three spatial dimensions is very easily . ) ) i
accomplished. Given this definition ofz,x, the In order to link this equatlon_to quantum mechanics, we
corresponding 2-velocity flowis further assume that we are given a wave functjgrsuch

that|yy|? = gy Yy = py. Then, according ta2), it must be

1 the case that
509 (4it0) = (400)

Yy v Wy + Wyl Uy = Oy (U i) = gy gydivyy. (3)
ag?a rrzgtee riggllivo nllnes of .y are described by the By inspection we find that this equation is satisfied if there
P exists a real-valued function, such thatily is a solution

s of the wave equation
sl = (5,59 @

ﬁyyl,Uy———dIV\Ly—l—lLyl,Uy (4)

Note: in order for_y to be well defined for all values
that are less than or equal to some positive conStante
will assume that the boundary conditiongx(0) =yand  The purpose of the present paper is to demonstrate that
7y x(t) = x uniquely determinegy; x forallt € (0,T). The  this equation, when employed as a generating equation
necessity and plausibility of this assumption will becomefor path-integral superpositions, yields a description of
clear when we later consider, as an example, the specialon-relativistic quantum mechanics that is fully
case of a harmonic oscillator potential. equivalent to the wave-mechanical formalism that the
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Schibdinger equation describes. As a note of caution weDenoting the initial probability density & by g, i.e.,
wish to add that the possibility of founding quantum

physics on equatiord is so elementary a claim that it is py(to,X) = 9(x)

hard to imagine its validity to be as yet unknown.

However, after examining a very substantial number ofand observing that

potential sources, the present author was unable to find

any article or book in which the claim in question has divyy, = }7

been established or discussed. No research paper or t

ordinary textbook appears to make any reference to it, an
a comprehensive work on path-integration ik floes
not contain it either (unless the present author somehow ;
overlooked it). In the light of these failed attempts to  py(t,X) = g(to(x—y)/t)e fo /T4 =

%quation ) allows us to infer that

tog(to(X—y)/t)
e

locate a relevant literature source, the content of the (6)
present paper is here being offered—with considerabley quick comparison—for the case= 0—shows that this
hesitation—as a provisional novelty. result is compatible with the standard description of a
Remark 1According to @), we have stationary free-particle wave in elementary quantum
mechanics: a standing-wave solution of the free
0py Schibdinger equation
a TV yax = Oupy = —pydiviy, = pyax ,
0L,U h o<y
and therefore, 0'[ = o mad
ﬂ/m d __/ 9(poyvy) o O(PyVy) B _0 that satisfies the Gaussian initial condition
Pyax = = =0.
ot o OX X | o
g *%°/(40%)
This shows that equatior2) does indeed guarantee the Y(to,x) = oo
preservation of the total probability represented by the
space integral oby. is
e X /(40 (1+iR(t—tg) /(2mc7
P(t,x) = (see P], p.30),

V2no 2(1+iR(t—tg)/(2ma?)) 1/2
2 Free Particles with

e/ (20%(1+R2(t—19)?/(2ma?)?))

V210 (1+ R2(t — )2/ (2ma2)2)1/2

In order to establish the link to quantum mechanics, to
which we alluded in the Introduction, we observe to begin
with that the probability conservation equatior) (
uniquely determines the future evolution of the density as the corresponding probability density. Setting
function py from a given initial state at tim& > 0. For

=|y)?=

using the parameterizatiog,ty in (1), we may apply - 2ma? 7
equation ) to infer that 0= R )
0= div(pyuy)] yields
— i X2 /(202(1+(t—tg)2/t3)) —t2x2/(20%t2)
d\[ypy‘ +py Cytx( ) vy (01x(5) p= \/i 02 ; 1727 ~ 02 (fort>>to)
d _ 2mo(1+ (t—t9)2/t) V2mot
= Es@(%,t,x(s)) + py(Cyix(s)) divyy(Cyix(s)) _ tog (tox/t)
t ?
and that, by implication, (8)
where o,
— Jig AV (Cyex(T)d —x°/(20%)
Py(ey:x(9)) = Py(Gyaxlto) e fo BN (5) 909 = [ (t0.X) = S ——
o ) _ ) o
Considering the simple case of a free particle, we find thatl’hus, for § — 0 and) large values df(relative toto) the

1 description ofpy given in ) is indeed fully compatible
(t,x) = _ with the quantum-mechanical one found B).((Note: a
(x=y)/t
discussion of the potential conceptual significance of the

and specific choice ofy in (7) can be found in1].)
B s To proceed, we definky(t, x) to be the kinetic energy
Cutx(S) = s(x—y)/t)- of a free particle of massithat travels along the flow line
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of v, through (t,x) with the corresponding flow-line
velocity (x—y)/t, i.e., Way(t,X) =

mX=Y exp( foiL(Zuax(T): y(Cuax(1)) AT — 5 3 divyy (cyex(T)) dT)
2t 77
Given this definition, it is easy to see that

Ly(t,x) :=
is a solution of the equation

Yy .
eiLy(t,X)t avy(t,x) Y= *E dIV\Ly(t,X) + IL(Xv Vy(ta X))‘l’ (12)
W(tx) = Vi on the sef0,T) x R and that
is a solution of §) as well of the free-particle Scbdinger . d(ay 1 92 t,Uay
equation (in Planck-scale units): at  2m 0x2 +V(X)Yay
Ya Ya, 2
oy :_iﬂ’ o 4my d dlvvydr+ i (/ ddwvydr) :
ot 2m 9x2 (13)
Furthermore, in order to gain the flexibility necessary to Proof. Sincecy ,(t) = v (t,x), and since evidently
adjust the solutions of this equation to a given initial B 14
condition, we introduce a functidm: R — C, set Cy,t,x(T) = Cyoyix(9) (T) (14)
m for all sandt in the domain oty , it follows that
27’

Way(Cyt x(S))

and define a superposition of all the wave functigpsia dVy<t,X) Way = ds
the equation s=t

xp( Lz ST

o © gh(y)dlytxt ~ds|
W(t,x) :[wah(y)%(t,x)dy: /m(y)\ﬂdy. 195
(10) —5 / diVVy(Cy.t,x(T)),dr) .
Recalling further the well known fact that any solutign e
of (9) is of the form Hencey, y is a solution of 12).
Lt In order to prove tha, y satisfies {3) as well, we use
® q(0,y)elytxt the equation of motion
wix= [ WOy ary e
~ vt daL  aL
it follows thath(x) = @(0,x) and thatyy, as defined in dr av  9x

(10), is the general solution o8]. to infer that

) ] ] ] ] %7 Yoy divy, (t,x) Lllay/ St AV (Gye(T)) dT
3 Particlesin Arbitrary Potential Fields
OO0y + 1y | o L(Ba(T) 6 G(1)) O

In order to generalize the result just established Uay O Wy [t
concernin 0 ; =Ty T [ 2 vy, dr 4L,

g the representability of solutions &) (y 2 ox 2 Jaot v
superpositions of solutions 0238), we will consider next " /* ((g @) 9zux(1) L 0Vy(cy.Lx(T))> ar
a particle of massn whose motion is constrained by a g drov) ot ov. ot
force field that is generated by a potential function __ Wy 0w Yy 7dlvvyd”|way< 0L 971x(1) t>
VR — R. Assuming thatyis well defined for all values 2 0x 2 /ad ov. ot o
t that are less than or equal to some positive constant i i [1( 0L 97ux(D) | 0L Avy(Cux(T))

FilWay tidey | (“5y ot T3 ot dr
(see the pertinent remark in the Introduction), we will ; v v
now establish the following lemma: = %7"; - % S Ay dT+iLya,
) L 0z x(T) JaL ay
*”"”(E at H*EE)
Lt 9L dvy(Cux 0L dvy(Cyix
Lemma 1. v [ (50 VY(C?{ R G Yar
7Wa.y 7%7 t oL dzytx( ) )
If we denote byL(x,v) the Lagrangianmv?/2 — V(x), 2 ( ax d""‘yd”z'”z' Nt |
then, for anya € (0, T), itis the case that :w;y (_% _/ 2 iy dr-+ 2L+ 2y, azy_(;:(r) T:‘)‘
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Similarly, we find that

0%y, & i
a‘)ﬁ(’z ro- 2 (wzy dIV\ly(Cy.t.x<T>)dT)

t 9
+ o (10 | 5L(zy.‘.x<r>.vy(cy.l_x<r>>)dr)
:% ((%/; %divyydrﬂmvy(M
:% (< ; ‘t; leVydT+|rnVyd )way)
:(7%/ ?divuydrqtinwy) ay
+Lpayax< / x d|vuydr+|mvy>
=— Py VG + imLpaLy =
4 Yoy (/ ﬁ—dlvyydr>2— lﬂ;y /a[ :—Xzzdivvydr.
Finally, according to14), we have

d
diszyvcy-)(.t (S) ( T)

))w)

—imayvy A % divy, dt

0:

(sT)=(tt)
021 x(T)
ox

0z x(7)
ot

07 x(T)
ot

+ vy

=t

=t

+ Wy,
=t

d . .
0= G|, 9V (0,,0(1) = i VL 50(7)

_ %diVVy(CY,t,X(T)) +w(t,X) %div“y(‘:y“(m’

and therefore,

ia’ﬂa,y 1 a Way
gt ~  2m dxz

_ Yay (9 = d|vuydr

l.Uay (/ dd|vyydr>2,

+V(X)Yay

as desired. g.e.d.

Proposition 2.

If VV(x) = mw?x?/2 is a harmonic oscillator potential, then
Yay is a solution of the Sclidinger equation

2 LI o

't T 2moxe

forallae (0, m/w).

Proof. Given the equation of motion

Zy 4(9) + VZth =Z4(s )+ W2y x(S) =0,
it readily follows that

(x—ycog wt)) sin(ws)

21 x(S) = ycog ws) +

sin(wt) ’
1
vy(t,X) = (w(xcos(wt) y)/sin(wt)) ’
and
divy,(t,x) = wcot(wt).

This yields

J .

ax divyy(t,x) =0, (15)

and therefore, the integrals i63) are both equal to zero.
g.e.d.

Remark 2If V(x) = (m/2)x'Qx is a harmonic oscillator
potential onRR* (for some positive definite, symmetric
3 x 3 matrix Q), then the proof of Proposition 2 can be
given in exactly the same way as above as long as the
corresponding spatial coordinateg, x?, and x3 are
understood to refer to an orthonormal basis of
eigenvectors of2. For given this choice of the coordinate
system, equatiorif) is easily seen to remain valid fat,

x?, andx3. That is to sayd/dx divy,(t,x) = 0 for all

i € {1,2,3} wheneverV is a second-order polynomial
potential.

Remark 3The parametefT that is referred to in the
statement of Lemma 1 is equal 1w in the case of a
harmonic oscillator potential because bah x and vy
have singularities at= 1/ cw.

To proceed, we observe that a superposition analogous
to (10) is

wiex= [ ahygaytod. (19

Using elementary analytical arguments, it is not difficalt t
show that fora:= 17/(2w) it is the case that

h(x)
im (%)= "2 (17)

This shows that the initial statg/(0,x) is essentially
equal toh(x) and that therefore the full set of solutions of
the Schédinger equation can be generated via
superpositions of solutions of equatiat),(whenevelV is

a harmonic oscillator potential. (Note: the presence of the
factor 1/+/w in the limit above is due to the fact that we
choseato be equal tat/(2w). If, instead, we had defined
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a to be one—which is feasible only éb < r—this factor
would not have appeared.)
We will forego a detailed proof of equationl?)

because in preparation for our subsequent discussion of

path-integration, we will nhow examine the right-hand
limit of ¢ att = 0 in the most general setting when the
potentialV is arbitrary (up to certain regularity conditions
that will facilitate our pertinent calculations). To thieds
we notice to begin with that

3z§t X
T ox
%

X

d dzytx
dr  dx

3 W(Cutx(T))

02)/-1%( )
X

071 x(T)
ox

Cyﬁt‘x(l')
= diviy (Cyex(T))

This yields

gIn
dr

921 x(7)
Ox

divyy (yx(T)) =

)

and, by implication,

|02y1.x(a)/0X|
|02 x(1)/0X

071 x(a)
(704

ayltX) = xp( [ IL(zu(r):Gy0(7))

exp(/ot iL(th.X(r)7vy(cy,tx(r)))dr)

(18)
because
02y x(t) _ 0% _

ox X
Given this result, we now move on to normalize equation

(16) by eliminating the dependence @f on a. To do so,
we define

Proposition 3.

For all (t,x) € (0,T) x R it is the case that

W60 = /| 252 | exp(J§iL Fax(D) W(Gyex(1)) ).

Proof. Using the representation af,y in (18) and the

In order to show that the initial state of the
superposition

Wt = [ any)gy(txdy
is equal toh(x), we first observe that

T) = % x(0) +/Orz(ﬂ.x(a)da
=Zx(0) + 2, (0) T+ /; /OU Z, «(p)dpdo
) +21x(0) = /r -/prv/(zy-t»X(P))dUdP

= 2x(0)+ 0O = [ (1= PV Zan(p) P

Zy.t.x(

=2Z,:x(0

Settingt =t, it follows that

1 t
x=y+ 40t | (t=p)V/(Bex(p)) dp
and therefore
Zx(0) =2 + & [o(t— o)V (z1x(0)) ?p-)
19
Hence
‘92;'.(;,;(0) _ tl (1+ nqu(t)(t )V"(Zy (p))azyt’((p)dp)
(20)
Since
02:1x(0) _ 9y _,
ox  ox
and
0ZyAt,x(t) _ aix — 1
X X ’

it is eminently plausible to assume that there is a constant

M > 1 such that

<M

oX (21)

"7Zy,t,x(P) ‘
for all x,y e R, allt € (0,T), and allp € [0,t]. (Note: a
proof of the existence oM under adequate regularity
assumptions ol can certainly be given but will here be
omitted as it would be of very little interest from a
physical point of view.) Imposing the additional regulgrit
assumption tha?” be bounded (i.eV”’| < M), we may
infer that the function

boundary conditior; x(0) =y, it follows that
\/‘1+ PV (zx(p) 24P 4
lim 071 x(a)/0x ox
a0 a satisfies the estimate
_ 7] 0
R e ooty 1= R g < M
a0 * px(y)+1] = = 2m
as desired. g.e.d. (22)
@© 2013 NSP
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forallx e R and allt € (0, T). To proceed we notice that

=2 (1) =2, x(0)

V'(z1x(0))do
(23)

Vy(Cyex(T

and set

Gex(y) ::,/ot Zi tlz (/Ot (t 7p)V’dp>2+ <'/0rv’da> Z) dr

T
tfp)v’dp/ V’d0+V> dr
Jo

and

Fex(y) :/Ott1<:t[/0(tdep /Vda)d

(24)
Combining Propositior3 with (19) and @O0), it is easy to
see that

lpy(t,X) =

e A2
pt,\x[(ty) exp('m(xz ) Fi(X—Y)rex(y) +iqt,x(y)) :

and therefore

hy
lim [y(t,x)— )\<I|m/ Jarh( ‘\expox Vrex(y)) — 1ldy
t—0t

t—0t

< fim [ S ey

Using the definition of; x(y) in (24), we find that

t/M M1 2
I’t,x(y)2 < </0 (2 + t) dT) = Mztz,

and, by implication,

= I|m/ % 1—cog(x—y)rix(y)))dy

(o] < fim MAVE [ Jah(y)](x—y)2dy.

2

lim |g(t,x)—

t—0t+

Since h(y)(x — y)* may clearly be assumed to be
integrable, we finally arrive at the desired conclusion:

lim @(t,x) = h(x).

t—0*

(26)

Having established this equality, our next goal is to

In order to accomplish our present objective—namely thejntroduce a path-integral formalism that generates tHe ful

determination of the initial state of the superpositipa-it
is natural and convenient to further assume YhandV’
be bounded as well (i.gV|, [V'| <M). Then

lexp(icex(y)) — 1] = 2(1—cosgrx(y))) < tx(y)?
t/M22 M212 M2t 2
= (/o ( 8m ' 2m | 2m +M) dT) (25)

2 2
=M?%2 (13'\/” +1> 7

24m
and
[: h(y) (px(y) E><;f(ith(y)) -1 exp< im(xzz ¥)? +|(x7y>r[‘x<y)> dy‘

< /“’ \h(y)\\p[.x(y)e\;p(iq(.x(ywfll dy
/ IhW)I([Px(¥)

“Uenint) 1),
gmzm(?ﬂ <%+l> ) [ nldy oy @2 and ).

Since the latter term vanishestat 0, it follows that

Jim g(t,x) =

Hm/ \[ <|m(x2t y)? +i(X—y)rt,x(y)> dy.

set of solutions of the Scdinger equation for a potential
functionV that satisfies the various regularity conditions
imposed in the preceding computations but is otherwise
essentially arbitrary. Picking a (larga) € N and a
be (0,T), we setty := kb/2" and Iy := (t_1,t] for all

ke {1,...,2"}. Moreover, for a given € Iy we denote by
Zytx the spatial coordinate of a particle of masghat
moves in the force field generated Wyand satisfies the
boundary conditions y; x(tc—1) =y and zy; x(t) = x.
The analogous defining equations tQS,\andck,yLX are

Vg (£,X) = (kalt x> (Z((ytlx )

Ckytx(S) == <zky,tsx( )>

Making direct reference to the
Proposition3, we further define

and

result stated in

Wk,y(t7x) =

5Zk,y,t,x(tk—l)
Jx

k-1

exp(/tt iL<Zk~w-,x<f>»vk,y<ck,y¢,x<r>>>dr)

for all (t,x) € Iy x R, and, proceeding recursively, we set

witn = [ anyytdy @D
According to (L1), we have -
and
. © ah im(x—y)? S
09 = tim [~ P exp( TSV ) ay Bt = [ abltoythontdy  @8)
@© 2013 NSP
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where the domain of eadfy is understood to bé x R. and therefore,
Thus, then-th approximation to the desired path-integral P
superposition ¢ is the piecewise  function divyy, (t,x) = ka(t,x)

@": (0,b] x R — C which, by definition, equalgy on Iy ox
for eachk € {1,...,2"}. (Note: the continuity ofy" is _ 1
crucially guaranteed by26).) Given the recursive pattern t—t 1
defined in 27) and @8), it is easy to see that for any t (0=t )V (Zeyix(P)) 0Zcyix(P)
k 1,...,2" I h */ — s YO dp.
€ {1,...,2"} and any t € Ix we have - Mt —t 1) Ix P
k-1
Yh(t,x) = Gk/Rkh(Yﬂ (Jl_llew)ﬁ (tj7y1’+1)> Wiy (6,) dyy - - - dyg, Hence
divy y (Ceyex(T)) =
1
As is customary in discussions of path-integral Tt
formalisms, we will omit a rigorous justification for the - /r (P~ )V (Zeyy (0 (P)) dzcyralp) dp
existence of the limit T m(T —t-1) OX gy
1
W(t,x) = lim Y"(t,x) (29) S Tbe
e T (Pt )V (Zyix(P)) Izcyra(p)
- /tH e 22P) 4o (by (14)
and focus our attention instead on explaining whyan and
plausibly be regarded as a solution of the initial value
problem % divy, (Ceyex(T)) =
5!.!1 l azl[} _ T (p_tk—l)vw(zk‘y.r.x(p)) 52«.yx.x(P) dzk.y.r‘z(p)
B s AV (30) L ey o
7/1 (pftk,l)vwzky‘t.x(p)) 0zzk.y.r.z(P) aZk.y.t.x(l') dp
and 1 m(T —tc 1) 02 ox
Y(0,x) = h(x). (31) and
. . . 2
To this end, we pick an arbitrary € (0,b] and a I IV iy (Okyax(T) =
correspondingk € {1,...,2"} such thatt € Iy. If nis _/r (Pt V@ (Zyex()) (dzk.y_(.x(p))zazk_y_r‘z(p)d
large, then e s m(T—t 1) ox ax P
~ " _
L.U flkaN Lp rlka* wkv 7/-r (P*tkfl)vw(zk.y.r.x(ﬁ)) ‘?sz.y.tx<p> azk-y-fl(p) dp
and Lemma 1 in conjunction with PropositiGrtherefore L o ox
implies that for alla € I that are sufficiently close ti 1 o [f (Pt )V (Eyrx(P)) OZyex(P) 9%y a(P) OZkyix(T) dp
it is the case that Mea MT—tey) ox e ox
7/T(Wﬁ4NW&WmNﬁ4wﬂﬂ(hwﬁﬂyd
9 W (9 m(T —ty_1) ax® ax P
H 1 02L,U T _ " 2 2
— ~ =7 r +V X (P —tk-1)V" (Zxyx(P)) 0°Zcyr2(P) 0Zyix(T)
ot 2m 9x2 gy 7./%1 mZt—tk,ly; (;lxz dﬁz de

® A 1(t1, t,X)Gray(t,X)dy, (32 _ _
2o A1t Y Yoyt X Gray (L) dy, - (32) In order to estimate the absolute magnitude of these
where ) derivatives of the divergence of y, we assume that"”’
. 2 . |
Gray(t,X) == g (f;%dlvuk‘ydr) — 4 s Zdivy,di. and V@ are bounded (i.eV"|,[V@¥| < M), and—in
direct analogy toZ1)—we also assume that
Using @9) and @3), it follows that

?Zyix(P) | |3 zcyix(P)
Vk-,y(tax) = Z:gy,t,x(t) = z((,y,t,x(tkfl) ’ ) ’ ox3 ’ <M
1 t
—= | V'(zyix(0))do for all x,y € R, all t € Iy, and allp € (t_1,t]. Then we
mJiy 4 readily find that
X—y
=— a . M3(T —t,_ M3b
t‘t t1 ) ‘dxd'VVk,y(Ck,y,t,x(T)) < ( m 1) S o (33)
+/ (t—p)V'(zyix(P)) dp
Je 4 m(t —tx_1) and
t
21 V'(zytx(0))do, 9% . MY (T —t1) _ M
m e 1 et Wd|V\lk7y(Ck,y,t,x(T)) S m é m2n72'
@© 2013 NSP
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Consequently, ify 1 <a<t, then
(t—a)°M®? (t—a)M*b
ms22n+3 + maan
MEp*  M4p?
< m324n+3 + mZzZn’
and, by implication,

Gray(t;X)| <

rllmo . o Pk 1(t-1,Y) Py (t,X) Gy ay(t,X) dy = 0.
According to @2), this result may be considered a semi-
rigorous derivation of the proposed fact thjatas defined
in (29), is a solution of the Schbidinger equation (as given
in (30)). Furthermore, sincg"(t,x) = Y1 (t,x) forall n e
N and allt € I, the equations26) and @7) together imply
that ¢ satisfies the initial condition given ir8(). Thus it
does appear correct to assert that the totality of solutions
of the Schodinger equation can be constructed from path-
integral superpositions of solutions of equatidh (
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