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Abstract: Denoting by v
¯

the velocity flow of a classical particle that is subject to a potentialV , we demonstrate that the path-integral
formalism of non-relativistic quantum mechanics can be obtained by superimposing wave functions that are solutions of a wave equation
which in turn directly corresponds to the probability conservation equation div(ψ∗ψv

¯
) = 0.
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1 Introduction

In order to introduce the present paper’s subject matter,
we denote byzy,t,x the spatial coordinate of a classical
particle of massm that moves in one spatial dimension in
the force field F

¯
= −∇V and satisfies the boundary

conditionszy,t,x(0) = y andzy,t,x(t) = x. The restriction to
one spatial dimension is permissible because the
extension to three spatial dimensions is very easily
accomplished. Given this definition ofzy,t,x, the
corresponding 2-velocity flow v

¯y is

v
¯y(t,x) =

(

1
vy(t,x)

)

=

(

1
z′y,t,x(t)

)

and the flow lines of v
¯y are described by the

parameterization

cy,t,x(s) :=

(

s
zy,t,x(s)

)

. (1)

Note: in order for v
¯y to be well defined for all valuest

that are less than or equal to some positive constantT , we
will assume that the boundary conditionszy,t,x(0) = y and
zy,t,x(t) = x uniquely determinezy,t,x for all t ∈ (0,T ). The
necessity and plausibility of this assumption will become
clear when we later consider, as an example, the special
case of a harmonic oscillator potential.

Associated with each v
¯y we imagine to be given a

probability density functionρy which is thought to
specify how likely it is for the given classical particle to
be found on one of the flow linescy,t,x. That is to say,ρy is
assumed to satisfy the following preservation equation:

div(ρyv
¯y) = 0. (2)

In order to link this equation to quantum mechanics, we
further assume that we are given a wave functionψy such
that|ψy|2 = ψ∗

y ψy = ρy. Then, according to (2), it must be
the case that

ψ∗
y ∂v

¯y
ψy +ψy∂v

¯y
ψ∗

y = ∂v
¯y
(ψ∗

y ψy) =−ψ∗
y ψy divv

¯y. (3)

By inspection we find that this equation is satisfied if there
exists a real-valued functionLy such thatψy is a solution
of the wave equation

∂v
¯y

ψy =−ψy

2
divv

¯y + iLyψy. (4)

The purpose of the present paper is to demonstrate that
this equation, when employed as a generating equation
for path-integral superpositions, yields a description of
non-relativistic quantum mechanics that is fully
equivalent to the wave-mechanical formalism that the
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Schr̈odinger equation describes. As a note of caution we
wish to add that the possibility of founding quantum
physics on equation (4) is so elementary a claim that it is
hard to imagine its validity to be as yet unknown.
However, after examining a very substantial number of
potential sources, the present author was unable to find
any article or book in which the claim in question has
been established or discussed. No research paper or
ordinary textbook appears to make any reference to it, and
a comprehensive work on path-integration like [3] does
not contain it either (unless the present author somehow
overlooked it). In the light of these failed attempts to
locate a relevant literature source, the content of the
present paper is here being offered—with considerable
hesitation—as a provisional novelty.

Remark 1According to (3), we have

∂ρy

∂ t
+ vy

∂ρy

∂x
= ∂v

¯y
ρy =−ρy divv

¯y =−ρy
∂vy

∂x
,

and therefore,

∂
∂ t

∫ ∞

−∞
ρy dx =−

∫ ∞

−∞

∂ (ρyvy)

∂x
dx =

∂ (ρyvy)

∂x

∣

∣

∣

∣

∞

−∞
= 0.

This shows that equation (2) does indeed guarantee the
preservation of the total probability represented by the
space integral ofρy.

2 Free Particles

In order to establish the link to quantum mechanics, to
which we alluded in the Introduction, we observe to begin
with that the probability conservation equation (2)
uniquely determines the future evolution of the density
function ρy from a given initial state at timet0 > 0. For
using the parameterizationcy,t,x in (1), we may apply
equation (2) to infer that

0= div(ρyv
¯y)
∣

∣

cy,t,x(s)

= ∂v
¯y

ρy

∣

∣

∣

cy,t,x(s)
+ρy(cy,t,x(s))divv

¯y(cy,t,x(s))

=
d
ds

ρy(cy,t,x(s))+ρy(cy,t,x(s))divv
¯y(cy,t,x(s))

and that, by implication,

ρy(cy,t,x(s)) = ρy(cy,t,x(t0))e
−∫ s

t0
divv

¯y(cy,t,x(τ))dτ
. (5)

Considering the simple case of a free particle, we find that

v
¯y(t,x) =

(

1
(x− y)/t

)

and

cy,t,x(s) =

(

s
s(x− y)/t

)

.

Denoting the initial probability density att0 by g, i.e.,

ρy(t0,x) = g(x)

and observing that

divv
¯y =

1
t
,

equation (5) allows us to infer that

ρy(t,x) = g(t0(x− y)/t)e−
∫ t
t0

1/τ dτ
=

t0g(t0(x− y)/t)
t

.

(6)
A quick comparison—for the casey = 0—shows that this
result is compatible with the standard description of a
stationary free-particle wave in elementary quantum
mechanics: a standing-wave solution of the free
Schr̈odinger equation

i
∂ψ
∂ t

=− h̄
2m

∂ 2ψ
∂x2

that satisfies the Gaussian initial condition

ψ(t0,x) =
e−x2/(4σ2)

4
√

2πσ2

is

ψ(t,x) = e−x2/(4σ2(1+ih̄(t−t0)/(2mσ2)))

4√
2πσ2(1+ih̄(t−t0)/(2mσ2))1/2

(see [2], p.30),

with

ρ = |ψ|2 = e−x2/(2σ2(1+h̄2(t−t0)
2/(2mσ2)2))

√
2πσ(1+ h̄2(t − t0)2/(2mσ2)2)1/2

as the corresponding probability density. Setting

t0 :=
2mσ2

h̄
(7)

yields

ρ =
e−x2/(2σ2(1+(t−t0)

2/t2
0))

√
2πσ(1+(t − t0)2/t2

0)
1/2

≈ t0e−t2
0x2/(2σ2t2)

√
2πσt

(for t ≫ t0)

=
t0g(t0x/t)

t
,

(8)
where

g(x) = |ψ|2(t0,x) =
e−x2/(2σ2)

√
2πσ

Thus, for (y = 0 and) large values oft (relative tot0) the
description ofρy given in (6) is indeed fully compatible
with the quantum-mechanical one found in (8). (Note: a
discussion of the potential conceptual significance of the
specific choice oft0 in (7) can be found in [1].)

To proceed, we defineLy(t,x) to be the kinetic energy
of a free particle of massm that travels along the flow line
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of v
¯y through (t,x) with the corresponding flow-line

velocity (x− y)/t, i.e.,

Ly(t,x) :=
m
2
(

x− y
t

)2.

Given this definition, it is easy to see that

ψy(t,x) :=
eiLy(t,x)t
√

t
.

is a solution of (4) as well of the free-particle Schrödinger
equation (in Planck-scale units):

i
∂ψ
∂ t

=− 1
2m

∂ 2ψ
∂x2 . (9)

Furthermore, in order to gain the flexibility necessary to
adjust the solutions of this equation to a given initial
condition, we introduce a functionh : R→ C, set

α :=

√

m
2πi

,

and define a superposition of all the wave functionsψy via
the equation

ψ(t,x) =
∫ ∞

−∞
αh(y)ψy(t,x)dy =

∫ ∞

−∞

αh(y)eiLy(t,x)t
√

t
dy.

(10)
Recalling further the well known fact that any solutionψ
of (9) is of the form

ψ(t,x) =
∫ ∞

−∞

αψ(0,y)eiLy(t,x)t
√

t
dy, (11)

it follows thath(x) = ψ(0,x) and thatψ, as defined in
(10), is the general solution of (9).

3 Particles in Arbitrary Potential Fields

In order to generalize the result just established
concerning the representability of solutions of (9) by
superpositions of solutions of (23), we will consider next
a particle of massm whose motion is constrained by a
force field that is generated by a potential function
V : R→ R. Assuming that v

¯y is well defined for all values
t that are less than or equal to some positive constantT
(see the pertinent remark in the Introduction), we will
now establish the following lemma:

Lemma 1.

If we denote byL(x,v) the Lagrangianmv2/2−V (x),
then, for anya ∈ (0,T ), it is the case that

ψa,y(t,x) :=

exp
(
∫ t

0 iL(zy,t,x(τ),vy(cy,t,x(τ)))dτ − 1
2

∫ t
a divv

¯y(cy,t,x(τ))dτ
)

is a solution of the equation

∂vy(t,x)ψ =−ψ
2

divv
¯y(t,x)+ iL(x,vy(t,x))ψ (12)

on the set(0,T )×R and that

i
∂ψa,y

∂ t
=− 1

2m

∂ 2ψa,y

∂x2 +V (x)ψa,y

− ψa,y

4m

∫ t

a

∂ 2

∂x2 divvy dτ +
ψa,y

8m

(

∫ t

a

∂
∂x

divvydτ
)2

.

(13)

Proof. Sincec′y,t,x(t) = v
¯y(t,x), and since evidently

cy,t,x(τ) = cy,cy,t,x(s)(τ) (14)

for all s andτ in the domain ofcy,t,x, it follows that

∂vy(t,x)ψa,y =
d
ds

∣

∣

∣

∣

s=t
ψa,y(cy,t,x(s))

=
d
ds

∣

∣

∣

∣

s=t
exp

(

∫ s

0
iL(zy,t,x(τ),vy(cy,t,x(τ))),dτ

−1
2

∫ s

a
divvy(cy,t,x(τ)),dτ

)

.

Henceψa,y is a solution of (12).
In order to prove thatψa,y satisfies (13) as well, we use

the equation of motion

d
dτ

∂L
∂v

=
∂L
∂x

to infer that
∂ψa,y

∂ t
=− ψa,y

2
divv

¯y(t,x)−
ψa,y

2

∫ t

a

∂
∂ t

divv
¯y(cy,t,x(τ))dτ

+ iL(x,vy(t,x))ψa,y + iψa,y

∫ t

0

∂
∂ t

L(zy,t,x(τ),vy(cy,t,x(τ)))dτ

=− ψa,y

2
∂vy

∂x
− ψa,y

2

∫ t

a

∂
∂ t

divv
¯y dτ + iLψa,y

+ iψa,y

∫ t

0

((

d
dτ

∂L
∂v

)

∂ zy,t,x(τ)
∂ t

+
∂L
∂v

∂vy(cy,t,x(τ))
∂ t

)

dτ

=− ψa,y

2
∂vy

∂x
− ψa,y

2

∫ t

a

∂
∂ t

divvydτ + iψa,y

(

∂L
∂v

∂ zy,t,x(τ)
∂ t

∣

∣

∣

∣

t

0

)

+ iLψa,y + iψa,y

∫ t

0

(

− ∂L
∂v

∂ z′y,t,x(τ)
∂ t

+
∂L
∂v

∂vy(cy,t,x(τ))
∂ t

)

dτ

=− ψa,y

2
∂vy

∂x
− ψa,y

2

∫ t

a

∂
∂ t

divv
¯y dτ + iLψa,y

+ iψa,y

(

∂L
∂v

∂ zy,t,x(τ)
∂ t

∣

∣

∣

∣

τ=t

− ∂L
∂v

∂y
∂ t

)

+ iψa,y

∫ t

0

(

− ∂L
∂v

∂vy(cy,t,x(τ))
∂ t

+
∂L
∂v

∂vy(cy,t,x(τ))
∂ t

)

dτ

=
ψa,y

2

(

− ∂vy

∂x
−
∫ t

a

∂
∂ t

divv
¯y dτ +2iL+2i

∂L
∂v

∂ zy,t,x(τ)
∂ t

∣

∣

∣

∣

τ=t

)

=
ψa,y

2

(

− ∂vy

∂x
−
∫ t

a

∂
∂ t

divv
¯y dτ +2iL+2imvy

∂ zy,t,x(τ)
∂ t

∣

∣

∣

∣

τ=t

)

.
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Similarly, we find that

∂ 2ψa,y

∂x2 =− ∂
∂x

(

ψa,y

2

∫ t

a

∂
∂x

divv
¯y(cy,t,x(τ))dτ

)

+
∂
∂x

(

iψa,y

∫ t

0

∂
∂x

L(zy,t,x(τ),vy(cy,t,x(τ)))dτ
)

=
∂
∂x

((

− 1
2

∫ t

a

∂
∂x

divv
¯y dτ + imvy

(

∂ zy,t,x(τ)
∂x

∣

∣

∣

∣

τ=t

))

ψa,y

)

=
∂
∂x

((

− 1
2

∫ t

a

∂
∂x

divvydτ + imvy
∂x
∂x

)

ψa,y

)

=

(

− 1
2

∫ t

a

∂
∂x

divv
¯y dτ + imvy

)2

ψa,y

+ψa,y
∂
∂x

(

− 1
2

∫ t

a

∂
∂x

divv
¯y dτ + imvy

)

=−m2ψa,yv2
y + imψa,y

∂vy

∂x
− imψa,yvy

∫ t

a

∂
∂x

divv
¯y dτ

+
ψa,y

4

(

∫ t

a

∂
∂x

divv
¯y dτ

)2

− ψa,y

2

∫ t

a

∂ 2

∂x2 divv
¯y dτ.

Finally, according to (14), we have

0=
d
ds

zy,cy,x,t (s)(τ)
∣

∣

∣

∣

(s,τ)=(t,t)

=
∂ zy,t,x(τ)

∂ t

∣

∣

∣

∣

τ=t
+ vy

∂ zy,t,x(τ)
∂x

∣

∣

∣

∣

τ=t

=
∂ zy,t,x(τ)

∂ t

∣

∣

∣

∣

τ=t
+ vy,

and

0=
d
ds

∣

∣

∣

∣

s=t
divv

¯y(cy,cy,t,x(s)(τ)) = ∂v
¯y(t,x)

divv
¯y(cy,t,x(τ))

=
∂
∂ t

divv
¯y(cy,t,x(τ))+ vy(t,x)

∂
∂x

divv
¯y(cy,t,x(τ)),

and therefore,

i
∂ψa,y

∂ t
=− 1

2m

∂ 2ψa,y

∂x2 +V (x)ψa,y

− ψa,y

4m

∫ t

a

∂ 2

∂x2 divv
¯y dτ

+
ψa,y

8m

(

∫ t

a

∂
∂x

divv
¯y dτ

)2

,

as desired. q.e.d.

Proposition 2.

If V (x) = mω2x2/2 is a harmonic oscillator potential, then
ψa,y is a solution of the Schrödinger equation

i
∂ψ
∂ t

=− 1
2m

∂ 2ψ
∂x2 +V (x)ψ

for all a ∈ (0,π/ω).

Proof. Given the equation of motion

z′′y,t,x(s)+
1
m

V ′(zy,t,x(s)) = z′′y,t,x(s)+ω2zy,t,x(s) = 0,

it readily follows that

zy,t,x(s) = ycos(ωs)+
(x− ycos(ωt))sin(ωs)

sin(ωt)
,

v
¯y(t,x) =

(

1
ω(xcos(ωt)− y)/sin(ωt)

)

,

and
divv

¯y(t,x) = ω cot(ωt).

This yields
∂
∂x

divv
¯y(t,x) = 0, (15)

and therefore, the integrals in (13) are both equal to zero.
q.e.d.

Remark 2If V (x) = (m/2)xtΩx is a harmonic oscillator
potential onR3 (for some positive definite, symmetric
3× 3 matrix Ω ), then the proof of Proposition 2 can be
given in exactly the same way as above as long as the
corresponding spatial coordinatesx1, x2, and x3 are
understood to refer to an orthonormal basis of
eigenvectors ofΩ . For given this choice of the coordinate
system, equation (15) is easily seen to remain valid forx1,
x2, and x3. That is to say,∂/∂xi divv

¯y(t,x) = 0 for all
i ∈ {1,2,3} wheneverV is a second-order polynomial
potential.

Remark 3The parameterT that is referred to in the
statement of Lemma 1 is equal toπ/ω in the case of a
harmonic oscillator potential because bothzy,t,x and vy
have singularities att = π/ω.

To proceed, we observe that a superposition analogous
to (10) is

ψ(t,x) =
∫ ∞

−∞
αh(y)ψa,y(t,x)dy. (16)

Using elementary analytical arguments, it is not difficult to
show that fora := π/(2ω) it is the case that

lim
t→0+

ψ(t,x) =
h(x)√

ω
. (17)

This shows that the initial stateψ(0,x) is essentially
equal toh(x) and that therefore the full set of solutions of
the Schr̈odinger equation can be generated via
superpositions of solutions of equation (4), wheneverV is
a harmonic oscillator potential. (Note: the presence of the
factor 1/

√
ω in the limit above is due to the fact that we

chosea to be equal toπ/(2ω). If, instead, we had defined
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a to be one—which is feasible only ifω < π—this factor
would not have appeared.)

We will forego a detailed proof of equation (17)
because in preparation for our subsequent discussion of
path-integration, we will now examine the right-hand
limit of ψ at t = 0 in the most general setting when the
potentialV is arbitrary (up to certain regularity conditions
that will facilitate our pertinent calculations). To this end,
we notice to begin with that

d
dτ

∂ zy,t,x(τ)
∂x

=
∂ z′y,t,x(τ)

∂x
=

∂
∂x

vy(cy,t,x(τ))

=
∂vy

∂x

∣

∣

∣

∣

cy,t,x(τ)

∂ zy,t,x(τ)
∂x

= divv
¯y(cy,t,x(τ))

∂ zy,t,x(τ)
∂x

.

This yields

divv
¯y(cy,t,x(τ)) =

d
dτ

ln

∣

∣

∣

∣

∂ zy,t,x(τ)
∂x

∣

∣

∣

∣

,

and, by implication,

ψa,y(t,x) =

√

∣

∣∂ zy,t,x(a)/∂x
∣

∣

√

∣

∣∂ zy,t,x(t)/∂x
∣

∣

exp

(

∫ t

0
iL(zy,t,x(τ),vy(cy,t,x(τ)))dτ

)

=

√

∣

∣

∣

∣

∂ zy,t,x(a)

∂x

∣

∣

∣

∣

exp

(

∫ t

0
iL(zy,t,x(τ),vy(cy,t,x(τ)))dτ

)

(18)
because

∂ zy,t,x(t)

∂x
=

∂x
∂x

= 1.

Given this result, we now move on to normalize equation
(16) by eliminating the dependence ofψ on a. To do so,
we define

ψy(t,x) := lim
a→0+

ψa,y(t,x)√
a

.

Proposition 3.

For all (t,x) ∈ (0,T ) × R it is the case that

ψy(t,x) =

√

∣

∣

∣

∂ z′y,t,x(0)
∂x

∣

∣

∣
exp
(
∫ t

0 iL(zy,t,x(τ),vy(cy,t,x(τ)))dτ
)

.

Proof. Using the representation ofψa,y in (18) and the
boundary conditionzy,t,x(0) = y, it follows that

lim
a→0+

∂ zy,t,x(a)/∂x

a
=

lim
a→0+

∂ zy,t,x(a)/∂x−∂ zy,t,x(0)/∂x

a
=

∂ z′y,t,x(0)

∂x
,

as desired. q.e.d.

In order to show that the initial state of the
superposition

ψ(t,x) =
∫ ∞

−∞
αh(y)ψy(t,x)dy

is equal toh(x), we first observe that

zy,t,x(τ) = zy,t,x(0)+
∫ τ

0
z′y,t,x(σ)dσ

= zy,t,x(0)+ z′y,t,x(0)τ +
∫ τ

0

∫ σ

0
z′′y,t,x(ρ)dρ dσ

= zy,t,x(0)+ z′y,t,x(0)τ −
1
m

∫ τ

0

∫ τ

ρ
V ′(zy,t,x(ρ))dσ dρ

= zy,t,x(0)+ z′y,t,x(0)τ −
1
m

∫ τ

0
(τ −ρ)V ′(zy,t,x(ρ))dρ.

Settingτ = t, it follows that

x = y+ z′y,t,x(0)t −
1
m

∫ t

0
(t −ρ)V ′(zy,t,x(ρ))dρ

and therefore

z′y,t,x(0) =
x−y

t + 1
mt

∫ t
0(t −ρ)V ′(zy,t,x(ρ))dρ .

(19)
Hence

∂ z′y,t,x(0)
∂x = 1

t

(

1+ 1
m

∫ t
0(t −ρ)V ′′(zy,t,x(ρ))

∂ zy,t,x(ρ)
∂x dρ

)

.

(20)
Since

∂ zy,t,x(0)
∂x

=
∂y
∂x

= 0

and
∂ zy,t,x(t)

∂x
=

∂x
∂x

= 1,

it is eminently plausible to assume that there is a constant
M > 1 such that

∣

∣

∣

∣

∂ zy,t,x(ρ)
∂x

∣

∣

∣

∣

≤ M (21)

for all x,y ∈ R, all t ∈ (0,T ), and allρ ∈ [0, t]. (Note: a
proof of the existence ofM under adequate regularity
assumptions onV can certainly be given but will here be
omitted as it would be of very little interest from a
physical point of view.) Imposing the additional regularity
assumption thatV ′′ be bounded (i.e.,|V ′′| ≤ M), we may
infer that the function

pt,x(y) :=

√

∣

∣

∣

∣

1+
1
m

∫ t

0
(t −ρ)V ′′(zy,t,x(ρ))

∂ zy,t,x(ρ)
∂x

dρ
∣

∣

∣

∣

satisfies the estimate

|pt,x(y)−1|= |pt,x(y)2−1|
|pt,x(y)+1| ≤ |pt,x(y)

2−1| ≤ M2t2

2m
(22)
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for all x ∈ R and allt ∈ (0,T ). To proceed we notice that

vy(cy,t,x(τ)) = z′y,t,x(τ) = z′y,t,x(0)−
1
m

∫ τ

0
V ′(zy,t,x(σ))dσ

(23)
and set

qt,x(y) :=
∫ t

0

1
2m

(

1
t2

(

∫ t

0
(t −ρ)V ′dρ

)2

+

(

∫ τ

0
V ′dσ

)2
)

dτ

−
∫ t

0

(

1
mt

∫ t

0
(t −ρ)V ′ dρ

∫ τ

0
V ′ dσ +V

)

dτ

and

rt,x(y) :=
∫ t

0

1
t

(

1
t

∫ t

0
(t −ρ)V ′ dρ −

∫ τ

0
V ′ dσ

)

dτ

(24)
Combining Proposition3 with (19) and (20), it is easy to
see that

ψy(t,x) =

pt,x(y)√
t

exp

(

im(x− y)2

2t
+ i(x− y)rt,x(y)+ iqt,x(y)

)

.

In order to accomplish our present objective—namely the
determination of the initial state of the superpositionψ—it
is natural and convenient to further assume thatV andV ′

be bounded as well (i.e.,|V |, |V ′| ≤ M). Then

|exp(iqt,x(y))−1|= 2(1−cos(qt,x(y)))≤ qt,x(y)
2

≤
(

∫ t

0

(

M2t2

8m
+

M2τ2

2m
+

M2τt
2m

+M

)

dτ
)2

= M2t2
(

13Mt2

24m
+1

)2

,

(25)

and
∣

∣

∣

∣

∫ ∞

−∞

h(y)(pt,x(y)exp(iqt,x(y))−1)√
t

exp

(

im(x− y)2

2t
+ i(x− y)rt,x(y)

)

dy

∣

∣

∣

∣

≤
∫ ∞

−∞

|h(y)||pt,x(y)exp(iqt,x(y))−1|√
t

dy

≤
∫ ∞

−∞

|h(y)|(|pt,x(y)−1|+ |exp(iqt,x(y))−1|)√
t

dy

≤ M2t
√

t

(

1
2m

+

(

13Mt2

24m
+1

)2
)

∫ ∞

−∞
|h(y)|dy (by (22) and (25)).

Since the latter term vanishes att = 0, it follows that

lim
t→0+

ψ(t,x) =

lim
t→0+

∫ ∞

−∞

αh(y)√
t

exp

(

im(x− y)2

2t
+ i(x− y)rt,x(y)

)

dy.

According to (11), we have

h(x) = lim
t→0+

∫ ∞

−∞

αh(y)√
t

exp

(

im(x− y)2

2t

)

dy

and therefore

lim
t→0+

|ψ(t,x)−h(x)| ≤ lim
t→0+

∫ ∞

−∞

|αh(y)|√
t

|exp(i(x− y)rt,x(y))−1|dy

= lim
t→0+

∫ ∞

−∞

|2αh(y)|√
t

(1−cos((x− y)rt,x(y)))dy

≤ lim
t→0+

∫ ∞

−∞

|αh(y)|√
t

(x− y)2rt,x(y)
2 dy.

Using the definition ofrt,x(y) in (24), we find that

rt,x(y)
2 ≤

(

∫ t

0

(

M
2
+

Mτ
t

)

dτ
)2

= M2t2,

and, by implication,

lim
t→0+

|ψ(t,x)−h(x)| ≤ lim
t→0+

M2t
√

t
∫ ∞

−∞
|αh(y)|(x−y)2 dy.

Since h(y)(x − y)2 may clearly be assumed to be
integrable, we finally arrive at the desired conclusion:

lim
t→0+

ψ(t,x) = h(x). (26)

Having established this equality, our next goal is to
introduce a path-integral formalism that generates the full
set of solutions of the Schrödinger equation for a potential
functionV that satisfies the various regularity conditions
imposed in the preceding computations but is otherwise
essentially arbitrary. Picking a (large)n ∈ N and a
b ∈ (0,T ), we settk := kb/2n and Ik := (tk−1, tk] for all
k ∈ {1, . . . ,2n}. Moreover, for a givent ∈ Ik we denote by
zk,y,t,x the spatial coordinate of a particle of massm that
moves in the force field generated byV and satisfies the
boundary conditionszk,y,t,x(tk−1) = y and zk,y,t,x(t) = x.
The analogous defining equations for v

¯k,y andck,y,t,x are

v
¯k,y(t,x) =

(

1
vk,y(t,x)

)

:=

(

1
z′k,y,t,x(t)

)

and

ck,y,t,x(s) :=

(

s
zk,y,t,x(s)

)

.

Making direct reference to the result stated in
Proposition3, we further define

ψk,y(t,x) :=

√

∣

∣

∣

∣

∂ zk,y,t,x(tk−1)

∂x

∣

∣

∣

∣

exp

(

∫ t

tk−1

iL(zk,y,t,x(τ),vk,y(ck,y,t,x(τ)))dτ
)

for all (t,x) ∈ Ik ×R, and, proceeding recursively, we set

ψ1(t,x) :=
∫ ∞

−∞
αh(y)ψ1,y(t,x)dy (27)

and

ψk+1(t,x) :=
∫ ∞

−∞
αψk(tk,y)ψk+1,y(t,x)dy, (28)
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where the domain of eachψk is understood to beIk ×R.
Thus, then-th approximation to the desired path-integral
superposition ψ is the piecewise function
ψn : (0,b]×R→ C which, by definition, equalsψk on Ik
for eachk ∈ {1, . . . ,2n}. (Note: the continuity ofψn is
crucially guaranteed by (26).) Given the recursive pattern
defined in (27) and (28), it is easy to see that for any
k ∈ {1, . . . ,2n} and any t ∈ Ik we have

ψn(t,x) = αk
∫

Rk
h(y1)

(

k−1

∏
j=1

ψ j,y j(t j,y j+1)

)

ψk,yk(t,x)dy1 · · ·dyk,

As is customary in discussions of path-integral
formalisms, we will omit a rigorous justification for the
existence of the limit

ψ(t,x) := lim
n→∞

ψn(t,x) (29)

and focus our attention instead on explaining whyψ can
plausibly be regarded as a solution of the initial value
problem

i
∂ψ
∂ t

=− 1
2m

∂ 2ψ
∂x2 +V (x)ψ (30)

and

ψ(0,x) = h(x). (31)

To this end, we pick an arbitraryt ∈ (0,b] and a
correspondingk ∈ {1, . . . ,2n} such thatt ∈ Ik. If n is
large, then

ψ ↾Ik×R≈ ψn ↾Ik×R= ψk,

and Lemma 1 in conjunction with Proposition3 therefore
implies that for alla ∈ Ik that are sufficiently close totk−1
it is the case that

i
∂ψ
∂ t

≈ − 1
2m

∂ 2ψ
∂x2 +V (x)ψ

+
∫ ∞
−∞ αψk−1(tk−1,y)ψk,y(t,x)Gk,a,y(t,x)dy, (32)

where

Gk,a,y(t,x) := 1
8m

(

∫ t
a

∂
∂x divv

¯k,y dτ
)2

− 1
4m

∫ t
a

∂ 2

∂x2 divv
¯k,y dτ .

Using (19) and (23), it follows that

vk,y(t,x) = z′k,y,t,x(t) = z′k,y,t,x(tk−1)

− 1
m

∫ t

tk−1

V ′(zk,y,t,x(σ))dσ

=
x− y

t − tk−1

+
∫ t

tk−1

(t −ρ)V ′(zk,y,t,x(ρ))
m(t − tk−1)

dρ

− 1
m

∫ t

tk−1

V ′(zk,y,t,x(σ))dσ ,

and therefore,

divv
¯k,y(t,x) =

∂vk,y

∂x
(t,x)

=
1

t − tk−1

−
∫ t

tk−1

(ρ − tk−1)V ′′(zk,y,t,x(ρ))
m(t − tk−1)

∂ zk,y,t,x(ρ)
∂x

dρ .

Hence

divv
¯k,y(ck,y,t,x(τ)) =
1

τ − tk−1

−
∫ τ

tk−1

(ρ − tk−1)V ′′(zk,y,ck,y,t,x(τ)(ρ))

m(τ − tk−1)

∂ zk,y,τ ,x(ρ)
∂x

∣

∣

∣

∣

x=zk,y,t,x(τ)
dρ

=
1

τ − tk−1

−
∫ τ

tk−1

(ρ − tk−1)V ′′(zk,y,t,x(ρ))
m(τ − tk−1)

∂ zk,y,τ ,z(ρ)
∂x

dρ (by (14))

and

∂
∂x

divv
¯k,y(ck,y,t,x(τ)) =

−
∫ τ

tk−1

(ρ − tk−1)V ′′′(zk,y,τ ,x(ρ))
m(τ − tk−1)

∂ zk,y,t,x(ρ)
∂x

∂ zk,y,τ ,z(ρ)
∂x

dρ

−
∫ τ

tk−1

(ρ − tk−1)V ′′(zk,y,t,x(ρ))
m(τ − tk−1)

∂ 2zk,y,τ ,z(ρ)
∂x2

∂ zk,y,t,x(τ)
∂x

dρ

and

∂ 2

∂x2 divv
¯k,y(ck,y,t,x(τ)) =

−
∫ τ

tk−1

(ρ − tk−1)V (4)(zk,y,τ ,x(ρ))
m(τ − tk−1)

(

∂ zk,y,t,x(ρ)
∂x

)2 ∂ zk,y,τ ,z(ρ)
∂x

dρ

−
∫ τ

tk−1

(ρ − tk−1)V ′′′(zk,y,τ ,x(ρ))
m(τ − tk−1)

∂ 2zk,y,t,x(ρ)
∂x2

∂ zk,y,τ ,z(ρ)
∂x

dρ

−2
∫ τ

tk−1

(ρ − tk−1)V ′′′(zk,y,τ ,x(ρ))
m(τ − tk−1)

∂ zk,y,t,x(ρ)
∂x

∂ 2zk,y,τ ,z(ρ)
∂x2

∂ zk,y,t,x(τ)
∂x

dρ

−
∫ τ

tk−1

(ρ − tk−1)V ′′(zk,y,t,x(ρ))
m(τ − tk−1)

∂ 3zk,y,τ ,z(ρ)
∂x3

(

∂ zk,y,t,x(τ)
∂x

)2

dρ

−
∫ τ

tk−1

(ρ − tk−1)V ′′(zk,y,t,x(ρ))
m(τ − tk−1)

∂ 2zk,y,τ ,z(ρ)
∂x2

∂ 2zk,y,t,x(τ)
∂x2 dρ

In order to estimate the absolute magnitude of these
derivatives of the divergence of v

¯k,y, we assume thatV ′′′

and V (4) are bounded (i.e.,|V ′′′|, |V (4)| ≤ M), and—in
direct analogy to (21)—we also assume that

∣

∣

∣

∣

∂ 2zk,y,t,x(ρ)
∂x2

∣

∣

∣

∣

,

∣

∣

∣

∣

∂ 3zk,y,t,x(ρ)
∂x3

∣

∣

∣

∣

≤ M

for all x,y ∈ R, all t ∈ Ik, and allρ ∈ (tk−1, t]. Then we
readily find that
∣

∣

∣

∣

∂
∂x

divv
¯k,y(ck,y,t,x(τ))

∣

∣

∣

∣

≤ M3(τ − tk−1)

m
≤ M3b

m2n (33)

and
∣

∣

∣

∣

∂ 2

∂x2 divv
¯k,y(ck,y,t,x(τ))

∣

∣

∣

∣

≤ 3M4(τ − tk−1)

m
≤ M4b

m2n−2 .
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Consequently, iftk−1 < a ≤ t, then

|Gk,a,y(t,x)| ≤
(t −a)2M6b2

m322n+3 +
(t −a)M4b

m22n

<
M6b4

m324n+3 +
M4b2

m222n ,

and, by implication,

lim
n→∞

∫ ∞

−∞
αψk−1(tk−1,y)ψk,y(t,x)Gk,a,y(t,x)dy = 0.

According to (32), this result may be considered a semi-
rigorous derivation of the proposed fact thatψ, as defined
in (29), is a solution of the Schrödinger equation (as given
in (30)). Furthermore, sinceψn(t,x) = ψ1(t,x) for all n ∈
N and allt ∈ I1, the equations (26) and (27) together imply
that ψ satisfies the initial condition given in (31). Thus it
does appear correct to assert that the totality of solutions
of the Schr̈odinger equation can be constructed from path-
integral superpositions of solutions of equation (4).
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