
Applied Mathematics & Information Sciences 3(2) (2009), 177–184
– An International Journal
c©2009 Dixie W Publishing Corporation, U. S. A.

Projection Iterative Methods for

Multivalued General Variational Inequalities

Eman Al-Shemas

Mathematics Department, College of Basic Education Main Campus, Shamiya, Kuwait

Email Address: e al shemas@hotmail.com

Received August 28, 2008; Revised November 3, 2008

In this paper, we introduce a new class of variational inequalities involving two oper-
ators. Using the projection technique, we establish the equivalence between the mul-
tivalued general variational inequalities and the fixed point problems. This equivalent
formulation is used to suggest and analyze some iterative algorithms for solving the
multivalued general variational inequalities. We also discuss the convergence analysis
of these iterative methods. Several special cases are also discussed.
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1 Introduction

Variational inequalities, which were introduced by Stampacchia [24] in early sixties,
have played an important role in the development of various fields of pure and applied
sciences. Variational inequalities have been generalized and extended in several directions
using novel and new techniques, see [1-26] and the references therein. An important ex-
tension of the variational inequalities is known as the generalized variational inequality,
which was introduced and studied by Fang and Peterson [16] and Chan and Pang [15] in
1982 independently. It is well known that the variational inequalities are related to the sim-
ple fact that the minimum of a differentiable convex function on a convex set in a normed
linear space can be characterized by the variational inequalities. Very recently, Noor [9] has
shown that the minimum of a class of differentiable nonconvex functions on a nonconvex
set can be characterized by a class of variational inequalities, which is known as general
variational inequalities. We would like to emphasize that these generalizations are quite
different from each other in properties and applications point of view. It is natural to unify
these different classes of variational inequalities.
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Motivated and inspired by the research going on in this field, we introduce and study
a new class of variational inequalities, which is called the multivalued general variational
inequalities. Using the projection techniques, we establish the equivalence between the
multivalued general variational inequalities and the fixed point problems. We would like
to point out that the projection method and its variant forms represent an important tool on
the study of the existence results and developing numerical methods for solving variational
inequalities and related optimization problems. We also would like to point out that the
iterative methods serve to solve a variety of problems which are either of the feasibility
or the optimization type. This class of algorithms has witnessed great progress in recent
years. Apart from theoretical interest, the main advantage of these iterative methods is
computational. These methods have the ability to handle large-size problems of dimensions
beyond which other methods cease to be efficient, see [1-26] and the references therein. We
use alternative equivalent formulation to suggest and analyze a class of projection iterative
methods for solving the multivalued general variational inequalities. We also study the
convergence criteria of the proposed iterative methods under suitable conditions. Results
obtained in this paper include the previously obtained results of Chan and Pang [15], Fang
and Peterson [16] and Noor [9] as special cases. Results obtained in this paper represent
refinements and improvements of the previously known results in this area.

2 Preliminaries

Let K be a nonempty closed and convex set in a real Hilbert space H , whose inner
product and norm are denoted by 〈·, ·〉 and ‖.‖ respectively. For given nonlinear operators
g : H −→ H and T : H → 2H , consider the problem of finding u ∈ H : η ∈ Tu such
that

〈ρη + u− g(u), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.1)

where ρ > 0 is a constant. Inequality of type (2.1) is called the multivalued general varia-
tional inequality involving two operators.

For g ≡ I , the identity operator, the multivalued general variational inequality (2.1) is
equivalent to finding u ∈ K such that

〈η, v − u〉 ≥ 0, ∀v ∈ K, (2.2)

which is called the multivalued variational inequality, introduced and studied by Chan and
Pang [15] and Fang and Peterson [16] in 1982. For the applications, generalizations and
other aspects of these multivalued variational inequalities, see [1–8] and the references
therein.
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If T is single valued then the multivalued general variational inequality (2.1) is equiva-
lent to finding u ∈ H : g(u) ∈ H such that

〈ρTu + u− g(u), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.3)

which is called the general variational inequality introduced and studied by Noor [9] in
connection with nonconvex functions (see also [10–12] for more details).

If g ≡ I, the identity operator, then problem (2.3) is equivalent to finding u ∈ K such
that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (2.4)

which is known as the classical variational inequality introduced and studied by Stampac-
chia [24] in 1964. For the recent trends and developments in variational inequalities, see
[1-26] and the references therein.

We also need the following well known concepts and results.

Lemma 2.1 ( [14]). For a given z ∈ H , u ∈ H satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K,

if and only if

u = PKz,

where PK is the the projection operator of H onto the closed convex set K.

It is well known that the projection operator PK is a nonexpansive operator.

Definition 2.1. A mapping g : H → H is called
(i). δ-Lipschitz, if for all u1, u2 ∈ H , there exists a constant δ > 0, such that

||g(u1)− g(u2)|| ≤ δ||u1 − u2||.

(ii). σ-strongly monotone, if for all u1, u2 ∈ K, there exists a constant σ > 0, such that

〈g(u1)− g(u2), u1 − u2〉 ≥ σ||u1 − u2||2.

Definition 2.2. A multivalued operator T : H → 2H is called
(i). M -Lipschitz, if for all u1, u2 ∈ H , there exists a constant β > 0 such that

η ∈ Tu : M(Tu1 − Tu2) ≤ β||u1 − u2||.

(ii). α-strongly monotone, if for all u1, u2 ∈ K, there exists a constant α > 0, such that

〈η1 − η2, u1 − u2〉 ≥ α||u1 − u2||2, η1 ∈ Tu1, η2 ∈ Tu2

where M(., .) is the Hausdorff metric on C(H).
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3 Main Results

In this section, we suggest and analyze some new approximation schemes for solving
the multivalued general variational inequality (2.1) using the projection operator technique.
One can prove that the multivalued general variational inequality (2.1) is equivalent to the
fixed-point problem by invoking Lemma 2.1.

Lemma 3.1. The function u ∈ H : η ∈ Tu such that g(u) ∈ H is a solution of the
multivalued general variational inequality (2.1) if and only if u ∈ H : η ∈ Tu satisfies the
relation

u = PK [g(u)− ρη], (3.1)

where ρ > 0 is a constant and Pk is the projection operator.

Proof. Let u ∈ H : g(u) ∈ K be a solution of (2.1). Then

〈u− (g(u)− ρη), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,

which is equivalent to, using Lemma 2.1,

u = PK [g(u)− ρη],

the required result.

It is clear from Lemma 3.1 that the multivalued general variational inclusion (2.1) and
the fixed point problems (3.1) are equivalent. This alternative equivalent formulation has
played a significant role in the studies of the variational inequalities and related optimiza-
tion problems. Using the fixed-point formulation (3.1), we suggest and analyze the follow-
ing iterative method for solving the multivalued general variational inequality (2.1).

Algorithm 3.1. For a given u0 ∈ H : η0 ∈ Tu0, compute the approximate solution un+1

by the iterative schemes:

un+1 = (1− an)un + anPK [g(un)− ρηn], . . . (3.2)

ηn ∈Tun : ||ηn − ηn−1|| ≤ M(Tun − Tun−1), (3.3)

where ρ > 0 is a constant and an ∈ [0, 1] for all n ≥ 0.

Algorithm 3.1 is known as Mann iteration.
Note that, if g = I, the identity operator, then Algorithm 3.1 reduces to the following

iterative method for solving the multivalued variational inequalities (2.2), which appears to
be a new one.
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Algorithm 3.2. For a given u0 ∈ H : η0 ∈ Tu0, compute the approximate solution un+1

by the iterative schemes

un+1 = (1− an)un + anPK [un − ρηn], . . .

ηn ∈Tun : ||ηn − ηn−1|| ≤ M(Tun − Tun−1),

where ρ > 0 is a constant and an ∈ [0, 1] for all n ≥ 0.

If T is single valued operator then Algorithm 3.1 reduces to the following algorithm
3.3 for solving the general variational inequalities (2.3), which is due to Noor [9] .

Algorithm 3.3. For a given u0 ∈ H, compute the approximate solution un+1 by the itera-
tive scheme

un+1 = (1− an)un + anPK [g(un)− ρTun], n = 0, 1, 2, . . .

where ρ > 0 is a constant and an ∈ [0, 1] for all n ≥ 0.

If g = I and T is single valued, then Algorithm 3.1 reduces to the following Algorithm
3.4 for solving the problem (2.4).

Algorithm 3.4. For a given u0 ∈ K, compute the approximate solution un+1 by the itera-
tive schemes:

un+1 = (1− an)un + anPK [un − ρTun], n = 0, 1, 2, . . . ,

where ρ > 0 is a constant and an ∈ [0, 1] for all n ≥ 0.

We now consider the convergence analysis of Algorithm 3.1 and this is the main moti-
vation of our next result. In a similar way, one can study the convergence criteria of other
Algorithms.

Theorem 3.1. Let the multivalued operator T : H → 2H be strongly monotone with
constant α > 0 and M-Lipschitz continuous with constant β > 0 and g : H → H be
strongly monotone with constant σ > 0 and Lipschitz continuous with constant δ > 0. If

∣∣∣∣ρ−
α

β2

∣∣∣∣ <

√
α2 − µ2(2k − k2)

β2
, α > β

√
k(2− k), k < 1, (3.4)

where

k =
√

1− 2σ + δ2, (3.5)

and an ∈ [0, 1],
∑∞

n=0 an = ∞, then the approximate solution un+1 obtained from
Algorithm 3.1 converges to a solution of the multivalued general variational equations
(2.1).



182 Eman Al-Shemas

Proof. Let u ∈ H, η ∈ Tu be a solution of (2.1). Then, using Lemma 3.1, we have

u = (1− an)u + anPK{g(u)− ρη}, (3.6)

where an ∈ [0, 1]. To prove the result, we need first to evaluate ||un+1 − u|| for all n ≥ 0.
From (3.2) and (3.6), and the nonexpansivity of PK , we have

||un+1 − u|| = ||(1− an)un + anPK{g(un)− ρηn} − (1−an)u− anPK{g(u)− ρη}||
≤ (1− an)||un − u||+ an||g(un)− g(u)− ρ(ηn − η)||
≤ (1− an)‖un − u‖+ an‖un − u− (g(un)− g(u))‖

+ an‖un − u− ρ(ηn − η)‖. (3.7)

From the strongly monotonicity and M-Lipschitz continuity of the operator T , we have

||un − u− ρ(ηn − η)||2 = ||un − u||2 − 2ρ〈ηn − η, un − u〉+ ρ2||ηn − η||2

≤ ||un − u||2 − 2ρα‖un − u‖2 + ρ2(M(Tu1 − Tu2))2

≤ ||un − u||2 − 2ρα‖un − u‖2 + ρ2β2||un − u||2]
=

√
1− 2ρα + ρ2β2‖un − u‖2. (3.8)

In a similar way, using the strongly monotonicity and Lipschitz continuity of the operator
g with constants σ > 0 and δ > 0 respectively, we have

‖un − u− (g(un)− g(u))‖ ≤ [1− 2σ + δ2]‖un − u‖2

= k2‖un − u‖2, (3.9)

where k is defined by (3.5).
Combining (3.8), (3.9) and (3.7), we have

‖un+1 − u‖ ≤ (1− an)‖un − u‖+ anθ‖un − u‖, (3.10)

where θ =
√

1− 2ρα + ρ2β2 + k.

From (3.4), it follows that θ < 1. Thus

||un+1 − u|| ≤ [1− an(1− θ)]‖un − u‖

≤
n∏

i=0

[1− (1− θ)ai]‖u0 − u‖.

Since
∑∞

n=0 an = ∞ and 1− θ > 0, we have limn→∞
∏n

i=0[1− (1− θ)ai] = 0 and then
limn→∞ ||un+1 − u|| = 0. Consequently the sequence {un} converges strongly to u.

Now we prove that ηn → η ∈ Tu. From (3.3), we have

||ηn − ηn−1|| ≤ M(Tun − Tun−1) ≤ β‖un − un−1‖,
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which implies that {ηn} is a Cauchy sequence in H , so there exists η ∈ H such that
ηn → η. Further,

d(η, Tu) = Inf{‖η − t‖ : t ∈ Tu} ≤ ||η − ηn||+ d(ηn, Tu)

≤ ||η − ηn||+ M(Tun − Tun−1)

≤ ||η − ηn||+ β‖un − u‖ → 0.

Since Tu is closed, we have η ∈ Tu, which completes the proof.
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