J. Stat. Appl. Pro. 1, No. 2, 101-113 (2012) NSy 101

Journal of Statistics Applications & Probability
--- An International Journal

@ 2012 NSP
Natural Sciences Publishing Cor.

Lower Generalized Order Statistics of Generalized Exponential
Distribution
R.U. Khan, Anamika Kulshrestha and Devendra Kumar

Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202 002, India
Email Address:aruke@rediffmail.com

Received Jan. 31, 2012; Revised April 18, 2012, Accepted April, 22, 2012

Abstract:In this paper we consider three parameter generalized exponential distribution. Exact expressions and some
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1 Introduction

Kamps [7] introduced the concept of generalized order statistics (gos) . It is known that ordinary order

statistics, sequential order statistics, Stigler’s order statistics and upper record values are special cases of
gos. In this article we will consider the lower generalized order statistics (1 gos) defined as follows:

Let neN, k>1, meR, be the parameters such that

7y =k+(-r)(m+1) >0 forall 1<r<n.

Then X*(1,n,mkK),..., X"(n,n,m,k) are called |1 gos from an absolutely continuous distribution function
(df) F(x) with the probability distribution function (pdf) f(x) if their joint pdf has the form

n-1 n-1
k[Hm}(H[F ()" f (Xi)J[F(Xn)]k_lf (Xn) (1.1)
j=1 i=1

for F0)>x>x,>...>x, >F 1(0).

The marginal pdf of r—th I gos, X*(r,n,m,k), is

— Crfl
fX*(r,n,m,k)(X) - (I’ _1)!

[FOOT" ™ f () gm  (F(X)) . (1.2)

and the joint pdf of X*(r,n,m,k) and X*(s,n,m,k), 1<r<s<n,is

Cs—l

P enmio x snm i V) = (r-nYs—-r-1!

[FOOI™ f () gm " (F (X))

x[hn (F(Y) ~hn (FOOF " FWI T F(y), x>, (1.3)

where
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r _ 1 Xm+1
Cr—1:H7/i’ hn (X) = m+1
i=1 —Inx, m=-1

and
gm(x) = hm(X) - hm(l) y X€ [011) .

We shall also take X*(0,n,m,k)=0. If m=0, k=1, then X*(r,n,m,k) reduces to the (n—r+1)—th

order statistic, X,,_,,;, from the sample X, X,,..., X, and when m=-1, then X*(r,n,m,k) reduces to
the r —th lower k record value (Pawlas and Szynal [11]). The work of Burkschat et al. [3] may also refer
for 1 gos.

Recurrence relations for single and product moments of 1gos from the inverse Weibull
distribution are derived by Pawlas and Syznal [11]. Ahsanullah [1] and Mbah and Ahsanullah [10]
characterized the uniform and power function distributions based on distributed properties of |gos
respectively. Khan et al.[8] and Khan and Kumar [9] have established and recurrence relations for moment
of 1 gos for exponentiated Weibull and Pareto distributions.

In the present study, we have established explicit expressions and some recurrence relations for
single and product moments of | gosfrom generalized exponential distribution. Results for order statistics

and lower record values are deduced as special cases and characterization of this distribution has been
considered on using the conditional moment of the lower generalized order statistics.

A random variable X is said to have generalized exponential distribution (Gupta and Kundu [4])
if its pdf is of the form

f(x) = %[1— g (O Ajalg-(-0)2 g 4 2150 (1.4)

and the corresponding df is

FO)=[l—e D41, x>0, a, 250, (15)

Here « is a shape parameter, A is a scale parameter and @ is a location parameter. Gupta and Kundu [4,
5, 6] pointed out that the above given generalized exponential distribution will be useful as a good
alternative to the gamma or the Weibull model in analyzing many lifetime data. Gupta and Kundu [6]
have mentioned some drawbacks for the gamma and Weibull distributions.

2 Single Moments

Note that for generalized exponential distribution defined in (1.5)
% F(x) =[e* % 1] (x). (2.1)

The relation in (2.1) will be exploited in this paper to derive recurrence relations for the moments
of lower generalized order statistics from the generalized exponential distribution.
We shall first establish the following Lemma which may be helpful in proving the main result.

Lemma 2.1For the distribution as given in (1.5) and any non-negative finite integers a andb,
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L a & ' A0V a, (w)
EARRRITPIPIPI U( J

D=0 W=0u=0 [efa+um+D)+L+w+p]’

—blg b+1z z

p=0w=0

(j A0 a, (w)
[a(@+1) +w+ p]

where

j(ab) = [ IF OO f () g (F(x))dx.

b+1"’

mz= -1 (2.2)
m=-1, (2.3)
(2.4)

b
Proof On expanding g,t]’q(F(x))={ﬁ{1—(F(x))m”}} binomially in (2.4), we get when m = —1
+

;(a,b)= Aj:xi[F(x)]a+“(m+1) f (x)dx,

where

1)bz( )U

Making the substitution t =[F ()% in (2.5), we find that

Ii(a,b)= Aajg[_,lln(l_t) + g pelarumiD -1y

i(i .
- Ax Z( VJV }1‘”91“” j;[— In@—t)Wtetarum =14 2 6)
w=0

On using the logarithmic expansion

[In(lt)]W:£§£} = iap(w)tv"*p, It|<1,

p=1 p=0

o0

(2.5)

@.7)

w
P
where a,(w) is the coefficient of t"*P in the expansion of [Zt—j [see Balakrishnan and Cohen [2], p

p=1
- 44], (2.6) can be expressed as

I (a b) = Aaz Z( ]EWHJ wa (W)j talatu(meD)+1+w+ p-1
p=0w=0

and hence the result given in (2.2).
When m=-1, we have

I(ab)_ asZ( 1)(}

Since (2.2) is of the form % at m=-1, therefore, we have

I(a,b)= A Z( 1) ( ][O!{a+U(m+1)+1}+W+ p ™

u=0 (m+1)

(2.8)
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where
°e) j 1
* J i
A=ay z(ij "ay ().
p=0w=0

Differentiating numerator and denominator of (2.8) b times with respect to m, we get

* b b u+b b Ub
1(a,b) = A" Y (1) ( J —.b>0.

0=0 u/[e{a+u(m+1)+3+w+ p]

On applying L’ Hospital rule, we have

1im_1(a,b) = A*abZ( 1)““’@ u? i 2.9)

4=0 [a(@a+])+w+p

But for all integers n >0 and for all real numbers X, we have Ruiz [12]

i(—l)‘(?j(x— )" =n!. (2.10)
i=0
Therefore,
b u+b b b
> (-1 (uju =h!. (2.11)
u=0

Now on substituting (2.11) in (2.9) and simplifying the resulting expression, we have the result
givenin (2.3).

Theorem 2.1Forgeneralized exponential distribution as givenin (1.4) and 1<r<n, k=12,..., m= -1,

E[X*i(r,n,m,k)]—(c L

C,_ j -l r=1Yj) A" "a,(w)
ccu SESop NI

C(r-)im+) T S S W) (@, +W+ p)

where 1;(y, —1,r-1) is as defined in (2.4).

~1,r-1) (2.12)

Proof From (1.2), we have

E[X*)(r,n,m, k)]—w CXIFEOT T () gm H (F(X))dx
and hence the result given in (2.12).
Making use of (2.2) in (2.12), we establish the result given in (2.13).

Identity 2.1For y, >1, k>1, 1<r<n and m= -1,

g(_l)u[rgljyl _ (r—l)!r(m ) .10
u=0 r-u
Eﬂ/t

Proof At j=0 in(2.13), we have

1= aCy iz( )[ 1Ja—(0)

r-Dm+)"" 505 (@¢—u+P)
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w
o +Pp
Note that, if w=0, then the summation [Zt—J given in (2.7) is equal to unity, so a,(0) =1,
p=
p=0 and a,(0)=0, p>0,
and hence the result given in (2.14).
Special cases

i) Putting m=0, k=1 in (2.13), the exact expression for the single moments of order statistics of the
generalized exponential distribution can be obtained as

EIX) L )= acrnzzi( " [r 1}[]} 201 a (w)

w)[a(n-r+1+u)+w+p]’

p=0w=0u=0
That is
j —rY i) A0 Va,(w)
ED = aCrnsz)WZ‘éuZ;‘)( D’ ( j(WJ[a(r+u)+w+ p]’
where

c. - n!
N (r=)n-r)!

ii) Putting m=-1in (2.13), we deduce the exact expression for the single moment of lower k record
values for the generalized exponential distribution in view of (2.12) and (2.3) in the form

W) j Wa
E[X*)(r,n-1k)]=E[ " k ( j—’w p(W)
[X7( )1=E[ZM)] = (a )F%WZ‘Z) kWt p)
and hence for lower records

E[Z®)1=E[X[ )] = afZZ

p=0w=0

( J/IWHJ Ya (W)

(a+w+p)'
A recurrence relation for single moment of 1 gos from df (1.5) is obtained in the following theorem.

Theorem 2.2For the distribution as given in (1.5) and for 2<r<n, n>2 and k=12,...,

E[X I (r,n,m, k)] E[X*) (r —1,n,m, k)]
= ﬁ{E[X *j’l(r, n,m,k)]— E[¢(X " (r,n,m,k))]}, (2.15)

where
¢(X) — Xj—le(X—Q)//l .
Proof Khan et al. [8] have shown that for 1<r<n, n>2 and k=12,...,
E[X*j(r,n,m,k)]—E[X*j(r—l,n,m,k)]
— IS P g gl F () dx. (2.16)
7r(r 1)'

Upon substituting for F(x) from (2.1) in (2.16) and simplifying the resulting expression, we
derive the relation given in theorem 2.2.
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Remark 2.1Putting m=0, k =1in (2.15), we obtain a recurrence relation for single moment of order
statistics of the generalized exponential distribution in the form

E[xrf-—r+l:n]:E[xr{.—r+2:n] _r+ 1{ [X 7r+1:n]_E[¢(xnfr+l:n)]}-

( )
Replacing (n—r+1) by (r-1), we have

E[X2n]=EIX/ 4,]-

i
( _1){E[X —1n] E[¢(xr71:n)]}-

Remark 2.2  Setting m=-1 and k >1 in theorem 2.2, we get a recurrence relation for single moment
of lower k record values from generalized exponential distribution in the form

E[(z{)1]= E[(zr‘ki)"]+iki{E[(25k’)j‘1] — E[¢(ZN]}-

3 Product moments

Before coming to the main results we shall prove the following Lemmas.

Lemma 3.1For generalized exponential distribution as given in (1.4) and non-negative integers a, b, C

with m= -1,
Wy i (W)
w09 S8 S ) L e
[a(a+c+2)a+(va\12J)r W, +p+q]’ G
where
1 5@, = [ [ X' YIF OOT £ (T (F () — iy (F Q)P IF ()T £ (y)dlydx.(3.2)

Proof From (3.2), we have

1,1(,0,0) = [ /X' IFCOT £ (91 (x)dx, (3.3)
where

100 =[ Y IFWT f(y)dy- (34)

By setting z =[F (y)]'“ in (3.4), we get

ﬂwlgj Wla (Wl)[F(X)]c+1+(w1+p)/a
[ J [a(c+1)+w + p] '

1(x) = az Z

p=0w; =0

On substituting the above expression of 1(x) in (3.3), we find that

Wi - Wi o
' J(a 0.c) = 062 Z (WJ A0 p(Wl) ,[ [F(X)]a+c+1+(wl+p)/a f (x)dx. (3.5)
1

p=0w, =0 [a(c+1)+wy + p]°?

Again by setting t =[F (x)]l/“ in (3.5) and simplifying the resulting expression, we establish the
result given in (3.1).
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Lemma 3.2For the distribution as given in (1.5) and any non-negative integersa, band c,

1 & . f(b
I, (a,b,c) = T \;}(—1) [leiyj(a+(b—v)(m +1),0, c+v(m+1)). (3.6)

SN IPPACH ol B B

p=0g=0w; =0 w, =0v=0 Wa

1W1+w20I+J (W1+W2)a (Wl)a (W)

m=-—1 (3.7)
[a{c+1+v(m +D}+w+ plle{fa+c+2+b(m+D)I+w +w, + p+q]’
H lWl‘FWZ 0i+jf(wl+wz)
23Sy 3 (1
p=0g=0w; =0 w, =0 W )[a(c+1)+w + p]b+1
ap(wy)ag (w.
p(W)ag(w,) — (3.9)
[a(a+c+2)+wl+w2+ p+q]’
where 1; ;(a,b,c) is asgivenin (3.2).
Proof Expanding [hm(F(y))—hm(F(x))]b binomially in  (3.2) after noting that

hin (F(Y)) = iy (F (X)) = 9 (F(Y)) — 9 (F (X)) , We get when m = —1

1 b vb‘”xi' a+(b—v)(m+ c+v(m+
li,j(@b,c) = (m+1bv§(—1) [VJJH [ XY IFOOI =MD £ ([ (n)I° ™D £ (y)dydx

and hence the result given in (3.6).
Making use of Lemma 3.1 in (3.6), we establish the result given in (3.7).

When m=-1, we have

b b
|i,j(a,b,c) =% as Z(—l)"(vj =
v=0

On applying L’ Hospital rule and then using (2.11), (3.8) can be proved on the lines of (2.3).

Theorem 3.1Forgeneralizedexponential distribution as given in (1.5) and for 1<r<s<n, k=12,...,
m=-1,

*| *J _ C
ELX*(r,n,m k) X*I(s,n,m k)] = PR, 1)|(m+1)r12( )( j

xlj j(m+(Mm+u,s—r-1y,-1) (3.9

612(:57l i r-1s—r-1 u+v[ 1j(s_r_1J

— -1
(r=DY(s—r-ni(m+1)°2 pZOqZ;)wlZOWZZOuZ;) Zo b v

X[ J j( i J iwl+w29i+j—(wl+wz)ap(Wl)aq(Wz)

. (3.10)
Wi A\ W, [057/3_\/ +W + p][a7r—u + W +W, + p+0]
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Proof From (1.3), we have

Cs_
(r- 1)|(s r-1»179e
x g (F )M (F(Y) — i (FODNT " [F(y)F*~  (y)dydx. (3.11)

On expanding g,rn’l(F(x)) binomially in (3.11) and simplifying the resulting expression, we have
the result given in (3.9).

Making use of (3.7) in (3.9), we establish the relation given in (3.10).

E[X* (r,n,m,k) X *I(s,n,m,k)] =

[ PXYIFOOI™ £ (%)

Identity 3.1For y,, s >1, k>1,1<r<s<n andm=-1,

SZrll( 1)[ —-r- 1jy1 :(s-r-l)!s(m+1)s—f—1_ (3.12)

Proof At i=j=0 in(3.10), we have

o oo r-1s-r-1

=903 30 WL

T (r-Dis-r-)i(m+1) 2 S55 S

X(s—r—lj a,(0)a,(0)

v (a7s—v + p)(ayr—u +p+0q) ,
where
a,(0)=1,24(0)=1,p,q=0
and
a,(0)=0,a4(0)=0, p, q>0.
Therefore,

oS- 1 (r-D)i(s—r-D)im+1)*?
: (_1)[ v j7sv S r-1 1
s 12( 1) ( )

r-u

Now on using (2.14), we get the result given in (3.12).
At r =0, (3.12) reduces to (2.14).
Special cases

i) Putting m=0, k=1 in (3.10), the exact expression for the product moments of order statistics of the
generalized exponential distribution is obtained as

i r-ls—r-1 [ F=1ys—-r-1
E[Xn r+1n n— s+1n] o Crsnzzz z z Z ( 1) ( J( j

p=0g=0w; =0 w, =0u=0 v=0 v
5 J | ZW]_JrWZ 9i+j*(W1+W2)ap (Wl)aq (W2) |
W AW, J[a(N—=s+1+V)+wW, + plle(n—r+1+u)+wW +W, + p+0q]

That is
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E[X}y Xd 1= ranZZ DI 1)U+V[n Sj[s_r_lJ

p=0g=0w; =0 w, =0u=0 v=0 v

X( J )( i J ﬂw1+wz6|+J—(w1+wz)ap(wl)aq(Wz)

W AWy J[a(r +v) +wy + plla(s +u) +w, +W, + p+q]’
n!
where C, ., = .
’ (r=-Di(s-r-Dl(n—s)!
i) Putting m=-1 in (3.10), we deduce the explicit expression for the product moments of lower k

record values for generalized exponential distribution in view of (3.9) and (3.8) in the form

. Wy +Wy i+ j—(Wy+Wy)
E[(Z(k)) (Z(k)) 1= (ek)® ZZ z Z (W J[ ! j A 0 a (Wl)a (wWy)
1

p=0g=0w, =0 w, =0 W ) (ak +wy + P)°" (ak + Wy + W, + p+0)°"

and hence for lower records

E[XL(r)XL(s)] a ZZZ Z

p=0q=0w; =0w, =0

( j( i J ﬂw1+wzl9i+j_(wl+w2)ap(Wl)aq(Wz)

Wo J(a+w +p)°  (a+w +wW, + p+q)F
Making use of (2.1), we can derive recurrence relations for product moments of | gos from (1.5).
Theorem 3.2For the distribution as given in (1.5) and for 1<r<s<n, n>2 and k=12,...,
E[X* (r,n,m,k)X*I(s,n,m,k)]- E[X " (r,n,m,k)X "} (s —1,n,m, k)]

*i

“J7(s,n, m, k)]— E[#(X *(r,n,m, k) X *(s,n,m, k))]},(3.13)

where
P(x,y)=x'y b2,
Proof Khan et al. [8] have shown that for 1<r<s<n-1, n>2 and k=12,...,
E[X ™ (r,n,m, k)X *I(s,n,m,k)]— E[X ™ (r,n,m, k)X " (s —1,n,m, k)]
ICsy

= DT 1),H X'y HFEOI™ £ (995 (F ()

x [N (F (1)) = hn (FO)F R (Y)Y > dydx, x> y . (3.14)
Now on using (2.1) in (3.14), we have the result given in (3.13).

Remark 3.1Putting m=0, k =1 in (3.13), we obtain recurrence relations for product moments of order
statistics of the generalized exponential distribution in the form

A
a(n—s+1)

X{E[X:\—Hl n er §+1 n] - E[¢(Xn—r+1:n xn—s+1:n)]}-

E[xn r+1n X s+1n] E[xn r+lnxr{—s+2:n]=

That is

E[X;:nxs,j:n)zE[XLl:nij:n]_ {E[Xr 1nxsjn] E[¢(Xr -In sn)]}

a(r 1)
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Remark 3.2Setting m=-1 and k >1, in (3.13), we obtain the recurrence relations for product moments of
lower k record values from generalized exponential distribution in the form

ELX ) (XX T-EI(X {0)) (X K _p)) ]
=ik—”{E[(XEk&))‘(X&Q))J"l]— E[A(X () (X S}

Remark 3.3At j=0 in (3.10), we have

2C o o i r-1s-r-1 .y
a L g - ZZ z Z_: Z(:)(—l)

(r=D!(s-r-1D)!(m+1) p=0q=0w, =0
X( i J[r—l}[s—r—l] 26" Y2a (0)ag (w,)
Wp u v (a7s—v + p)(a7r—u +W, + p+q) ,

a,(0)=1,p=0 and a,(0)=0, p>0.

E[X* (r,n,m,k)]=

where

Therefore,
aC o0

3 Z rg z;_%_l)u+v

(r-Di(s-r- 1)l(m+1) 4=0w, =0

){r—lj[s—r—lj( i ] A0 "2 a, (w,) . (3.15)
u v W, 7S—v(a7r—u +W2+Q)

Making use of (3.12) in (3.15) and simplifying the resulting expression, we get

oC, i r—1\A%6'"2a,_(w,)
SHIPPICH o (s

(r-!(m+ 1) q=0w, =0U=0 (a7_y + W +0)

E[X* (r,n,m,k)]=

E[X* (r,n,m,k)]=

as obtained in (2.13).
Remark 3.4At i =0, Theorem 3.2 reduces to Theorem 2.2.

4 Characterization

Let X*(r,n,mKk), r=212,...,n be | gos from a continuous population with df F(x) and pdf

f(x), then the conditional pdf of X*(s,n,m,k) given X*(r,n,mKk)=x, 1<r<s<n, in view of (1.3)
and (1.2), is

C m—y, +
Fx > snmiox (rnmio V1) = m[ (9] i
[ (F(Y)) =M (FO)P M IF (Y= () - (4.1)

Theorem 4.1Let X be a non negative random variable having an absolutely continuous distribution
function F(x) with F(0)=0 and O0<F(x) <1 forall x>0, then
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o0 (1_e—(x—9)//1)p s—I 7/|+ .
E[X"(s,n,mKk)[ X"(I,n,mKk)=x]=4>" ! +0,
p=1 p j=1 7I+j+p/a

l=r,r+1(4.2)
if and only if

FO)=[-e %% x50,a, 2>0.
Proof: From (4.1), we have

Csa
(s—r-1IC, ;(m+1*"*

m+1
x F(y)
“Jy yll‘(mj ]

F(y) _[1-e 070"
F(X)_ 1_e—(x—9)/i

E[X"(s,n,m,Kk)| X" (r,n,m,k)=x]=

s—r-1

FOV 10
F(x))  FO

By setting u =

] from (1.5) in (4.3), we obtain

Cs—l

E[X*(s,n,m,k)| X*(r,n,m,k) =x] = (5—r—1IC, ;(m+1)"2

« f;[(—ﬂ, InfL— (L—e =D/ 1yt ay) 4 glu7s 21— u™)s gy

_ Csa
(s—r-1IC, ;(m+1)*"*

(A+A),
where

—(x—e)//l] P Ilu(p/a)+73 —1(1_ um+1)s—r—1du
0

=[1-e
a=ay e 1
p=1 P
and
A, = GJ‘;uys—l(l_umﬂ)s—r—ldu

Again by setting t =u™" in (4.5) and (4.6), we get

o) 1_e7(X76’)/ﬂ)p

A=(Mm+) " T(s-1AY, —

p=t pH(7r+j +pla)
j=1

_OMm+1)* " (s

Ao s—r
H7r+j
j=1

Substituting these expressions for A and A, in equation (4.4) and simplifying the
expression, we derive the relation given in (4.2).

To prove sufficient part, we have from (4.1) and (4.2)

(4.3)

(4.4)

(4.5)

(4.6)

resulting
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Csa
(s—-r-1niC,_;(m+

e [ YLFEC)™ = (F(y)™

<[F()Y= " (y)dy =[F()T H, (%),
where

p=1 Y j=1 7r+j+p/a
Differentiating (4.7) both sides with respect to x, we get

Cou[F()I™ f (%)
(s—r—2)IC, ;(m+1)*"2

[ VIR Q)™ = (F ()™ " IR ()T £ (v)dy

= HLOIF QO™ + 7paHy (IF (OF 7 £ (%)
or

ZeatHet OOIF OO 2™ £ () = HY GOIF 0OF ™ + 7,0 Hy COIF QT 7 (%),

where

0 S—r
—(x— —(x— - Vr+j
H’(X):e (x=0)I 4 Z[l_e (x 0)//1]p 1| I J ,
r Ves

b1 il Zrej TPl

Hra(X)—H (x) = i[l—e‘(x‘g)”]Pﬁ( Vre J A

p=1 j=1 7r+j+p/05 a7/r+1.
Therefore,
F(x) _ H; (%)
F (X) 7/r+1[Hr+1(X)_ Hr(X)]

o« a~(x-0)/2
which proves that

F(X)=[l-e D% x50 4, 1>0.
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