Appl. Math. Inf. Sci.7, No. 6, 2571-2582 (2013) N=) 2571

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070653

Online Anomaly Detection for Service-Oriented
Components in OSGi-based Applications

Tao Wangh23*, Jun Wei 1:2, Wenbo Zhang? and Hua Zhong?

1 state Key Laboratory of Computer Science, Beijing 100190, P.R. China
2 Institute of Software, Chinese Academy of Sciences, Beijing 1001B0Ghina
3 University of Chinese Academy of Sciences, Beijing 100049, P.R.&Chin

Received: 26 Feb. 2013, Revised: 24 Jun. 2013, Accepted: 220018
Published online: 1 Nov. 2013

Abstract: OSGi has become one of the most promising frameworks for managmge-oriented and component-based applications.
The OSGi-based service-oriented components delivered by diffeeedors are usually black-box program units which lack source
code and design documents. Thus, it is difficult to evaluate their qualityatiy €ode analysis, and the defective components may
lead to the failure of the whole system eventually. In this paper, we praposaline method for detecting anomalous service-oriented
components in OSGi-based applications. A thread-tracing method isypedse monitor resource utilization and interactions between
components. The method considers both the dynamic service invocatistatic method invocation. Furthermore, according to the
monitored data, we detect anomalous components by control chaiit$) wdn detect the anomalous trend of resource utilization
without prior knowledge. A prototype tool was implemented and applied sahapplication server. The experimental results show
that our method 1) is of high accuracy for monitoring resource utilizatiamomponent perspective; 2) does not introduce significant
overhead; 3) and can detect anomalous components effectively.

Keywords: Anomaly detection, service-oriented component, OSGi, resource utitizaomtrol charts.

1 Introduction affect all the related components and lead to the failure of
the whole system eventually. Thus, it is a critical issue for

The component-based software engineering greathyf=OTS to ensure the quality of componersi |

improves the efficiency and quality of software However, since the COTS components are usually
development; organizations always adopt it for Plack-box program units which lack source code and
developing large-scale complex softward.[In recent ~ design documents, it is difficult to understand the
year, OSGi (Open Service Gateway initiative) has becoméharacteristics of components, and evaluate their quality
one of the most promising frameworks for managing PY static code analysis. Furthermore, some runtime factor,
service-oriented and component-based applicati@hs [€-9- access sequences, concurrency number and resource
The OSGi framework, which provides a service modelUSage, may cause contextual anomaliéls Which are

and a service registry, is an execution environment fordifficult to be eliminated through testing. Therefore,
dynamically loadable services. OSGi technology isdetecting anomalous components online is essential for
attracting growing interest, and a large number of improving the reliability of OSGi-based applications.
large-scale projects have released new versions with ThiS paper proposes an online method for detecting
OSGi, such as JEE application server Websphere, IDERNOmalous service-oriented components in OSGi-based
eclipse and the BMW automobile control system. The@pplications. The main contributions of this paper are as
services based on OSGi are always implemented afollowing:

bundles that are service-oriented componeis The —A thread-tracing method is proposed to monitor
COTS (Commercial Off-The Shelf) market around OSGi resource utilization and interactions of components. It
is emerging, where the number of third party components is an online method, which neither modifies software
is increasing 4]. However, a defective component may nor introduces significant overhead.

* Corresponding author e-maangtao08@otcaix.iscas.ac.cn

© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070653

2572 NS 2 T. Wang et al: Online Anomaly Detection for Service-Oriented...

—The control charts for resource utilization are —Thread perspective. A thread execution is divided into
introduced to detect anomalous components. They some stages, each of which belongs to a specific
can detect the anomalous trends of resource bundle. Thus we add the CPU time of every stage in
utilization without prior knowledge. the bundle.

—An anomaly detection framework for OSGi-based gecayse of frequent interactions between bundles by
applications is presented. A prototype 100l is i ncations, the relations between bundles and threads
implemented and applied to a real application Server. \ oy gynamically. If we follow the first perspective, the

—The experimental results demonstrate that our methogeaq'schedule model should be modified, and significant
can monitor resource utilization in high accuracy o erhead will be introduced as presented if]. [

without significant overhead, and detect the therefore, we adopt the second choice through tracing
anomalous components effectively. thread transfer between bundles.

The rest of this paper is organized as follows. Section It is easy to calculate CPU time utilized by a thread
2 presents a thread-tracing based method for monitoringluring a period using the JVMTI provided by the JVM
components. Section 3 introduces control charts to deteddava Virtual Machine). Thus, how to divide the CPU
anomalous components. Section 4 demonstrates théme of a thread into different bundles becomes an
design and implementation of the prototype tool. Sectionessential question to answer. As is shown in algorithm 1,
5 provides experimental results to validate the method inve describe the method for monitoring bundle CPU
accuracy, overhead and effectiveness. Section 6 presendilization.
our discussion and future work. Section 7 reviews the Step 1. Initialize bundle ID for every thread.

related works, followed by conclusion in Section 8. Step 1.1. When a bundle is initialized, OSGi invokes
start () method in the Activator class to start the bundle.

We set the bundle ID of the thread as the started bundle
P : : through labeling the thread before and after the start
2 qult(_)rlng components in OSGi-based method in the OSGi platform.
applications Step 1.2. When a new thread is created, we set the
_)) ~ bundle ID of the thread as that of its parent thread.
An OSGi service platform is composed of service step 2. Trace thread transfer between bundles.
providers, service requesters and a service registry. A pecide whether thread transfer happens. When a
service provider registers services to publish, and &ervice is invoked, if the service provider and the service
service requester discovers services from the servicgonsumer are in different bundles, thread transfer
registry to invoke. The service described as a Javayappens.

interface is always packaged as a standard JAR file, "step 3. Calculate CPU time of bundles.

namely bundle, in which service implementation, related | the bundle ID of a thread varies after entering the

resource files and manifest files are included. Bundlesnyoked service, the CPU time is calculated and added to
interact with each other as service invocation. Sincethe original bundle, and the time stamp is updated. After
bundles are basic management units in OSGi, we tak@xiting from the service, the CPU time is calculated and

them as monitored targets. o added to the invoked bundle.
We analyze component-based applications from two

perspectives that are performance metrics of a single

component and interaction behavior between2.1.1 Monitoring dynamic service invocation

componentsq]. Since CPU and memory utilization are

important properties for evaluating a software There are two kinds of component interactions that are

component §], we present a method to monitor these dynamic service invocations and static method

performance metrics. invocations. As for the service invocation, we use an
event-driven mechanism to trace service invocations
through listening to the events in the service registrysas i

2.1 Monitoring CPU utilization of a bundle shown in the Figure 1. To avoid affecting the execution
' code in the original bundle and deal with the arriving

A thread is the basic unit to which the operating systemserviCes dgring exgcution, we create a proxy object for
allocates processor time. Thus, the CPU utilization of atvery requwed_ service. A proxy class is ge”_e“”?ted wh_en a
! service is registered, and the proxy class is instantiated

bundle is the sum of the CPU time consumed by different NS . :
threads, which execute within the same bundle. We hav hgn the Service Is quked. We also modify thg service
two monitoring perspectives as follows. registry to redirect service requests to the service proxy.
Thus, the proxy object instead of the original service
—Bundle perspective. Threads are grouped intoprovides service for a service consumer transparently. In
different bundles, and each thread belongs to aevery proxy class, the monitoring point is inserted before
specific bundle. Thus we add the CPU time of everyand after the service invocation to label the changed

thread in the bundle. bundle ID of a thread.

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2571-2582 (2013)www.naturalspublishing.com/Journals.asp NS 2 2573

16

Algorithm 1 Monitoring CPU utilization

Input: Service Provider Bundle Service Proxy Bundle

S| (s

CPU utilization for every bundle; o [

1: if Listen to the event(bundleis initialized)then 1, Register 2, Generate
2: Setthe bundle ID of threadasb, and the time stamp for OSGi
t: Service Registry
3: endif) e
P hen a bundle is loaded, and tered
4: if Listen to the event(thread is initialized) then (@) when a bundie i foaded, an asfrV'Ce T
5: Getthe current thredg which is the parent dfs, and the Service Provider Bundle \ | Service Proxy Bundle

bundle ID oftp asbp; ey Smeke Sl
’ S 8 .. —(SP1 SP2
: Create a new thread, and Set the bundlelD & asbp; <ivr‘?%vfa<—f—/ i | ,,,><\,,,>
s end if S ' 4, Invoke SP14‘,
: 2, Find

6
7
8: if Listen to the event(servicg invoke services;) then :
9 Get the bundle ID o§ asb; , and the bundle ID o$; as s Service | 1, Require,| OSGi

bj : Requester Service 1 |Service Registry
10: if bj! =b; then 4
11: Getbu]ndlel nfo; of b, and current threafj > Res&znili Tfjmce s required
12: Calculate bundle_Info;.CPU Time+ = d

t.Calculate. CPU (); Fig. 1: Service proxy generation
13: Set time stamp fdr, and bundle ID of threatlasb;;
14: Executes;;
15: Getbundle_Info; of bj;
16: Calculate bundle-Info;. CPUTIme+ = yhes of the objects which the targetObj may point to. We
_ téca"?”'ate*CPU E‘); 4 bund ash use the class hierarchy analysis methdd] fo gain this

1; end ﬁt time stamp fd; and bundle ID ot ash; knowledge. All the subtypes of targetObj's type are

19 end if among the possible types, and we can get all the p.ossible
. target methods denoted by the methodName. With the
knowledge of the target methods in every invocation
statement, we can easily acquire the calling relationship
between methods, classes, and packages. If two packages
in two different bundles have the calling relationships in

. e OSGi, the corresponding imported and exported packages
Although the OSGi specification recommends developersshould be speciﬁ‘)ied ingthep metadata filpes of Ft)he tv%o

to implement the interactions between components WithOundles Thus we do not weave the methods invoked in
service invocation, some developers used to invoke thethe samé bundle to reduce monitoring overhead
functions from other components with the traditional The object of our AOP based method is to .trace the

S,El‘?stlCechtrhgr?tel(;]Vg?gtIPanrﬁrr-:_'zus g‘;esegronggfﬁa;nto’o‘opthread transfer between components, when a component
(Asp ! 9 ing)] [é'nvokes the others with the static method invocation.
trace the thread transfer between components. The OSGi

framework analyzes the meta data file recording the

exported packages automatically, when a bundle is loaded . L

dynamically. We extend the original OSGi framework, so 2.2 Monitoring memory utilization of a bundle

that it reports the exported methods to our monitoring tool

when the analysis is finished. Our tool decides whethefThe system memory is occupied by objects, which we

the classes being loaded are exported by the bundl®ill categorize into different bundles. We can also use the

according to the report. Then, we use AOP to insert theJVMTI to tag every object and calculate its size in

monitoring points into the beginning and the end of thememory. The objects created by different bundles are

public method in the class which exports methods. tagged with bundle IDs, and we calculate the memory
We note that some exported packages are not invokedtilization for every bundle. However, how to distinguish

by other components. The thread transfer does nowhich bundle the objects are subordinate to is a key

happen, when the invoking method and the invokedproblem. With the algorithm 1, we get the relations

method in the same bundle. However, the redundanbetween bundles and threads in different periods, and

monitoring points introduce unnecessary overheadobjects are created by threads. Thus we take the thread as

Therefore, we use a static code analysis method to reduce bridge between objects and bundles to locate the objects

the number of monitoring points before weaving class.belonging to different bundles.

Method invocations usually take the form of In essence, the CPU monitoring and memory

"targetObj.methodName(parameters)”; the key tomonitoring are both to locate the units in their bundles.

analyzing the calling relationship is to know the possible The differences are as follows: 1) the memory utilization

2.1.2 Monitoring static method invocation

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2574 NS 2 T. Wang et al: Online Anomaly Detection for Service-Oriented...

is gotten when collecting the calculation result, but the3 Anomaly detection with control charts
CPU utilization is calculated incrementally throughout
the whole monitoring process; 2) an object alwaysAccording to the monitored resource utilization and
belongs to the bundle which created it until the object isinteractions of components, we can further detect
destroyed, while thread frequently transfers betweeranomalous components. The metrics of resource
bundles. utilization help developers to evaluate components, and
find underlying problems, for example CPU exhaustion
caused by an endless loop, or out of memory incurred by
frequently allocating objects without freeing immedigtel
A control chart is a statistical tool used to distinguish
between variation in a process resulting from common
Since OSGi is a service-oriented platform, we focus oncauses and variation result-ing from special causék [
the service interactions between bundles. We use th@hus we use control charts to detect the symptoms of
bundle ID of a thread before and after a service invocatiornre-source utilization. Our goal of using control chartsis t
to trace bundle interactions. An event-driven mechanismdetect whether the resource utilization of components is
is designed by listening to events in the service registry tostable or not. The stability is defined as a state in which
update the service interaction graph at runtime. the resource utilization has displayed a certain degree of
Algorithm 2 describes the method for service consistency in the past, and is expected to do so in the
interaction graph generation. We listen to the events in thduture.
service registry. When the service provider registers the Control charts monitor component resource
service in the registry, we create one node in the graph tatilization, and raise an alarm if the metrics are not in
represent a bundle. At the same time, when the servicatability. For example, in an application server, the
consumer requests a service, a directed edge is created teemory utilization of a web container should be kept
connect the service provider and service consumevithin a reasonable range under stable workload. When a
bundles. Next, we record the behavior of bundles throughproblem happens, e.g., memory leak, the memory
increasing the weight on the edge. During the executionutilization of the web container shows anomalous trends.
period, as introduced in CPU monitoring, we can find theThen control charts will detect the gradually increasing
bundle IDs of a thread before and after a servicetrend in memory utilization of the component, even if it is
invocation. If the service provider bundle tagged as A andstill within a reasonable range. We make use of the XmR
a service consumer bundle tagged as B are not in th¢individual X and Moving Range) control charts, in
same bundle, we increase weight on the edge connectinghich the individual (X) chart displays individual
from A to B. measurement, and the moving range (MR) chart shows
variability between one data point and the next. Two
XmR charts are employed to represent CPU and memory
utilization respectively for every component to detect

2.3 Monitoring interactions between bundles

Algorithm 2 Monitoring service interactions

Input: anomalies as follows:
services;; Step 1. Collect CPU and memory utilization of every
services;, component in period. Since the resource utilization is
Output: usually in proportion to the number of service

service interaction grapy
. if Listen to the eveny{ invokess;) then
S,j++;
end if
if nodg == NULL then
Createnodeg in g ;

invocations, we make use ofm.i as an individual
measurement to develop control chart, where is the
CPU/memory utilization of a component, and k is the
number of invocations during a period.

Step 2. Calculate the overall average of the individual
measurements.Let's denote:

CINDITAR®®NE

end if
if & j == NULL then .
Creates | ing; X= (X1 +Xz+---+Xn)/n, 1)
10: elsseet the value o, j as 1; , Wherex'is the average of the individual measurements,

X is an individual measurement, amds the number of
measurements.

Step 3. Calculate the average of the moving ranges.
The average of all moving ranges becomes the centerline
for mR-chart.Let's denote:

11: Get current thread and bundle 10b; of t;
12: Enter servics; ;

13: Getbundle IDbj of sj;

14: if bj!=bj then

15: &j++;

16: endif —

17: end if MR = (MRy + MRz + - -+ MRy) /N,)
MR} = |11 — X[, 3)

@© 2013 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2571-2582 (2013)www.naturalspublishing.com/Journals.asp NS 2 2575

16

Anomal
.C.pU' A CEE;:?)]IZ — Detectory
Utilization Anomalous Area Report T visten " Data
/mR f ucL Bundle Service Service || voke | Normal
Tracker Monitor Proxy Bundle
i ﬁ _____ Average Operate/l\Report Generait: Deploy
NO¢mal Area M || 0SGi Extension |
Monitor
LCL M VM ‘
Anomalous‘Area Monitor o
» Time

. Fig. 3: Bundle monitoring tool architecture
Fig. 2: Example of control chart

wheremR is the average of the individual moving ranges, objects with bundle ID, and calculating their resource

mR; is an individual moving range measurement, ans utilization. The bundle tracker is a bridge between Java

the number of measurements. applications implemented with Java on top of OSGi and
Step 4. Calculate the Upper and Lower Control Limits the JVM monitor implemented with native code. The

(UCL/LCL) for the individual measurements to get the X- OSGi extension extended from standard OSGi generates

chart. To find these control limits, we use the following proxies for registered services, and redirects service

formula: _ requests to proxies. The anomaly detector analyzes the

UCLy = [x+ amR], 4) monitored data collected from the service monitor.

LCLy = |X— amR). (5)

Step 5. Calculate the upper and lower control limits . .
for the moving ranges to get the mR-chart. To find these4'1 OSGi extension
control limits, we use the following formula:

UCLmr = BMR, (6) OSGi extension is the extension of OSGi kernel, which is
responsible for generating proxy objects. The ASM which
is an operation framework of Java bytecode is used to
LCLrr = None. 7 generate new class or enhance an existing class. In the
According to the statistics theory, we use constrgnd Service registry, we use ASM to generate the service
B which are specified as 2.66 and 3.268 respectivelyproxy class which provides service interfaces to invoke
Figure 2 gives an example of anomaly detection with theservice objects. When the service consumer requires the
control charts. The x-axis represents a sampling periodservices from the service provider, the service consumer
and the y-axis represents CPU utilization and mR. Thegets a service proxy object initiated by the service proxy
scale between the LCL and UCL is regarded as theclass. When the service is invoked, the corresponding
normal area, while the other scales are regarded as thgervice in a proxy object is invoked. In the beginning and
anomalous areas. The system is detected in an anomagnding of the service invocation, the thread information is
status when the monitored points occur in the anomalousipdated to calculate CPU time.
area. For example, the first, second and fourth points are |n order to reduce system resource overhead and
in the normal area, while the third and fifth points are in improve performance’ our System provides an interface
the anomalous area. Thus we can get XmR control chartsor users to customize monitored bundles. If the service is
and any point out of the normal scale, which is betweennot in the monitored service list, the proxy object is not
the LCL and UCL, will be detected as an anomaly. generated, and the original service object provides servic
as usual. The service proxy object is a new service
introduced by our monitoring method, which is generated
4 Anomaly detection system implementation by the OSGi extension using the bytecode injection to
trace the thread transfer between bundles. Felix is an
The system architecture of our prototype is illustrated inApache open source project, which implements the OSGi
Figure 3. It is composed of three parts that are anomalyR4 kernel specification. Since Felix is stable and simple,
detector, OSGi extension, and service monitor includingit has been adopted by large scale projects such as JonAS
JVM monitor, bundle tracker and bundle console. The, GlassFish , NetBean , thus we adopt it as the OSGi
JVM monitor is responsible for labeling threads and kernel to implement the OSGi Extension.

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2576 NS 2 T. Wang et al: Online Anomaly Detection for Service-Oriented...

JNI which is a standard Java API to integrate Java with

a Java application bundle on the JVM provides graphic
interfaces for users to show the resource utilization and
service interaction for every monitored bundle. Users are
able to observe the status of every bundle, and do some
Fig. 4: JVM monitor data structure operations such as install, uninstall, start, stop, or tepda
the bundles running on the OSGi platform conveniently.
The service interaction graph implemented in the
bundle console is a dynamic graph, so we adopt an

BundleArray other program languages in the bundle tracker. The
ID__ Bundlelnfo ThreadInfo bundle tracker module is composed of two bean classes
that are BundleCPUInfo and BundleMemInfo to record
1| Bundel P Thread2 =P Bundle CPU and memory information. When a Java
application sends requests to JVM monitor, an ArrayList
2 Bundle2 +——» Thread 1 —P» Thread3 of bundle information is replied. Bundle console which is
—

4.2 VM monitor event-driven mechanism by listening to events in registry
to update the service interaction graph at runtime.
The responsibility of the JVM monitor is listed as follows. The events and their operations are listed as follows.
—Tagging Thread: a thread is tagged as bundle ID, when _REGISTER-SERVICE: if a node standing for the
the thread is created or transferred. bundle, which the service is attached to, does not
—Tagging Object: an object is tagged as the bundle ID exist, the node and the service are created.
of the bundle which creates it. , ~UNREGISTER-SERVICE: the service and its edges
—Calculating Resource Utilization: CPU time and are deleted. If the node only has the service, we also
memory utilization of the bundle are calculated. delete the node and the connected edges. Otherwise,
The JVM monitor monitors JVM through JVMTI, the weight on the connected edges is decreased.

especially traces threads. Java applications take the ~“CET-SERVICE: if the edge from the invoking node
bundle tracker as a bridge to communicate with JyM &nd the invoked node exists, the weight on the edge is
monitor, so the JVM monitor is transparent and does not ~ Increased. Otherwise, the edge is created.
conflict with the Java applications. The JVM monitor —UNGET-SERVICE: the weight on the edge from
exists as a dynamic-link library, which is loaded when an ~ INvoking node and invoked node is decreased.
application starts.
The monitoring data is stored in an array as
BundleArray used to store bundle information, and we5 Evaluation
take bundle ID as the index of the bundle information
with Bundlelnfo object. The information on threads as o
ThreadInfo object is saved in the Bundlelnfo, and 5.1 Monitoring accuracy
organized as a chain, as is shown in Figure 4. The JVM
monitor subscribes to target events in the JVM, and theSince there is no standard benchmark for evaluating the
method is invoked by callback function when the eventsaccuracy of our CPU/memory monitoring method, we
happen as follows. implemented a simulation to get a better understanding of
. . the accuracy. As is shown in Figure 5, the simulation
—START-THREAD: a Threadinfo object is created, consists of eleven bundles including a controller bundle
tagged with BundlelD and linked in the chain of 5nq ten service bundles. Each of these service bundles
Threadinfo in Bundlelnfo. , , implements a service whose function is to loop for a fixed
—END-THREAD: a Threadinfo object is found,the perind, and the controller bundle invokes these services
thread CPU time is added to the Bundlelnfo, and thegng counts the time spent on each service. These bundles
Threadinfo object is deleted. are deployed on the OSGi platform, in which their
—CREATE-OBJECT: the object is tagged. services are registered. The controller bundle invokes the
service bundles for several loops in random order. The
service is assigned a quantitative execution time
4.3 Bundle tracker and bundle console respectively, from 5 milliseconds till 50 milliseconds, as
is described in the x-axis of Figure 6. The controller
Since tagging objects and threads requires entering thbundle invokes services for 10, 30, 50, 70, 90 and 110
native code from Java code, the bundle tracker builds doops in six experiments. Obviously, the expected CPU
bridge between Java applications and native code. Javime is the product of service time and the number of
applications are able to communicate with native code byloops in each experiment, and then we compare the
invoking some method in the bundle tracker. We adoptexpected CPU time with the monitored measurement.

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2571-2582 (2013)www.naturalspublishing.com/Journals.asp NS 2 2577

16

O k‘_/ Ry L 36 R
.................................. ,’;;32 —
£2.8 —_—
22.4
7] b w2 T 2
g =1l % . 20
s 2 2 g 0.4
5 E’ % E‘ h % 10 15 20 25 30 35 20 5 50
<] ? ';__\.;1 E Time(min)
g 2 2 z _ o
= oy] 2 Fig. 7: Memory monitoring accuracy
W - It =
Mormitoring
OsGi Tool . .
consistent with the expected result. The accuracy of
monitoring bundle memory utilization is higher than 99.8
Fig. 5: Accuracy evaluation environment percent.
s 5.2 Performance and resource over head
“““ 30
9 +50 . . L
5 70 In this part, we apply our method in a real application
il R server OnceAS13], which has been transformed to the
£ s OSGi framework 14]. The overhead introduced by our
¢ method is evaluated in this subsection. The overhead is
, , , , , , , : considered from two perspectives that are performance
s iy D B ™ metrics including average response time and throughput,
and the resource utilization including CPU time and heap
Fig. 6: CPU monitoring accuracy memoaory.

o . . Table 1: Testbed components
The accuracy of monitoring CPU time in terms of Component Processor RAM

relative error is shown in Figure 6, in which the curves —xnqrcaiion Intel Xeon 2.5GHZ(8 2G

indicate the results of different experiments in which Server(OnceAS) CPUs)

services loop for 10, 30, 50, 70, 90 and 110 times. It iS"pamapase(DB2) intel Xeon 3.0GHz(42G
seen that the relative error decreases with the service time CPUs)

increases. This is explained that the longer the effective Clignts(Emulated Intel Core 2 Duo 2G
service time is, the smaller the proportion of overhead Browsers) 2.33GHz(2 CPUs)

brought from tracing thread is. Furthermore, we observe
that the relative error of the curve indicating 10 loops is
higher than that of the curves indicating 30, 50, 70 and 90 |n our experiments, we use a testbed of a standard
loops, and the curves indicating 50, 70, 90 and 110 loopshree-tier e-commerce application, and simulate the
are consistent. When it loops for more times, the erroroperations of an online bookstore, according to TPC-W
rate falls to about 1 percent. So our method has highspecification 15]. Specifics of the software/hardware are
accuracy when the system runs for a long time, becausgjiven in Table 1. The client’s access to the web site occurs
the stochastic error is canceled out. as a session consisting of a sequence of consecutive
For evaluating the accuracy of the memory individual requests. Users log in to the Website, browse
monitoring method, we deployed a service bundle whichthe products, add several books into the shopping cart,
implements a service to create an integer array of 100,00@heck out the order and log out of the website.
elements. Thus we referred the array to an instance of a We simulate 25 to 350 concurrent browsers with
class, lest it should be garbage collected by the JVM. Thelifferent threads. The performance metrics evaluated for
controller bundle invokes the service for 10 times, andthis scenario are the throughput that is the number of
sleeps for 5 minutes after every invocation. So it is completed transactions per second, and average response
obvious that the memory utilization of the service bundle time that is the time taken to complete a transaction. As is
increases by about 0.4 Mbytes every 5 minutes because ahown in Figure 8, from the comparison of performance
service in-vocation for memory allocation. As is shown in metrics, we can see that the performance of OnceAS with
Figure 7, the observed curve of this experiment isand without monitoring is considered equivalent. When

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2578 NS 2 T. Wang et al: Online Anomaly Detection for Service-Oriented...

P (a)Throughput Comparison F10 (b)Throughput Relative Error (a)X-chart (b)mR-chart
EhN E Z 0.1= == 0.06= —
40 - - © —UCL/LCL, i —ucL/LcL
R gL cener] e
= C() 50 100 150 200 250 300 3502 00 50 100 150 200 250 300 350 E o
Emulated Browsers Emulated Browsers 5 0.06] £ 0.03
Te (Time Comparison g y (d)R: Time Relative Error E E . T
£ 4 5 Es © 0.04f vemitimret 0.015 R
2 o] £ ¢ |
50 100 150 200 250 300 350& 0 50 100 150 200 250 300 350 0 2 4 8 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Emulated Browsers Emulated Browsers Time(min) Time(min)
Fig. 8: Performance overhead Fig. 10: Control chart for CPU intensive loop
{a)CPU Comparison o (b)Memory Comparison . A
“ ® 5.3 Effectiveness of detecting anomalous
= g - components
g H
E20 g 80 .)
z 2 To validate our method for detecting anomalous
19 s 4 components, we inject two typical faults in the HTTP
<-without monitor < without monitor . - . . -
| | service bundle which is responsible for parsing HTTP
O e w300 360 0 120 1sp 240 %00 360 requests in OnceAS. Since injecting faults is a difficult
issue which is out of our scope, we choose two typical
Fig. 9: Resource overhead real faults as analyzed irl§], and inject them with the

method used inl7,18§].

In the experiment, we also use the testbed. We

simulate 300 concurrent users from 1st to 8th minute, and

the number of concurrent users is less than 175, thé00 concurrent users from 9th to 15th minute. Each
system is not saturated, so its throughput increases anexperiment lasts 15 minutes, the injected faults are
response time keeps about 3.2 seconds as the number Bfggered in the HTTP service in the 12th minute through
users grows. After that point, the system becomesliming automatically, and we monitor system status every
saturated, so its throughput does not increase anymor@inute. As is shown in Figure 10 and Figure 11, the
and the response time increases. In order to understar¥taxis represents sampling time, the y-axis in (a)X-chart
the overhead brought from monitoring clearly, the represents resource utilization per-interaction, and the
performance overhead is studied in terms of relative erroly-axis in (b)mR-chart represents the moving range. The

which is calculated with the following formula. results show that individual measurements and moving
ranges are in the normal scales before the faults are
injected. Nevertheless, some anomalies are detected after
RE = [v— Vappr0><|/Va (8))

the following faults are injected.

CPU intensive loop: results from circular wait or
endless loop in program such as spin lock fault. We inject
it by inserting the additional computation operation which
is a loop for 5ms. In each interaction with the injected
The performance overhead is less than 3.2 percentervice, these operations are triggered to consume
when the number of browsers does not exceed 175, angddditional CPU time. As is shown in Figure 10 which
less than 10.3 percent after that point, so the performancgescribes the XmR control charts of CPU utilization, after
overhead brought from monitoring is not significant. injecting this fault, the individual measurements and

This is explained by the low resource overhead. As ismoving ranges are both higher than UCL from the 13th
shown in Figure 9, the CPU utilization of the system with minute. Thus we detect that some anomalies occur in the
monitoring is about 8 percent more than that of the HTTP service, and they are related to CPU processor.
system without monitoring. The overhead is caused by Memory leak: is caused by locating heap memory to
tagging threads and objects, and tracing threads with thebjects without releasing, so that it leads to the system
JVMTI. At the same time, the memory utilization of the crash eventually. In each interaction with the injected
system with monitoring is about 9M bytes more than thatHTTP service, an object with the size of 10K bytes is
of the system without monitoring. The overhead is causectreated and referred to a static variable lest it should be
by additional service proxy objects. From the abovegarbage collected by the JVM. As is shown in Figure 11
results, we can see our method without significantwhich describes the XmR control charts of memory
overhead is applicable in the real deployment utilization, after injecting this fault, we detect anonesli
environment. from the 14th minute in the X-chart, and in the 15th

where v represents the performance metrics without

monitoring, and Vapprox represents the performance
metrics with monitoring.

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2571-2582 (2013)www.naturalspublishing.com/Journals.asp NS 2 2579

16

120 (@)X-chart o (b)mR-chart Although our method can detect anomalous
= [~ Memory] - mR components effectively, we cannot locate the root cause
£ 100 UoLLCL B | e of a fault in a line of code, and operators ought to follow
< 80 R L many other anomalous metrics to narrow down the
‘g 60! E o JUT L possible causes. In the future work, we plan to extend our
€ 4ol e 10 : method to collect other metrics for fine-grain fault
= 0 oL location. Furthermore, since OSGi provides a hot

0z 4§ Bl iz 14 de 0z 4 6 & 40012 1% 16 plug-and-play mechanism for components, we will
implement a framework to rejuvenate the component
Fig. 11: Control chart for memory leak through re-installing it or replace it with another one

automatically, when an anomalous component is detected.

minute in the mR-chart. Since the memory leak gradually7 Related work
exhausts the system memory resource, it is difficult for us

to detect immediately. As is shown in the above . o
experiments, our method can effectively detect anomaloug 1 Java application resource monitoring

services. Note that the faults in our experiments are only i hod o
examples, and our method is also applicable to selecf revailing methods to measure CPU consumption in Java

other metrics and detect other faults which affect thesgPPlication mainly rely on native code libraries, which

metrics. Although we cannot locate the root cause of aPfope CPU for calculating cycles by sampling. For

fault in a line of code, operators can follow these €X@mple, Magpie used Event Tracing with the processor
anomalous metrics to narrow down possible causes. ffYCle counter in Windows operating systed®] Similar
addition, since OSGi provides a hot plug-and-play methods on other operating systems include the Linux
mechanism for services, when an anomalous service idrace Toolkit 0] and Solaris DTrace?], etc. These

detected, it is convenient for us to rejuvenate the servicdN©thods, which instrument applications at the source or

through re-installing or replace it with another one at inary level, rely on the operating system kernel to collect
runtime. the events. Binder et al. proposed a portable

CPU-management framework for Java, which tracked the
number of executed the JVM bytecode instructions, and
then transformed them to CPU consumpti@2][These

methods introduce significant overhead at runtime.

The accuracy is an important factor for any monitoring Furthermore, they all aim at the whole JVM instead of

tool. We use JVMTI, which is a naive code based method S€TVices or components. We transform the resource
to calculate the CPU utilization of every thread. The PE'SPective to service-oriented component level in the
native agent probes CPU for the calculation of cycles by@SCl framework.

sampling. The accuracy of our method is subject to the "€ most related work to ours was conducted by
CPU resolution time of the operation system. It is Miettinen et al., which created a unique ThreadGroup

impossible for us to improve the absolute precision©Pi€ct for every bundle deployed to OSGI.[The task

defined by the CPU resolution time. For example, that ofé*€cuted by one thread in the original software is
the Windows XP is 15.625 milliseconds, so our method&*€cuted by different threads belonging to different
cannot exceed that if our monitoring tool is deployed on 1réadGroups — sequentially. However, this method
the Windows XP. In the future work, we plan to use a modifies the thread schedgle model. Moreover, co.mpl'ex
statistical method such as the Kalman filter to correct thethéad scheduling mechanism, frequent thread switching
monitored data. Furthermore, we can also use som perations gnd maintenance of a large nu.mber of.threads
platform-specific tools to improve the precision. ring significant overhead. Therefore, this OSGi-based

The overhead is an obstacle to the application of gmonitoring method is only suitable for off-line simulation

monitoring tool. Tagging object introduces a major €St but not applicable in the real deployment
significant overhead in our method. If threads are create@nvironment.

and destroyed, or components interact with each other

frequently, lots of thread objects ought to be tagged.

There will be lots of calls to the monitoring agent 7.2 Anomaly detection

function, and these calls of the naive codes are much

slower than the Java method calls, so great overhead i€ommercial monitoring tools are widely used to detect
introduced. In the future work, we plan to use a dynamicanomalies in practice, e.g., IBM Tivoli, HP OpenView.
map to record the relationship between Bundle IDs andSystem operators manually set rules to collect monitoring
Thread IDs for reducing the traps in the naive code to adata and trigger alerts with these tools. When the metric
minimum. exceeds its defined threshold, some alerts are generated

6 Discussion and future work

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2580 NS 2 T. Wang et al: Online Anomaly Detection for Service-Oriented...

automatically. However, it is difficult to set suitable self-healing sandbox for the execution of third party
thresholds for so many metrics in complex components in OSGi. In the sandbox, no faults are
component-based systems. Signature based methogsopagated to the trusted parts of the applicat8#).[The
define the signatures of known faults, and detectprotocol between the trusted platform and the sandbox
anomalies by matching a specific set of rules. Chen et alplatform brings considerable performance overhead, and
stored historical failures and retrieved similar instanice the correct functioning is based on a set of assumptions
the occurrence of failure2B]. The failure characteristics which may not apply to some real applications.

were described as an invariant network. Ghanbari et al.

used Bayesian networks to learn fault symptoms from

Ia}beled dataZ4]. These methods are effective when. th_e 8 Conclusion

signatures of faults are well defined. However, it is

difficult to recognize unknown faults.]]

Many studies model the system behaviors includingThe OSGi framework provides support for the
execution paths and component interactions. Chen et ajnanagement of service-oriented applications. It is
used a probabilistic context-free grammar to represent thémportant for improving the reliability of OSGi-based
components used in servicing requests, and gramma'ferwce-orlented component. We propose a tracing-thread
rules corresponded to transitions assigned probabilitiegnethod for monitoring service-oriented components in
between components. The paths which failed to be parse®SGi-based applications. Our method, neither modifying
by grammar were regarded as anomal@s.[Barham et software nor introducing significant overheads, is suéabl
al. used clustering to group paths, and the ones which didor monitoring online. According to the monitored data,
not fit the built clusters were anomalousd]. Chen et al. We further employ control charts to detect anomalous
employed statistics to periodically analyze interactioncomponents. This method does not require prior
between one component and the others usfAgst 6. knowledge and can de.t_ect. the anomalous trend . of
These methods are capable of detecting application-levefomponent resource utilization. A prototype tool is
faults. However, they cannot detect the anomalies causeflesigned and implemented in a real application server.
by component resource utilization. The .experlm('antal results den_wlons_trate_ our approach can

Metric correlation based methods characterize thgnonitor service resource utilization in high accuracy
hidden invariant relationships among system metrics, andvithout significant overhead, and detect the anomalous
the anomalies are detected when the relationships ar&ervices effectively.
broken. Jiang et al. used autoregressive linear regression
with exogenous input (ARX) models to capture the metric
correlations 17], and discussed two algorithms to speed Acknowledgement
up the discovery of metric correlation27. Munawar et
al. discussed many linear regression methods to discove]thiS work

metric correlationsZ8]. Guo et al. investigated Gaussian s supported by the National Grand

Fundamental Research Program of China (973) under

Mixture Models (GMM) to model the nonlinear . .
. . : Grant No. 2009CB320704, the National High Technology
correlations between metric&g]. While the methods are Research and Development Program of China (863)

easy to be extended to many _appllcatlons without d.omamunder Grant No. 2012AA011204, the National Natural
specific knowledge, it is difficult to model various

. ; ; Science Foundation of China (NSF) under Grant No.
correlations between so many metrics in complex

systems, and the metric correlation changes as workloa 1173004. The author is grateful to the anonymous
y ' 9 eferee for a careful checking of the details and for
pattern evolvesZ9]. Furthermore, these methods take the

o L . helpful comments that improved this paper.
whole application as target, so it is not applicable forThe authors are grateful to the anonymous referee for a
locating specific anomalous components in the 9 y

component-based applications. careful checking of the details and for helpful comments

Some studies pay attention to performance anomal)}halt improved this paper.
detection. Cherkasova et al. proposed a regression-based
model to reflect application resource consumption, and
introduced an application performance signature to modeReferences
the run-time application behavior. This work concentrates

on CPU utilization regardless of other metric80] [1]B. Councill, G. T. Heineman, Component-based software
Cohen et al. proposed TANs to identify which = engineering and the issue of trust, in Proceedings of
system-level metrics were correlated with high-level |nternational Conference on Software Engineering, 661-664
performance SLO (Service Level Object) violatiod][(2000).

The work aims at finding critical metrics which have an [2] D. Marples, P. Kriens, The Open Services Gateway Initiative:
important impact on performance instead of tracking an introductory overview, IEEE Communications Magazine,
system status to detect anomalies. Gama et al. presented a 39, 110-114 (2001).

© 2013 NSP
Natural Sciences Publishing Cor.

16

Appl. Math. Inf. Sci.7, No. 6, 2571-2582 (2013)www.naturalspublishing.com/Journals.asp NS 2 2581

[3] H. Cervantes,R. S. Hall, Autonomous adaptation to dynamic[21] B. M. Cantrill, M. W. Shapiro, A. H. Leventhal, Dynamic
availability using a service-oriented component model, in instrumentation of production systems, in Proceedings of
Proceedings of the 26th International Conference on Software USENIX Annual Technical Conference, 2-15 (2004).

Engineering, 614-623 (2004). [22] J. Hulaas, W. Binder, Program transformations for portable
[4] OSGi. About the OSGi Service Platform. Revision CPU accounting and control in Java, in ACM SIGPLAN

4.1. Available: http://www.osgi.org/wiki/uploads/Links Symposium on Partial Evaluation and Semantics-based

/0SGiTechnicalWhitePaper.pdf, (2007). Program Manipulation, Verona, Italy, 169-177 (2004).

[5] M. R. Lyu, Software reliability engineering: a roadmap, in [23] H. Chen, G. Jiang, K. Yoshihira, et al., Invariants based
Proceedings of Future of Software Engineering, 153-170 failure diagnosis in distributed computing systems, in

(2007). Proceedings of the 29th IEEE Symposium on Reliable
[6] V. Chandola, A. Banerjee,V. Kumar, Anomaly detection: A Distributed Systems, India, 160-166 (2010).
survey, ACM Computing Surveyd]l, 1-58 (2009). [24] S. Ghanbari, C. Amza, Semantic-driven model composition

[7]S. S. Gokhale, Architecture-based software reliability = for accurate anomaly diagnosis, in Proceedings of
analysis: Overview and limitations, IEEE Transactions on International Conference on Autonomic Computing,

Dependable and Secure Computidg32-40 (2007). lllinois, USA, 35-44 (2008).

[8] H. Koziolek, Performance evaluation of component-based[25] M. Y. Chen, A. Accardi, E. Kiciman, et al., Path-
software systems: A survey, Performance Evaluatin, based faliure and evolution management, in Proceedings
634-658 (2010). of the 1st Symposium on Networked Systems Design and

[9] T. Miettinen, D. Pakkala, M. Hongisto, A method for the Implementation, Berkeley, CA, 23-36 (2004).
resource monitoring of OSGi-based software components, irf26] H. Chen, G. Jiang, C. Ungureanu, et al., Failure detection
Proceedings of the 34th Euromicro Conference on Software and localization in component based systems by online
Engineering and Advanced Applications, 100-107 (2008). tracking, in Proceedings of the 11th ACM SIGKDD
[10] G. Kiczales, J. Lamping, A. Mendhekar, et al., Aspect- International Conference on Knowledge Discovery in Data
oriented programming, in Proceedings of the 15th European Mining, Chicago, lllinois, USA, 750-755 (2005).

Conference on Object-Oriented Programming, 220-242,[27] G. Jiang, H. Chen,K. Yoshihira, Efficient and scalable
(1997). algorithms for inferring likely invariants in distributed
[11] D. Jeffrey, G. David, C. Craig, Optimization of object- systems, IEEE Transactions on Knowledge and Data

oriented programs using static class hierarchy analysis, in Engineering19, 1508-1523 (2007).
Proceedings of the 9th European Conference on Object{28] M. A. Munawar, P. A. S. Ward, A comparative study of

Oriented Programming, Aarhus, Denmark, 77-101 (1995). pairwise regression techniques for problem determination,
[12] G. A. Barnard, Control charts and stochastic processes, in Proceedings of Conference of the Center for Advanced
Journal of the Royal Statistical SocieB, 239-271 (1959). Studies on Collaborative Research, Toronto, Canada, 152-166

[13] W. Zhang, B. Yang, B. Jin, et al., Performance Tuning for (2007).
Application Server OnceAS, in Proceedings of International [29] M. Jiang, M. A. Munawar, T. Reidemeister, et al., System
Conference on Parallel and Distributed Processing and monitoring with metric-correlation models: problems and
Applications, 451-462 (2005). solutions, in Proceedings of the 6th International Conference
[14] T. Wang, X. Zhou, J. Wei, et al., Towards runtime plug- on Autonomic Computing, Barcelona, Spain, 13-22 (2009).
and-play software, in Proceedings of the 10th International[30] L. Cherkasova, K. Ozonat, N. Mi, et al., Automated

Conference on Quality Software, 365-368 (2010). anomaly detection and performance modeling of enterprise
[15] D. A. Menasc, TPC-W: A benchmark for e-commerce, [IEEE applications, ACM Transactions on Computer Systems
Internet Computingg, 83-87 (2002). (TOCS),27, 1-32 (2009).

[16] S. Pertet,P. Narasimhan, Causes of failure in web[31]1. Cohen, M. Goldszmidt, T. Kelly, et al., Correlating
applications, Parallel Data Laboratory, Carnegie Mellon instrumentation data to system states: a building block
University, CMU-PDL, 05-109 (2005). for automated diagnosis and control, in Proceedings of

[17] G. Jiang, H. Chen,K. Yoshihira, Modeling and tracking of the 6th Symposium on Operating Systems Design and
transaction flow dynamics for fault detection in complex Implementation, San Francisco, CA, 16-29 (2004).
systems, IEEE Transactions on Dependable and Secur{32] K. Gama,D. Donsez, A Self-healing Component Sandbox
Computing,3, 312-326 (2006). for Untrustworthy Third Party Code Execution, Component-

[18] G. Zhen, G. Jiang, H. Chen, et al., Tracking probabilistic Based Software Engineerin092 130-149 (2010).
correlation of monitoring data for fault detection in complex
systems, in Proceedings of International Conference on
Dependable Systems and Networks, PA, USA, 259-268
(20086).

[19] P. Barham, A. Donnelly, R. Isaacs, et al., Using magpie for
request extraction and workload modelling, in Proceedings
of the 6th International Symposium on Opearting Systems
Design and Implementation, California, USA, 18-31 (2004).

[20] K. Yaghmour, M. R. Dagenais, Measuring and
characterizing system behavior using kernel-level event
logging, in Proceedings of the USENIX Annual Technical
Conference, San Diego, California, 2-15 (2000).

© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2582 _%N::S =) T. Wang et al: Online Anomaly Detection for Service-Oriented...

Tao Wang is now

a PhD candidate in the
Institute of Software, Chinese
Academy of Sciences, China.
He received the MS degree
in Computer Science from
the University of Electronic
Science and Technology
of China, China in 2008.
His research interests include
fault detection, software reliability, and autonomic
computing.

Jun Wei is a professor
in the Institute of Software,
Chinese Academy of
Sciences, China. He received
his BSc and PhD in Computer
Science from the Wuhan
University, Hubei, China in
1992 and 1997, respectively.
He was a Postdoctoral
Researcher at the Hong Kong
University of Science and Technology, China. His
research interests include service oriented computing,
middleware, and software engineering.

Wenbo Zhang is
an associate professor in the
Institute of Software, Chinese
Academy of Sciences, China.
He received his PhD from the
Institute of Software, Chinese
Academy of Sciences,
China in 2007, and his MEng
in Computer Science and
Technology from Shandong
University in 2002. His research interests include service
oriented computing and middleware.

Hua Zhong is a professor
in the Institute of Software,
Chinese Academy of
Sciences, China. He
received his PhD in Computer
Science from the Institute of
Software, Chinese Academy
of Sciences in 1999.
His research interests include
software engineering and

distributed computing.

© 2013 NSP
Natural Sciences Publishing Cor.

	Introduction
	Monitoring components in OSGi-based applications
	Anomaly detection with control charts
	Anomaly detection system implementation
	Evaluation
	Discussion and future work
	Related work
	Conclusion

