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Abstract: OSGi has become one of the most promising frameworks for managingservice-oriented and component-based applications.
The OSGi-based service-oriented components delivered by different vendors are usually black-box program units which lack source
code and design documents. Thus, it is difficult to evaluate their quality by static code analysis, and the defective components may
lead to the failure of the whole system eventually. In this paper, we proposean online method for detecting anomalous service-oriented
components in OSGi-based applications. A thread-tracing method is presented to monitor resource utilization and interactions between
components. The method considers both the dynamic service invocation and static method invocation. Furthermore, according to the
monitored data, we detect anomalous components by control charts, which can detect the anomalous trend of resource utilization
without prior knowledge. A prototype tool was implemented and applied to a real application server. The experimental results show
that our method 1) is of high accuracy for monitoring resource utilization incomponent perspective; 2) does not introduce significant
overhead; 3) and can detect anomalous components effectively.
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1 Introduction

The component-based software engineering greatly
improves the efficiency and quality of software
development; organizations always adopt it for
developing large-scale complex software [1]. In recent
year, OSGi (Open Service Gateway initiative) has become
one of the most promising frameworks for managing
service-oriented and component-based applications [2].
The OSGi framework, which provides a service model
and a service registry, is an execution environment for
dynamically loadable services. OSGi technology is
attracting growing interest, and a large number of
large-scale projects have released new versions with
OSGi, such as JEE application server Websphere, IDE
eclipse and the BMW automobile control system. The
services based on OSGi are always implemented as
bundles that are service-oriented components [3]. The
COTS (Commercial Off-The Shelf) market around OSGi
is emerging, where the number of third party components
is increasing [4]. However, a defective component may

affect all the related components and lead to the failure of
the whole system eventually. Thus, it is a critical issue for
COTS to ensure the quality of components [5].

However, since the COTS components are usually
black-box program units which lack source code and
design documents, it is difficult to understand the
characteristics of components, and evaluate their quality
by static code analysis. Furthermore, some runtime factor,
e.g., access sequences, concurrency number and resource
usage, may cause contextual anomalies [6], which are
difficult to be eliminated through testing. Therefore,
detecting anomalous components online is essential for
improving the reliability of OSGi-based applications.

This paper proposes an online method for detecting
anomalous service-oriented components in OSGi-based
applications. The main contributions of this paper are as
following:

–A thread-tracing method is proposed to monitor
resource utilization and interactions of components. It
is an online method, which neither modifies software
nor introduces significant overhead.
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–The control charts for resource utilization are
introduced to detect anomalous components. They
can detect the anomalous trends of resource
utilization without prior knowledge.

–An anomaly detection framework for OSGi-based
applications is presented. A prototype tool is
implemented and applied to a real application server.

–The experimental results demonstrate that our method
can monitor resource utilization in high accuracy
without significant overhead, and detect the
anomalous components effectively.

The rest of this paper is organized as follows. Section
2 presents a thread-tracing based method for monitoring
components. Section 3 introduces control charts to detect
anomalous components. Section 4 demonstrates the
design and implementation of the prototype tool. Section
5 provides experimental results to validate the method in
accuracy, overhead and effectiveness. Section 6 presents
our discussion and future work. Section 7 reviews the
related works, followed by conclusion in Section 8.

2 Monitoring components in OSGi-based
applications

An OSGi service platform is composed of service
providers, service requesters and a service registry. A
service provider registers services to publish, and a
service requester discovers services from the service
registry to invoke. The service described as a Java
interface is always packaged as a standard JAR file,
namely bundle, in which service implementation, related
resource files and manifest files are included. Bundles
interact with each other as service invocation. Since
bundles are basic management units in OSGi, we take
them as monitored targets.

We analyze component-based applications from two
perspectives that are performance metrics of a single
component and interaction behavior between
components [7]. Since CPU and memory utilization are
important properties for evaluating a software
component [8], we present a method to monitor these
performance metrics.

2.1 Monitoring CPU utilization of a bundle

A thread is the basic unit to which the operating system
allocates processor time. Thus, the CPU utilization of a
bundle is the sum of the CPU time consumed by different
threads, which execute within the same bundle. We have
two monitoring perspectives as follows.

–Bundle perspective. Threads are grouped into
different bundles, and each thread belongs to a
specific bundle. Thus we add the CPU time of every
thread in the bundle.

–Thread perspective. A thread execution is divided into
some stages, each of which belongs to a specific
bundle. Thus we add the CPU time of every stage in
the bundle.

Because of frequent interactions between bundles by
invocations, the relations between bundles and threads
vary dynamically. If we follow the first perspective, the
thread schedule model should be modified, and significant
overhead will be introduced as presented in [9].
Therefore, we adopt the second choice through tracing
thread transfer between bundles.

It is easy to calculate CPU time utilized by a thread
during a period using the JVMTI provided by the JVM
(Java Virtual Machine). Thus, how to divide the CPU
time of a thread into different bundles becomes an
essential question to answer. As is shown in algorithm 1,
we describe the method for monitoring bundle CPU
utilization.

Step 1. Initialize bundle ID for every thread.
Step 1.1. When a bundle is initialized, OSGi invokes

start () method in the Activator class to start the bundle.
We set the bundle ID of the thread as the started bundle
through labeling the thread before and after the start
method in the OSGi platform.

Step 1.2. When a new thread is created, we set the
bundle ID of the thread as that of its parent thread.

Step 2. Trace thread transfer between bundles.
Decide whether thread transfer happens. When a

service is invoked, if the service provider and the service
consumer are in different bundles, thread transfer
happens.

Step 3. Calculate CPU time of bundles.
If the bundle ID of a thread varies after entering the

invoked service, the CPU time is calculated and added to
the original bundle, and the time stamp is updated. After
exiting from the service, the CPU time is calculated and
added to the invoked bundle.

2.1.1 Monitoring dynamic service invocation

There are two kinds of component interactions that are
dynamic service invocations and static method
invocations. As for the service invocation, we use an
event-driven mechanism to trace service invocations
through listening to the events in the service registry, as is
shown in the Figure 1. To avoid affecting the execution
code in the original bundle and deal with the arriving
services during execution, we create a proxy object for
every required service. A proxy class is generated when a
service is registered, and the proxy class is instantiated
when the service is invoked. We also modify the service
registry to redirect service requests to the service proxy.
Thus, the proxy object instead of the original service
provides service for a service consumer transparently. In
every proxy class, the monitoring point is inserted before
and after the service invocation to label the changed
bundle ID of a thread.
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Algorithm 1 Monitoring CPU utilization
Input:

OSGi-based applications;
Output:

CPU utilization for every bundle;
1: if Listen to the event(bundleb is initialized)then
2: Set the bundle ID of threadt asb, and the time stamp for

t ;
3: end if
4: if Listen to the event(threadts is initialized)then
5: Get the current threadt p which is the parent ofts, and the

bundle ID oft p asbp;
6: Create a new threadts, and Set the bundleID ofts asbp;
7: end if
8: if Listen to the event(servicesi invoke services j) then
9: Get the bundle ID ofsi asbi , and the bundle ID ofs j as

b j ;
10: if bi! = b j then
11: GetbundleIn f oi of bi, and current threadt;
12: Calculate bundle In f oi.CPUTime+ =

t.Calculate CPU();
13: Set time stamp fort, and bundle ID of threadt asb j;
14: Executes j;
15: Getbundle In f o j of b j;
16: Calculate bundle In f o j.CPUTime+ =

t.Calculate CPU();
17: Set time stamp fort, and bundle ID oft asbi;
18: end if
19: end if

2.1.2 Monitoring static method invocation

Although the OSGi specification recommends developers
to implement the interactions between components with
service invocation, some developers used to invoke the
functions from other components with the traditional
static method invocation. Thus we propose an AOP
(Aspect-Oriented Programming) based method [10] to
trace the thread transfer between components. The OSGi
framework analyzes the meta data file recording the
exported packages automatically, when a bundle is loaded
dynamically. We extend the original OSGi framework, so
that it reports the exported methods to our monitoring tool
when the analysis is finished. Our tool decides whether
the classes being loaded are exported by the bundle
according to the report. Then, we use AOP to insert the
monitoring points into the beginning and the end of the
public method in the class which exports methods.

We note that some exported packages are not invoked
by other components. The thread transfer does not
happen, when the invoking method and the invoked
method in the same bundle. However, the redundant
monitoring points introduce unnecessary overhead.
Therefore, we use a static code analysis method to reduce
the number of monitoring points before weaving class.
Method invocations usually take the form of
”targetObj.methodName(parameters)”; the key to
analyzing the calling relationship is to know the possible
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Fig. 1: Service proxy generation

types of the objects which the targetObj may point to. We
use the class hierarchy analysis method [11] to gain this
knowledge. All the subtypes of targetObj’s type are
among the possible types, and we can get all the possible
target methods denoted by the methodName. With the
knowledge of the target methods in every invocation
statement, we can easily acquire the calling relationship
between methods, classes, and packages. If two packages
in two different bundles have the calling relationships in
OSGi, the corresponding imported and exported packages
should be specified in the metadata files of the two
bundles. Thus we do not weave the methods invoked in
the same bundle to reduce monitoring overhead.

The object of our AOP based method is to trace the
thread transfer between components, when a component
invokes the others with the static method invocation.

2.2 Monitoring memory utilization of a bundle

The system memory is occupied by objects, which we
will categorize into different bundles. We can also use the
JVMTI to tag every object and calculate its size in
memory. The objects created by different bundles are
tagged with bundle IDs, and we calculate the memory
utilization for every bundle. However, how to distinguish
which bundle the objects are subordinate to is a key
problem. With the algorithm 1, we get the relations
between bundles and threads in different periods, and
objects are created by threads. Thus we take the thread as
a bridge between objects and bundles to locate the objects
belonging to different bundles.

In essence, the CPU monitoring and memory
monitoring are both to locate the units in their bundles.
The differences are as follows: 1) the memory utilization
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is gotten when collecting the calculation result, but the
CPU utilization is calculated incrementally throughout
the whole monitoring process; 2) an object always
belongs to the bundle which created it until the object is
destroyed, while thread frequently transfers between
bundles.

2.3 Monitoring interactions between bundles

Since OSGi is a service-oriented platform, we focus on
the service interactions between bundles. We use the
bundle ID of a thread before and after a service invocation
to trace bundle interactions. An event-driven mechanism
is designed by listening to events in the service registry to
update the service interaction graph at runtime.

Algorithm 2 describes the method for service
interaction graph generation. We listen to the events in the
service registry. When the service provider registers the
service in the registry, we create one node in the graph to
represent a bundle. At the same time, when the service
consumer requests a service, a directed edge is created to
connect the service provider and service consumer
bundles. Next, we record the behavior of bundles through
increasing the weight on the edge. During the execution
period, as introduced in CPU monitoring, we can find the
bundle IDs of a thread before and after a service
invocation. If the service provider bundle tagged as A and
a service consumer bundle tagged as B are not in the
same bundle, we increase weight on the edge connecting
from A to B.

Algorithm 2 Monitoring service interactions
Input:

servicesi;
services j;

Output:
service interaction graphg;

1: if Listen to the event(si invokess j) then
2: si, j ++;
3: end if
4: if nodei == NULL then
5: Createnodei in g ;
6: end if
7: if ei, j == NULL then
8: Createei, j in g ;
9: Set the value ofei, j as 1;

10: else
11: Get current threadt, and bundle IDbi of t;
12: Enter services j ;
13: Get bundle IDb j of s j;
14: if bi!=b j then
15: ei, j ++;
16: end if
17: end if

3 Anomaly detection with control charts

According to the monitored resource utilization and
interactions of components, we can further detect
anomalous components. The metrics of resource
utilization help developers to evaluate components, and
find underlying problems, for example CPU exhaustion
caused by an endless loop, or out of memory incurred by
frequently allocating objects without freeing immediately.
A control chart is a statistical tool used to distinguish
between variation in a process resulting from common
causes and variation result-ing from special causes [12].
Thus we use control charts to detect the symptoms of
re-source utilization. Our goal of using control charts is to
detect whether the resource utilization of components is
stable or not. The stability is defined as a state in which
the resource utilization has displayed a certain degree of
consistency in the past, and is expected to do so in the
future.

Control charts monitor component resource
utilization, and raise an alarm if the metrics are not in
stability. For example, in an application server, the
memory utilization of a web container should be kept
within a reasonable range under stable workload. When a
problem happens, e.g., memory leak, the memory
utilization of the web container shows anomalous trends.
Then control charts will detect the gradually increasing
trend in memory utilization of the component, even if it is
still within a reasonable range. We make use of the XmR
(Individual X and Moving Range) control charts, in
which the individual (X) chart displays individual
measurement, and the moving range (MR) chart shows
variability between one data point and the next. Two
XmR charts are employed to represent CPU and memory
utilization respectively for every component to detect
anomalies as follows:

Step 1. Collect CPU and memory utilization of every
component in period. Since the resource utilization is
usually in proportion to the number of service
invocations, we make use ofm i as an individual
measurement to develop control chart, wherem i is the
CPU/memory utilization of a component, and k is the
number of invocations during a period.

Step 2. Calculate the overall average of the individual
measurements.Let’s denote:

x̄ = (x1+ x2+ · · ·+ xn)/n, (1)

, Where ¯x is the average of the individual measurements,
xi is an individual measurement, andn is the number of
measurements.

Step 3. Calculate the average of the moving ranges.
The average of all moving ranges becomes the centerline
for mR-chart.Let’s denote:

m̄R = (mR1+mR2+ · · ·+mRn)/n, (2)

mRi = |xi+1− xi|, (3)
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Fig. 2: Example of control chart

wherem̄R is the average of the individual moving ranges,
mRi is an individual moving range measurement, andn is
the number of measurements.

Step 4. Calculate the Upper and Lower Control Limits
(UCL/LCL) for the individual measurements to get the X-
chart. To find these control limits, we use the following
formula:

UCLx = |x̄+αm̄R|, (4)

LCLx = |x̄−αm̄R|. (5)

Step 5. Calculate the upper and lower control limits
for the moving ranges to get the mR-chart. To find these
control limits, we use the following formula:

UCLmR = β m̄R, (6)

LCLmR = None. (7)

According to the statistics theory, we use constantα and
β which are specified as 2.66 and 3.268 respectively.
Figure 2 gives an example of anomaly detection with the
control charts. The x-axis represents a sampling period,
and the y-axis represents CPU utilization and mR. The
scale between the LCL and UCL is regarded as the
normal area, while the other scales are regarded as the
anomalous areas. The system is detected in an anomaly
status when the monitored points occur in the anomalous
area. For example, the first, second and fourth points are
in the normal area, while the third and fifth points are in
the anomalous area. Thus we can get XmR control charts,
and any point out of the normal scale, which is between
the LCL and UCL, will be detected as an anomaly.

4 Anomaly detection system implementation

The system architecture of our prototype is illustrated in
Figure 3. It is composed of three parts that are anomaly
detector, OSGi extension, and service monitor including
JVM monitor, bundle tracker and bundle console. The
JVM monitor is responsible for labeling threads and
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Fig. 3: Bundle monitoring tool architecture

objects with bundle ID, and calculating their resource
utilization. The bundle tracker is a bridge between Java
applications implemented with Java on top of OSGi and
the JVM monitor implemented with native code. The
OSGi extension extended from standard OSGi generates
proxies for registered services, and redirects service
requests to proxies. The anomaly detector analyzes the
monitored data collected from the service monitor.

4.1 OSGi extension

OSGi extension is the extension of OSGi kernel, which is
responsible for generating proxy objects. The ASM which
is an operation framework of Java bytecode is used to
generate new class or enhance an existing class. In the
service registry, we use ASM to generate the service
proxy class which provides service interfaces to invoke
service objects. When the service consumer requires the
services from the service provider, the service consumer
gets a service proxy object initiated by the service proxy
class. When the service is invoked, the corresponding
service in a proxy object is invoked. In the beginning and
ending of the service invocation, the thread information is
updated to calculate CPU time.

In order to reduce system resource overhead and
improve performance, our system provides an interface
for users to customize monitored bundles. If the service is
not in the monitored service list, the proxy object is not
generated, and the original service object provides service
as usual. The service proxy object is a new service
introduced by our monitoring method, which is generated
by the OSGi extension using the bytecode injection to
trace the thread transfer between bundles. Felix is an
Apache open source project, which implements the OSGi
R4 kernel specification. Since Felix is stable and simple,
it has been adopted by large scale projects such as JonAS
, GlassFish , NetBean , thus we adopt it as the OSGi
kernel to implement the OSGi Extension.
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Fig. 4: JVM monitor data structure

4.2 JVM monitor

The responsibility of the JVM monitor is listed as follows.

–Tagging Thread: a thread is tagged as bundle ID, when
the thread is created or transferred.

–Tagging Object: an object is tagged as the bundle ID
of the bundle which creates it.

–Calculating Resource Utilization: CPU time and
memory utilization of the bundle are calculated.

The JVM monitor monitors JVM through JVMTI,
especially traces threads. Java applications take the
bundle tracker as a bridge to communicate with JVM
monitor, so the JVM monitor is transparent and does not
conflict with the Java applications. The JVM monitor
exists as a dynamic-link library, which is loaded when an
application starts.

The monitoring data is stored in an array as
BundleArray used to store bundle information, and we
take bundle ID as the index of the bundle information
with BundleInfo object. The information on threads as
ThreadInfo object is saved in the BundleInfo, and
organized as a chain, as is shown in Figure 4. The JVM
monitor subscribes to target events in the JVM, and the
method is invoked by callback function when the events
happen as follows.

–START-THREAD: a ThreadInfo object is created,
tagged with BundleID and linked in the chain of
ThreadInfo in BundleInfo.

–END-THREAD: a ThreadInfo object is found,the
thread CPU time is added to the BundleInfo, and the
ThreadInfo object is deleted.

–CREATE-OBJECT: the object is tagged.

4.3 Bundle tracker and bundle console

Since tagging objects and threads requires entering the
native code from Java code, the bundle tracker builds a
bridge between Java applications and native code. Java
applications are able to communicate with native code by
invoking some method in the bundle tracker. We adopt

JNI which is a standard Java API to integrate Java with
other program languages in the bundle tracker. The
bundle tracker module is composed of two bean classes
that are BundleCPUInfo and BundleMemInfo to record
Bundle CPU and memory information. When a Java
application sends requests to JVM monitor, an ArrayList
of bundle information is replied. Bundle console which is
a Java application bundle on the JVM provides graphic
interfaces for users to show the resource utilization and
service interaction for every monitored bundle. Users are
able to observe the status of every bundle, and do some
operations such as install, uninstall, start, stop, or update
the bundles running on the OSGi platform conveniently.

The service interaction graph implemented in the
bundle console is a dynamic graph, so we adopt an
event-driven mechanism by listening to events in registry
to update the service interaction graph at runtime.

The events and their operations are listed as follows.

–REGISTER-SERVICE: if a node standing for the
bundle, which the service is attached to, does not
exist, the node and the service are created.

–UNREGISTER-SERVICE: the service and its edges
are deleted. If the node only has the service, we also
delete the node and the connected edges. Otherwise,
the weight on the connected edges is decreased.

–GET-SERVICE: if the edge from the invoking node
and the invoked node exists, the weight on the edge is
increased. Otherwise, the edge is created.

–UNGET-SERVICE: the weight on the edge from
invoking node and invoked node is decreased.

5 Evaluation

5.1 Monitoring accuracy

Since there is no standard benchmark for evaluating the
accuracy of our CPU/memory monitoring method, we
implemented a simulation to get a better understanding of
the accuracy. As is shown in Figure 5, the simulation
consists of eleven bundles including a controller bundle
and ten service bundles. Each of these service bundles
implements a service whose function is to loop for a fixed
period, and the controller bundle invokes these services
and counts the time spent on each service. These bundles
are deployed on the OSGi platform, in which their
services are registered. The controller bundle invokes the
service bundles for several loops in random order. The
service is assigned a quantitative execution time
respectively, from 5 milliseconds till 50 milliseconds, as
is described in the x-axis of Figure 6. The controller
bundle invokes services for 10, 30, 50, 70, 90 and 110
loops in six experiments. Obviously, the expected CPU
time is the product of service time and the number of
loops in each experiment, and then we compare the
expected CPU time with the monitored measurement.
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Fig. 5: Accuracy evaluation environment

Fig. 6: CPU monitoring accuracy

The accuracy of monitoring CPU time in terms of
relative error is shown in Figure 6, in which the curves
indicate the results of different experiments in which
services loop for 10, 30, 50, 70, 90 and 110 times. It is
seen that the relative error decreases with the service time
increases. This is explained that the longer the effective
service time is, the smaller the proportion of overhead
brought from tracing thread is. Furthermore, we observe
that the relative error of the curve indicating 10 loops is
higher than that of the curves indicating 30, 50, 70 and 90
loops, and the curves indicating 50, 70, 90 and 110 loops
are consistent. When it loops for more times, the error
rate falls to about 1 percent. So our method has high
accuracy when the system runs for a long time, because
the stochastic error is canceled out.

For evaluating the accuracy of the memory
monitoring method, we deployed a service bundle which
implements a service to create an integer array of 100,000
elements. Thus we referred the array to an instance of a
class, lest it should be garbage collected by the JVM. The
controller bundle invokes the service for 10 times, and
sleeps for 5 minutes after every invocation. So it is
obvious that the memory utilization of the service bundle
increases by about 0.4 Mbytes every 5 minutes because of
service in-vocation for memory allocation. As is shown in
Figure 7, the observed curve of this experiment is

Fig. 7: Memory monitoring accuracy

consistent with the expected result. The accuracy of
monitoring bundle memory utilization is higher than 99.8
percent.

5.2 Performance and resource overhead

In this part, we apply our method in a real application
server OnceAS [13], which has been transformed to the
OSGi framework [14]. The overhead introduced by our
method is evaluated in this subsection. The overhead is
considered from two perspectives that are performance
metrics including average response time and throughput,
and the resource utilization including CPU time and heap
memory.

Table 1: Testbed components
Component Processor RAM
Application
Server(OnceAS)

Intel Xeon 2.5GHz(8
CPUs)

2G

Database(DB2) Intel Xeon 3.0GHz(4
CPUs)

2G

Clients(Emulated
Browsers)

Intel Core 2 Duo
2.33GHz(2 CPUs)

2G

In our experiments, we use a testbed of a standard
three-tier e-commerce application, and simulate the
operations of an online bookstore, according to TPC-W
specification [15]. Specifics of the software/hardware are
given in Table 1. The client’s access to the web site occurs
as a session consisting of a sequence of consecutive
individual requests. Users log in to the Website, browse
the products, add several books into the shopping cart,
check out the order and log out of the website.

We simulate 25 to 350 concurrent browsers with
different threads. The performance metrics evaluated for
this scenario are the throughput that is the number of
completed transactions per second, and average response
time that is the time taken to complete a transaction. As is
shown in Figure 8, from the comparison of performance
metrics, we can see that the performance of OnceAS with
and without monitoring is considered equivalent. When
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Fig. 8: Performance overhead

Fig. 9: Resource overhead

the number of concurrent users is less than 175, the
system is not saturated, so its throughput increases and
response time keeps about 3.2 seconds as the number of
users grows. After that point, the system becomes
saturated, so its throughput does not increase anymore
and the response time increases. In order to understand
the overhead brought from monitoring clearly, the
performance overhead is studied in terms of relative error
which is calculated with the following formula.

RE = |v− vapprox|/v, (8)

where v represents the performance metrics without
monitoring, and vapprox represents the performance
metrics with monitoring.

The performance overhead is less than 3.2 percent
when the number of browsers does not exceed 175, and
less than 10.3 percent after that point, so the performance
overhead brought from monitoring is not significant.

This is explained by the low resource overhead. As is
shown in Figure 9, the CPU utilization of the system with
monitoring is about 8 percent more than that of the
system without monitoring. The overhead is caused by
tagging threads and objects, and tracing threads with the
JVMTI. At the same time, the memory utilization of the
system with monitoring is about 9M bytes more than that
of the system without monitoring. The overhead is caused
by additional service proxy objects. From the above
results, we can see our method without significant
overhead is applicable in the real deployment
environment.

Fig. 10: Control chart for CPU intensive loop

5.3 Effectiveness of detecting anomalous
components

To validate our method for detecting anomalous
components, we inject two typical faults in the HTTP
service bundle which is responsible for parsing HTTP
requests in OnceAS. Since injecting faults is a difficult
issue which is out of our scope, we choose two typical
real faults as analyzed in [16], and inject them with the
method used in [17,18].

In the experiment, we also use the testbed. We
simulate 300 concurrent users from 1st to 8th minute, and
400 concurrent users from 9th to 15th minute. Each
experiment lasts 15 minutes, the injected faults are
triggered in the HTTP service in the 12th minute through
timing automatically, and we monitor system status every
minute. As is shown in Figure 10 and Figure 11, the
x-axis represents sampling time, the y-axis in (a)X-chart
represents resource utilization per-interaction, and the
y-axis in (b)mR-chart represents the moving range. The
results show that individual measurements and moving
ranges are in the normal scales before the faults are
injected. Nevertheless, some anomalies are detected after
the following faults are injected.

CPU intensive loop: results from circular wait or
endless loop in program such as spin lock fault. We inject
it by inserting the additional computation operation which
is a loop for 5ms. In each interaction with the injected
service, these operations are triggered to consume
additional CPU time. As is shown in Figure 10 which
describes the XmR control charts of CPU utilization, after
injecting this fault, the individual measurements and
moving ranges are both higher than UCL from the 13th
minute. Thus we detect that some anomalies occur in the
HTTP service, and they are related to CPU processor.

Memory leak: is caused by locating heap memory to
objects without releasing, so that it leads to the system
crash eventually. In each interaction with the injected
HTTP service, an object with the size of 10K bytes is
created and referred to a static variable lest it should be
garbage collected by the JVM. As is shown in Figure 11
which describes the XmR control charts of memory
utilization, after injecting this fault, we detect anomalies
from the 14th minute in the X-chart, and in the 15th
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Fig. 11: Control chart for memory leak

minute in the mR-chart. Since the memory leak gradually
exhausts the system memory resource, it is difficult for us
to detect immediately. As is shown in the above
experiments, our method can effectively detect anomalous
services. Note that the faults in our experiments are only
examples, and our method is also applicable to select
other metrics and detect other faults which affect these
metrics. Although we cannot locate the root cause of a
fault in a line of code, operators can follow these
anomalous metrics to narrow down possible causes. In
addition, since OSGi provides a hot plug-and-play
mechanism for services, when an anomalous service is
detected, it is convenient for us to rejuvenate the service
through re-installing or replace it with another one at
runtime.

6 Discussion and future work

The accuracy is an important factor for any monitoring
tool. We use JVMTI, which is a naive code based method,
to calculate the CPU utilization of every thread. The
native agent probes CPU for the calculation of cycles by
sampling. The accuracy of our method is subject to the
CPU resolution time of the operation system. It is
impossible for us to improve the absolute precision
defined by the CPU resolution time. For example, that of
the Windows XP is 15.625 milliseconds, so our method
cannot exceed that if our monitoring tool is deployed on
the Windows XP. In the future work, we plan to use a
statistical method such as the Kalman filter to correct the
monitored data. Furthermore, we can also use some
platform-specific tools to improve the precision.

The overhead is an obstacle to the application of a
monitoring tool. Tagging object introduces a major
significant overhead in our method. If threads are created
and destroyed, or components interact with each other
frequently, lots of thread objects ought to be tagged.
There will be lots of calls to the monitoring agent
function, and these calls of the naive codes are much
slower than the Java method calls, so great overhead is
introduced. In the future work, we plan to use a dynamic
map to record the relationship between Bundle IDs and
Thread IDs for reducing the traps in the naive code to a
minimum.

Although our method can detect anomalous
components effectively, we cannot locate the root cause
of a fault in a line of code, and operators ought to follow
many other anomalous metrics to narrow down the
possible causes. In the future work, we plan to extend our
method to collect other metrics for fine-grain fault
location. Furthermore, since OSGi provides a hot
plug-and-play mechanism for components, we will
implement a framework to rejuvenate the component
through re-installing it or replace it with another one
automatically, when an anomalous component is detected.

7 Related work

7.1 Java application resource monitoring

Prevailing methods to measure CPU consumption in Java
application mainly rely on native code libraries, which
probe CPU for calculating cycles by sampling. For
example, Magpie used Event Tracing with the processor
cycle counter in Windows operating system [19]. Similar
methods on other operating systems include the Linux
Trace Toolkit [20] and Solaris DTrace [21], etc. These
methods, which instrument applications at the source or
binary level, rely on the operating system kernel to collect
the events. Binder et al. proposed a portable
CPU-management framework for Java, which tracked the
number of executed the JVM bytecode instructions, and
then transformed them to CPU consumption [22]. These
methods introduce significant overhead at runtime.
Furthermore, they all aim at the whole JVM instead of
services or components. We transform the resource
perspective to service-oriented component level in the
OSGi framework.

The most related work to ours was conducted by
Miettinen et al., which created a unique ThreadGroup
object for every bundle deployed to OSGi [9]. The task
executed by one thread in the original software is
executed by different threads belonging to different
ThreadGroups sequentially. However, this method
modifies the thread schedule model. Moreover, complex
thread scheduling mechanism, frequent thread switching
operations and maintenance of a large number of threads
bring significant overhead. Therefore, this OSGi-based
monitoring method is only suitable for off-line simulation
test, but not applicable in the real deployment
environment.

7.2 Anomaly detection

Commercial monitoring tools are widely used to detect
anomalies in practice, e.g., IBM Tivoli, HP OpenView.
System operators manually set rules to collect monitoring
data and trigger alerts with these tools. When the metric
exceeds its defined threshold, some alerts are generated
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automatically. However, it is difficult to set suitable
thresholds for so many metrics in complex
component-based systems. Signature based methods
define the signatures of known faults, and detect
anomalies by matching a specific set of rules. Chen et al.
stored historical failures and retrieved similar instances in
the occurrence of failure [23]. The failure characteristics
were described as an invariant network. Ghanbari et al.
used Bayesian networks to learn fault symptoms from
labeled data [24]. These methods are effective when the
signatures of faults are well defined. However, it is
difficult to recognize unknown faults.

Many studies model the system behaviors including
execution paths and component interactions. Chen et al.
used a probabilistic context-free grammar to represent the
execution paths, in which grammar symbols were
components used in servicing requests, and grammar
rules corresponded to transitions assigned probabilities
between components. The paths which failed to be parsed
by grammar were regarded as anomalies [25]. Barham et
al. used clustering to group paths, and the ones which did
not fit the built clusters were anomalous [19]. Chen et al.
employed statistics to periodically analyze interaction
between one component and the others usingx2-test [26].
These methods are capable of detecting application-level
faults. However, they cannot detect the anomalies caused
by component resource utilization.

Metric correlation based methods characterize the
hidden invariant relationships among system metrics, and
the anomalies are detected when the relationships are
broken. Jiang et al. used autoregressive linear regression
with exogenous input (ARX) models to capture the metric
correlations [17], and discussed two algorithms to speed
up the discovery of metric correlations [27]. Munawar et
al. discussed many linear regression methods to discover
metric correlations [28]. Guo et al. investigated Gaussian
Mixture Models (GMM) to model the nonlinear
correlations between metrics [18]. While the methods are
easy to be extended to many applications without domain
specific knowledge, it is difficult to model various
correlations between so many metrics in complex
systems, and the metric correlation changes as workload
pattern evolves [29]. Furthermore, these methods take the
whole application as target, so it is not applicable for
locating specific anomalous components in the
component-based applications.

Some studies pay attention to performance anomaly
detection. Cherkasova et al. proposed a regression-based
model to reflect application resource consumption, and
introduced an application performance signature to model
the run-time application behavior. This work concentrates
on CPU utilization regardless of other metrics [30].
Cohen et al. proposed TANs to identify which
system-level metrics were correlated with high-level
performance SLO (Service Level Object) violations [31].
The work aims at finding critical metrics which have an
important impact on performance instead of tracking
system status to detect anomalies. Gama et al. presented a

self-healing sandbox for the execution of third party
components in OSGi. In the sandbox, no faults are
propagated to the trusted parts of the application [32]. The
protocol between the trusted platform and the sandbox
platform brings considerable performance overhead, and
the correct functioning is based on a set of assumptions
which may not apply to some real applications.

8 Conclusion

The OSGi framework provides support for the
management of service-oriented applications. It is
important for improving the reliability of OSGi-based
applications to detect anomalies in the granularity of the
service-oriented component. We propose a tracing-thread
method for monitoring service-oriented components in
OSGi-based applications. Our method, neither modifying
software nor introducing significant overheads, is suitable
for monitoring online. According to the monitored data,
we further employ control charts to detect anomalous
components. This method does not require prior
knowledge and can detect the anomalous trend of
component resource utilization. A prototype tool is
designed and implemented in a real application server.
The experimental results demonstrate our approach can
monitor service resource utilization in high accuracy
without significant overhead, and detect the anomalous
services effectively.
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