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Abstract: Tree-like hierarchical structure is one of the key features in many realcomplex systems. To investigate its properties, a
deterministic tree-like hierarchical network model is proposed. Next, thestatic properties of the tree-like hierarchical networks are
discussed. The simulation and theoretical results prove that the artificial tree-like networks conformably possess small-world and scale-
free properties well. Furthermore, the dynamic cascading failures in thetree-like hierarchical networks are investigated. A weighted
tree-like cascading failure model is proposed, and the impacts of topological structure on the network robustness are investigated by a
set of illustrative simulations.
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1 Introduction

Tree-like hierarchical structure is one of the key features
in many real complex systems. It is well known in
computer science of the algorithms and compilers [1,2],
and has been one of the hot topics in network science [3,
4]. Most of these hierarchical models are constructed
based on stochastic and computer simulations, i.e., new
nodes connect using a certain rule to the nodes already
present in the system. However, the randomness in
stochastic models makes it confusing to gain a visual
understanding of the topology of the network [5]. It
would therefore be of interest to construct models that
lead to tree-like networks in a deterministic fashion. Here
we present such a simple model, generating a
deterministic tree-like hierarchical network.

Small-word and scale-free properties are two common
features in many real complex networks. We hence
investigate the small-world and scale-free properties of
the proposed tree-like hierarchical networks. The
simulation and theoretical analysis prove that our
proposed tree-like hierarchical networks conformably
possess the small-world and scale-free properties well.

Network robustness against cascading failures is one
of the most central topics in network safety [6]. Evidence
has demonstrated that in many complex networks, even
though initial failures emerge very locally, the entire
network can be greatly affected, even resulting in the

collapse of the whole system. Hence we investigate the
robustness of the tree-like hierarchical networks against
cascading failures. A weighted tree-like cascading
failures model is first proposed, and then the impacts of
the tree-like hierarchical structure function on the
networks robustness are discussed.

The rest of this paper is organized as follows: in
Section 2, we introduce the tree-like hierarchical network
model and discuss its fundamental parameters. In Section
3, we verify the small-world and scale-free properties of
the artificial tree-like hierarchical networks. The tree-like
cascading failures model and the networks’ robustness
against cascading failure are respectively discussed in
Section 4 and 5. Finally, some concluding remarks of
Section 6 end the paper.

2 Tree-like hierarchical network model

In our tree-like hierarchical network model, we
emphasize two mechanisms: the phenomenon of “branch”
and “level-skipping” conception, which are ubiquitous in
tree-like hierarchical structures [7]. For example, in one
regular military corps organization, the “branch”
phenomenon could be stated as follows: one corps
contains several divisions, one division contains several
regiments, one regiment contains several battalions, and
one battalion contains several companies or similar
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subunits. In such a tree-like hierarchical organization, the
regular leader ship levels from the top to the lowest ones
may be: corps commander, division commanders,
regiment commanders, battalion commanders, and
company commanders. However, the corps commander
could command his regiments directly by skipping the
level of division; the division commanders could
command their battalions directly by skipping the ‘level’
of regiment. In fact, such “level-skipping” phenomena are
ubiquitous and easily accomplished, as they need to skip
only one or few levels. On the other hand, it is relatively
difficult to require the corps commander to directly
command all his companies, as this need to skip four
levels. In order to distinguish the capacity of
“level-skipping”, we introduce the conception of
“Skipping-ability”, which which will be defined in the
following section.

In one university, the leader ship levels from the top to
the lowest ones may be: president, department heads,
staffs, and students [7]. Usually, the president may
contact students through the levels of heads and staffs.
However, he could also meet the students directly by
skipping the levels when necessary. Similar behaviors
may also exist in companies, factories, communication
networks, power supply networks, actor collaboration
networks, etc. Our tree-like hierarchical network model is
primarily motivated by the above examples.

2.1 Construction of the model

In order to facilitate the description of tree-like
hierarchical networks in this paper, we first introduce
three definitions:

Branch (B): the maximum direct branches of each
node in the tree-like hierarchical network.

Hierarchy (H): the total levels of the tree-like
hierarchical network.

Skipping-ability (S): the maximum skipping levels of
a tree-like hierarchical network.

A tree-like hierarchical network with branchB equals
m, hierarchyH equalsn and skipping-abilitySequalss is
henceforth referred to simply as “m-n-s” tree-like network.

Now we describe the construction procedure of the “m-
n-s” tree-like network. An illustrative example of “2-4-3”
tree-like network is depicted in Figure 1. The procedure
can be stated as follows.

Step 0: Initialize the network parametersB= m,H = n
andS= s. In Figure 1, we initializeB= 2,H = 4 andS= 3.

Step 1: We start from a single node, and let it to be the
main root. The main root constitutes the first hierarchy. In
Figure 1, the node 1 is generated being as the main root.

Step 2: Generatemnew nodes to constitute the second
hierarchy of the network, and connect each of them to the
main root. In Figure 1, node 2 and 3 are generated, and are
connected to the main root node 1 respectively.

Step 3: Generatem subordinate nodes for each of the
second hierarchy node, and connect them to their

Fig. 1: Construction of the 2-4-3 tree-like network

maximums hierarchy ancestral nodes. In Figure 1, nodes
4 and 5 are generated for node 2, and are connected to
their common 1-hierarchy ancestral node 2 and
2-hierarchical ancestral node 1 respectively. Analogously,
nodes 6 and 7 are generated for node 3, and are connected
to their common 1-hierarchy ancestral node 3 and
2-hierarchical ancestral node 1 respectively.

These rules can be easily generalized. In Step h,mn−1

new nodes are added into the model, and each of them is
connected to its maximum s hierarchy ancestral nodes. The
operations are as follows:

Step h: Generatem subordinate nodes for each of the
above hierarchy node, and connect them to their maximum
c hierarchy ancestral nodes.

Finally, after s steps, an “m-n-s” tree-like network is
generated.

It should be aware that one kind of tree-like networks
with the skipping-ability “S= H” are ubiquitous in our
society. To date, a large amount of attention has been paid
to such networks. Chen et al. [7] propose a simple pseudo
tree-like network model, deterministic complex network
(DCN) model. In fact, the DCN model can be seen as a
special case of our ”B-H-S” tree-like network with B=2
and S=H. The authors have proved that the DCN model
possesses the small-world and scale-free properties well.
Therefore, it is of interest to verify the small-world and
scale-free properties of our general ”m-n-n” tree-like
networks. To facilitate the following description, the kind
of ”m-n-n” tree-like network will be simply described as
“m-n” tree-like network.

2.2 The fundamental parameters

In this section, we discuss the fundamental parameters of
them-n tree-like network.
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Fig. 2: Node sizes of them-n tree-like networks

N(m,n) = 1+m+m2+ · · ·+mn−1 =
1−mn

1−m
(1)

E(m,n) = 1× (m+m2+ · · ·+mn−1)+m×

(m+m2+ · · ·+mn−2)+mn−2×m

= m+2m2+ · · ·+(n−1)mn−1 =
n−1

∑
i=0

i ·mi (2)

△N(m,n) = N(m,n)−N(m,n−1) = mn−1 (3)

△E(m,n) = E(m,n)−E(m,n−1)

= (n−1) ·mn−1 = (n−1) ·△N(m,n) (4)

The average degree< k> can be defined as

< k>=
1

N(m,n)

N(m,n)

∑
j=1

k j (5)

wherek j denotes the degree of nodej.
The average degree< k > represents the average

number of links per node, so in an equivalent way, it can
be expressed as

< k>=
2E(m,n)
N(m,n)

= 2[(1−
1

N(m.n)
)+(1−

1+m
N(m,n)

)+ · · ·+(1−
1+m+mn−2

N(m,n)
)]< 2(n−1) (6)

Equations (1, 6) indicate that N(m,n) increases
exponentially withmn−1 while < k > increases linearly
with a number smaller than 2(n− 1). Consequently, the
average degree< k > remains relatively small compared
to N(m,n), even if the size of the network becomes
extremely large. Figures 2 and 3 give a dramatic intuitive
expression of this phenomenon.

Fig. 3: Average degrees of them-n tree-like networks

In our model, it is obviously that the degrees of the
same hierarchy nodes are identical. To calculate the node
degree, we firstly introduce the following definitions.

Neighbor: nodei is a neighbor of nodej if there is an
edge between nodei and j.

Upper-neighbor: neighbor nodei of node j is called
an upper-neighbor, if it belongs to an upper hierarchy than
that of nodej.

Lower-neighbor: neighbor nodei of node j is called a
lower-neighbor, if it belongs to a lower hierarchy than that
of node j.

The question of calculating the degreek j of node j
now transforms into calculating the number of the
upper-neighbors and lower-neighbors of nodej. The
number of the upper-neighbors kupper

j and

lower-neighborsklower
j of node j can be obtained by the

following equations (7, 8) respectively.

kupper
j = i −1 (7)

klower
j =

m(1−mn−i)

1−m
(8)

The degreek j of node j now can be obtained using
equation (9).

k j = kupper
j +klower

j = i −1+
m(1−mn−i)

1−m
(9)

3 Static properties

It has been proposed that many realistic networks share
two common properties: small-world and scale-free
properties. These two features of our proposedm-n
tree-like networks are verified in this section.

3.1 The small-world effect

A small-world network has a high clustering coefficient
and a short average path length. Thanks to the
deterministic nature of our model, we can solve it exactly.
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3.1.1 Clustering coefficient

Clustering, also known as transitivity is a typical property
of acquaintance networks, where two individuals with a
common friend are likely to know each other. Here we
adopt the clustering coefficient definition of the graph
clustering coefficient C, a measure introduced by Watts
and Strogatz [8], defined as equations (10, 11).

c j =
2ej

k j(k j −1)
(10)

C=< c j >=
1

N(m,n)

N(m,n)

∑
j=1

c j (11)

wherec j denotes the clustering coefficient of the nodej,
ej denotes the actual links among the neighbors of nodej,
k j denotes the degree of nodej, and hence
(k j(k j − 1))/(2) denotes the maximum possible links
among the neighbors of nodej. The clustering coefficient
C of the whole network is then given by the average of
< c j > over all nodes in equation (11).

To calculate the network clustering coefficient, we
start from the node clustering coefficient. For a nodej in
hierarchyi, the actual linksej among its neighbors can be
calculated as the following three situations:

Firstly, calculate the links ej1 among its
upper-neighbors. Using equation (7), we obtain

ej1 =
(i −1)(i −2)

2
(12)

Secondly, calculate the linksej2 among its
lower-neighbors. In this case,

ej2 = m·E(m,n− i) = m
n−i−1

∑
i=0

i ·mi (13)

Lastly, calculate the links ej3 among its
upper-neighbors and lower-neighbors. For every node of
them−n tree-like network, each of its upper-neighbors is
directly linked to all its lower-neighbors. Using equations
(7, 8), we obtain

ej3 = kupper
j ·klower

j =
m· (i −1) · (1−mn−i)

1−m
(14)

Using equations (12, 13,14), we obtain

ej = ej1+ej2+ej3 =
(i −1)(i −2)

2
+

m·
n−i−1

∑
i=0

i ·mi +
m· (i −1) · (1−mn−i)

(1−m)
(15)

Substituting equations (9,15) into equation(10), we
can easily calculate the node clustering coefficient. As the
node clustering coefficients of the same hierarchical are

Fig. 4: Clustering coefficients ofm-n tree-like networks

equal, we can obtain the network clustering coefficientC
as follows.

C=
1

N(m,n)

N(m,n)

∑
j

c j =
1

N(m,n)

n

∑
i=1

Ci
j ·m

i−1 (16)

whereCi
j denotes the clustering coefficient of the nodes in

hierarchyi.
Equation (16) accurately depicts the relationship

between the clustering coefficientC and the model
parametersm and n in m− n tree-like hierarchical
network. Figure 4 shows the curves of the clustering
coefficientC increasing with the node sizeN(m,n). It can
be found that the clustering coefficientC approaches an
asymptotic value asN(m,n) tends to infinity.

3.1.2 Average path length

In addition to a relatively high clustering coefficient,
small-world networks have a short average path length.
We can also exactly calculate the average path lengthL
for a given m-n tree-like network. For a nodej of
hierarchy i , its total path lengthL j with the other
N(m,n)−1 nodes can be calculated as the following two
parts:

The first part is the total path lengthL j1 with its
neighbors.

L j1 = i −1+
m(1−mn−i)

1−m
(17)

The second part is the total path lengthL j2 with the
nodes besides its neighbors. The minimum links between
these nodes and nodej is 2, because they can reach node
j through the main root node.

L j2 = 2× (
(1−mn)−m(1−mn−i)

1−m
− i) (18)

Therefore, the total path lengthL j between nodej and
the other nodes can be stated as follows

L j = L j1+L j2 =
2(1−mn)−m(1−mn−i)

(1−m)
− i −1 (19)
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Fig. 5: Average path length ofm-n tree-like networks

Note that the node number of hierarchyi is mn−i , and
the number of node pairs isC2

N(m,n). Hence, we can
calculate the average path as follows

L =
1
2
·

1

C2
N(m,n)

·
n

∑
i=1

L j ·m
i−1 (20)

The curves of the average path lengthL increasing
with the network sizeN(m,n) are depicted in Figure 5.
We can find that the average path lengthL approaches an
asymptotic value 2 asN(m,n) tends to infinity.

3.2 The scale-free property

The scale-free network has a highly inhomogeneous
degree distribution, i.e., it simultaneously has a few nodes
connecting many other nodes and a large number of
poorly connected ones [9]. In our m-n tree-like network,
the probability of a random selected nodej belonging to
hierarchyi can be calculated as follows.

P(ki) =
mi−1

N(m,n)
=

mi−1 · (1−m)

1−mn (21)

Substituting equation (9) into (21), we can obtain the
discrete degree distribution as the following expressions.

P(i −1+
m(1−mn−i)

(1−m)
) =

mi−1 · (1−m)

1−mn (22)

P(k) =
mi · (1−mn−i)

k(1−mn)
− i +1 (23)

The degree distributions of two illustrativem-n tree-
like network examples are shown in Figure 6 and Figure
7. It can be seen that them-n tree-like network has a fat-
tailed degree distribution as many other acquainted scale-
free networks.

4 Tree-like cascading failures model

To investigate the dynamic of cascading failures inm-n-s
tree-like networks, we first propose a weighted cascading
failures model in this section.

Fig. 6: Degree distribution ofm-16 tree-like networks withm=
6,8,10,12

Fig. 7: Degree distribution of 4-n tree-like networks withn =
6,8,10,12

4.1 Initial load definition

The node load has been studied in the past as a measure
of the node centrality and influence. It is often defined to
be the function of the node degree. However, in ourm-n-s
tree-like networks, the node hierarchy also has important
effect on node load. Therefore, we define the initial node
load L j as the coupling function of its degreed j and
hierarchyh j as follows:

L j = d j · (n−h j +1)α (24)

where h j denotes the hierarchy of nodej, n is the
hierarchies of the whole network,α ≥ 0 denotes the
hierarchy weight, and it is a variable parameter. It is
obvious that the biggerα is, the bigger weight the
hierarchy is. Hereafter, we callα as hierarchy weight
parameter.

4.2 Node capacity

Following previous models, each node has a capacity
threshold, which means the maximum load that it can
handle. Since the node capacity in man-made networks is
severely limited by cost, it is natural to assume that the
capacityCj of node j is proportional to its initial load

Cj = (1+β ) ·L j (25)

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2568 Y. Zhang et al: The Properties of Tree-Like Hierarchical...

whereL j denotes the initial load of nodej, β > 0 is a
tunable parameter. Hereafter, we callβ as node capacity
parameter.

4.3 Load redistribution

After one node failures initially, its previous load or
function must be distributed to its reactive neighbor nodes
to maintain the network’s function. If these neighbor
nodes cannot afford the additional load, they will become
new failure nodes, and cause the next load redistribution
step. Now, we need to answer the question of how to
distribute the previous load of failure nodes to their
reactive neighbor nodes. In our model, we adopt the
simple rule of “able people should do more work”. That
is, the previous load of the failure nodes is assigned to
their active neighbor nodes according to the neighbors’
capacities.

The load redistribution rule can be stated as follows

Π j = ∑
i∈Φ

Li × (
Cj

∑i∈Γ Cj
) (26)

where Π j denotes the additional load assigned to the
reactive neighbor nodej, Φ denotes the set of all failure
nodes,Li denotes the previous load of failure nodei, Γ
denotes the set of all reactive neighbor nodes,Cj denotes
the capacity of reactive neighbor nodej.

4.4 Robustness measure

It can be seen that the failure of one node may cause the
whole network collapse due to the cascading failure. On
the other hand, it may have little influence on the whole
network. To distinguish this phenomenon, we introduce
the conception of node cascading failure size.

Node cascading failure size (CFi): the network
cascading failure size caused by the initial failure of node
i, which can be calculated as follows.

CFi =
(Fi −1)
N−1

(27)

where Fi denotes the number of all failure nodes,N
denotes the node number of the whole network.

Based on the above conception ofCFi , we furthermore
introduce the conception of network cascading failure size.

Network cascading failure size (CF): the average
cascading failure size caused by the initial failure of each
node, which can be calculated as follows.

CF = ∑
i∈N

CFi

N(N−1)
(28)

whereCFi denotes the node cascading failure size of node
i , N denotes the set of network nodes.

It is obvious that the network cascading failure size
CF(0 ≤ CF ≤ 1) reflects the average remaining function
of the whole network due to the cascading failures.
CF = 0 denotes the normal function of the network, and
CF = 1 denotes the absolutely collapse.

Noteworthy is the fact that, as theβ increases, a phase
transition could occur at the critical thresholdβc. When
β > βc , no cascading failure occurs and the network
maintains its normal function, i.e.,CF = 0 ; and when
β < βc, cascading failure emerges, i.e.,CF > 0 . In other
words, the critical thresholdβc is the least protection
strength to avoid cascading failure. Here, we useβc to
evaluate the network robustness against cascading failure.
Apparently, the smaller theβc, the more robust the
network.

5 Robustness against cascading failures

Up to now, it has been shown again and again that the
topological structure of complex network has great
impacts on its dynamics [10,11]. Here, we investigate the
impacts of the tree-like hierarchical structure on dynamics
of cascading failure. We first calculate the robustness
measure by theoretical analysis, and furthermore give an
illustrative simulation.

5.1 Theoretical analysis

To avoid the emergence of cascading failures, the
following condition should be satisfied:

L j +△L j <Cj (29)

whereL j denotes the initial load of the reactive neighbor
node j, △L j denotes the additional load assigned to node
j during the cascading failure procedure,Cj denotes the
capacity of nodej.

Substituting equations (24, 25, 26) into equation (29),
we obtain

1+
di · (n−hi +1)α

∑ j∈Γ d j · (n−h j +1)α < β (30)

wheredi andd j respectively denotes the node degree of
the failure nodei and reactive neighbor nodej, hi andh j
respectively denotes the hierarchy of failure nodei and
reactive neighbor nodej, n is the hierarchies of the whole
network,Γ denotes the set of all reactive neighbor nodes.

Now, we can calculate the node critical thresholdβ i
c as

follows

β i
c = max(1+

di · (n−hi +1)α

∑ j∈Γ d j · (n−h j +1)α ) (31)

Finally, we obtain the network critical threshold

βc = maxj∈N{β j
c} (32)
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Fig. 8: The impact of topology structure on network robustness

Obviously, the nodes in the same hierarchy have the
same degree, the same hierarchy and hence the same
critical threshold. That facilitates the calculation of the
robustness measure by using the equations (31, 32).

5.2 Illustrative simulation

In last section, we discussed the theoretical calculation of
the network robustnessβc. Now we can investigate the
relationship between topology structure and the dynamic
of cascading failures. In our weighted tree-like cascading
failures model, two parameters impact the network
topology: the skipping-abilitys, which determines the
nodes’ degree, and the hierarchy weightα, which
determines the network characteristic of weighted
hierarchy. To investigate their impacts on the network
robustnessβc, a set of illustrative simulations based on
“3-8-s” tree-like networks are proposed in this section.
The formulas that will be derived in the following section
can easily be adapted to deal with any other “m-n-s”
tree-like networks.

The simulation results of the “3-8-s” tree-like
networks are depicted in Figure 8. As can be seen in Fig.
8, the ordinate axisβc denotes the least protection
strength to avoid cascading failure, and the smaller theβc,
the more robust the network. The abscissa axisα denotes
the hierarchy weight, and the bigger theα, the more
hierarchy weighted the network. The seven curves
respectively denote the seven “3-8-s” topology structures
with the skipping-abilitys= 1,2, · · · ,7.

We first investigate the relationship between
skipping-ability and network robustness against cascading
failures. Comparing the seven curves in Figure 8, we can
find that, the skipping-ability has important impacts on
the network robustness. The smallest skipping-ability, i.e.,
s = 1, and the relatively bigger skipping-ability, for
example,s= 6 ands= 7, correspond to the relatively less
robust networks. Oppositely, the compromise
skipping-ability valuess= 3 ands= 4 correspond to the
most robust networks. To analyze the reason, we can find
that the node capacities of the smallest skipping-ability
networks are too small to protect against the cascading

failures; on the other hand, the node initial loads of the
biggest skipping-ability networks are too big, it is easy to
occur cascading failures when one node initially failures.

Next, we analyze the impacts of the hierarchy weight
on the network robustness against cascading failures. As
can be seen in Figure 8, two conclusions are obvious.
Firstly, for the relatively bigger skipping-ability networks,
for example,s = 6 and s = 7, the bigger the hierarchy
weight, the less robust the network. This is obvious,
because the more weighted the network, the more easily
the cascading failures occur caused by the failure of the
top hierarchy nodes. Furthermore, we can obvious
another interesting and counterintuitive result. For the
relatively smaller skipping-ability networks, for example,
s= 1 ands= 2, the relationship curves present the ‘V’
shapes. In other words, there is a best hierarchy weight
value causing the network mostly robust. These
simulation conclusions may help us better understand the
cascading phenomena in the real tree-like hierarchical
networks.

6 Conclusions

To investigate the properties of tree-like hierarchical
structure, we first propose a deterministic tree-like
hierarchical network model. Secondly, the small-world
and scale-free properties of our proposed tree-like
network are discussed. The simulation and theoretical
analysis prove that our proposed tree-like hierarchical
networks conformably possess the small-world and
scale-free properties well.

Furthermore, we investigate the dynamic of cascading
failures on tree-like hierarchical networks. A weighted
tree-like cascading failure model is first proposed, and the
relationship between the tree-like structure function and
the networks robustness is investigated by a set of
illustrative simulations. We find some interesting and
counterintuitive simulation conclusions, which may be
helpful for the further studying of the tree-like networks.
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