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Abstract: Tree-like hierarchical structure is one of the key features in manycaablex systems. To investigate its properties, a
deterministic tree-like hierarchical network model is proposed. Nextsthc properties of the tree-like hierarchical networks are
discussed. The simulation and theoretical results prove that the artifegdilte networks conformably possess small-world and scale-
free properties well. Furthermore, the dynamic cascading failures itrékdike hierarchical networks are investigated. A weighted
tree-like cascading failure model is proposed, and the impacts of tapalagructure on the network robustness are investigated by a
set of illustrative simulations.
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1 Introduction collapse of the whole system. Hence we investigate the
robustness of the tree-like hierarchical networks against

Tree-like hierarchical structure is one of the key fer:lturesc""sc"’ldlng failures. A weighted wree-like cascading

in many real complex systems. It is well known in failures mpdel is_ first p_roposed, and then the impacts of
computer science of the algorithms and compilér2]} ;het?twct)ries_lr”o(t?us?éeezrssic;rleiscslt;suscetzre function on the
and has been one of the hot topics in network scieice [ Th ¢ of thi X " q foll o

4]. Most of these hierarchical models are constructed he rest of this paper IS organized as 1oflows: In
based on stochastic and computer simulations, i.e., newection 2, we introduce the tree-like hierarchical network

nodes connect using a certain rule to the nodes alread ode| and dlf]cuss 'tﬁ fundlgmegtal piaraf\meters. IntSectl?n
present in the system. However, the randomness i Hwet\.fr.'% eslyl?arl—yvor h"’.m Isc?e— :(ee _?;Opte‘;gls 0
stochastic models makes it confusing to gain a visual € artiicial tree-like hierarchical networks. The tr

understanding of the topology of the networ§].[It cascading failures model and the networks’ robustness

would therefore be of interest to construct models thatagainSt cascading failure are respectively discussed in

lead to tree-like networks in a deterministic fashion. HereseCt!On 4 and 5. Finally, some concluding remarks of
Section 6 end the paper.

we present such a simple model, generating a
deterministic tree-like hierarchical network.
Small-word and scale-free properties are two common ) ) )
features in many real complex networks. We hence2 Tree-like hierarchical network model
investigate the small-world and scale-free properties of
the proposed tree-like hierarchical networks. Theln our tree-like hierarchical network model, we
simulation and theoretical analysis prove that ouremphasize two mechanisms: the phenomenon of “branch”
proposed tree-like hierarchical networks conformablyand “level-skipping” conception, which are ubiquitous in
possess the small-world and scale-free properties well. tree-like hierarchical structured][ For example, in one
Network robustness against cascading failures is oneegular military corps organization, the “branch”
of the most central topics in network safe@].[Evidence  phenomenon could be stated as follows: one corps
has demonstrated that in many complex networks, evemrontains several divisions, one division contains several
though initial failures emerge very locally, the entire regiments, one regiment contains several battalions, and
network can be greatly affected, even resulting in theone battalion contains several companies or similar
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subunits. In such a tree-like hierarchical organizatibme, t Step Os B=2, H-4, 53
regular leader ship levels from the top to the lowest ones
may be: corps commander, division commanders,
regiment commanders, battalion commanders, and
company commanders. However, the corps commander
could command his regiments directly by skipping the
level of division; the division commanders could
command their battalions directly by skipping the ‘level’
of regiment. In fact, such “level-skipping” phenomena are
ubiquitous and easily accomplished, as they need to skip
only one or few levels. On the other hand, it is relatively
difficult to require the corps commander to directly
command all his companies, as this need to skip four
levels. In order to distinguish the capacity of - 1 2
“level-skipping”, we introduce the conception of ——— l-hierarchy link — —— 2-hicravchy link

Step 1: LR

“Skipping-ability”, which which will be defined in the s Fhierarchy link
following section.
In one university, the leader ship levels from the top to Fig. 1: Construction of the 2-4-3 tree-like network

the lowest ones may be: president, department heads,
staffs, and students7]. Usually, the president may
contact students through the levels of heads and staffs.
However, he could also meet the students directly bymaximums hierarchy ancestral nodes. In Figure 1, nodes
skipping the levels when necessary. Similar behaviors# and 5 are generated for node 2, and are connected to
may also exist in companies, factories, communicationtheir common 1-hierarchy ancestral node 2 and
networks, power supply networks, actor collaboration2-hierarchical ancestral node 1 respectively. Analogousl
networks, etc. Our tree-like hierarchical network model isnodes 6 and 7 are generated for node 3, and are connected
primarily motivated by the above examples. to their common 1-hierarchy ancestral node 3 and
2-hierarchical ancestral node 1 respectively.
These rules can be easily generalized. In Step™h}
2.1 Construction of the model new nodes are added into the model, and each of them is
connected to its maximum s hierarchy ancestral nodes. The
In order to facilitate the description of tree-like operations are as follows:
hierarchical networks in this paper, we first introduce  Step h: Generats subordinate nodes for each of the

three definitions: above hierarchy node, and connect them to their maximum
Branch (B): the maximum direct branches of each c hierarchy ancestral nodes.

node in the tree-like hierarchical network. Finally, after s steps, amn-s’ tree-like network is
Hierarchy (H): the total levels of the tree-like generated.

hierarchical network. It should be aware that one kind of tree-like networks
Skipping-ability (S): the maximum skipping levels of  with the skipping-ability ‘S= H” are ubiquitous in our

a tree-like hierarchical network. society. To date, a large amount of attention has been paid

A tree-like hierarchical network with brandequals to such networks. Chen et a¥][propose a simple pseudo
m, hierarchyH equalsn and skipping-abilitySequalssis  tree-like network model, deterministic complex network
henceforth referred to simply as¥n-s’ tree-like network.  (DCN) model. In fact, the DCN model can be seen as a
Now we describe the construction procedure of ttine “  special case of ourB-H-S' tree-like network with B=2
n-s’ tree-like network. An illustrative example of “2-4-3"  and S=H. The authors have proved that the DCN model
tree-like network is depicted in Figure 1. The procedureppossesses the small-world and scale-free properties well.
can be stated as follows. Therefore, it is of interest to verify the small-world and
Step 0: Initialize the network paramet@s-mH =n  scale-free properties of our generanh-n" tree-like
andS=s. In Figure 1, we initializ8=2,H =4 andS=3.  networks. To facilitate the following description, the &in
Step 1: We start from a single node, and let it to be theof "m-n-n" tree-like network will be simply described as
main root. The main root constitutes the first hierarchy. In“m-n” tree-like network.
Figure 1, the node 1 is generated being as the main root.
Step 2: Generate new nodes to constitute the second
hierarchy of the network, and connect each of them to the
main root. In Figure 1, node 2 and 3 are generated, and arg-2 The fundamental parameters
connected to the main root node 1 respectively.
Step 3: Generatm subordinate nodes for each of the In this section, we discuss the fundamental parameters of
second hierarchy node, and connect them to theithem-ntree-like network.
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Fig. 2: Node sizes of thern tree-like networks Fig. 3: Average degrees of the-n tree-like networks

In our model, it is obviously that the degrees of the
same hierarchy nodes are identical. To calculate the node

N(mn)=1+m+mP+...+m1= i-nf (1)  degree, we firstly introduce the following definitions.
1-m Neighbor: nodei is a neighbor of nod¢ if there is an
edge between nodeand j.
. Upper-neighbor: neighbor node of nodej is called
E(m.n) = 1x (M4-nP+---4m" 1) +mx an upper-neighbor, if it belongs to an upper hierarchy than
(M+mP 4 +m2) +m" 2 xm that of node;.
no1 L ower-neighbor: neighbor nodé of nodej is called a
=m+2mP 4+ (n—1)m1= Zoi .m 2) lower-neighbor, if it belongs to a lower hierarchy than that
is of nodej.

The question of calculating the degrke of node j

now transforms into calculating the number of the
AN(mMn) = N(m, n)—N(m,n—l):m”*1 3 upper-neighbors and lower-neighbors of nogle The
number of the upper-neighbors k""" and

Iower—neighborsk'j"""er of node j can be obtained by the
AE(mn) = E(mn) — E(mn—1) following equations 7, 8) respectively.
=((M—-1)-m"1=(n-1)- AN(mn) (4) KupPer _ i _q 7)
i

The average degreek > can be defined as .
kl_ower m(l — mn_l)
i

L Nmn T im ®
<k>= N(m,n) Zl Ki (5) The degreek; of node j now can be obtained using
= equation 9).
wherek; denotes the degree of nogle
The average degree k > represents the average _ m(1— mhi
number of links per node, so in an equivalent way, it can Kj = K{PPEH Ve = i — 1+ ( - ) ©)
be expressed as
2E(m,n) 1 3 Static properties
<k>= T = 2A-§ )+ (1-
(m,n) (m.n) It has been proposed that many realistic networks share
1+m 14+ m+m2 two common properties: small-world and scale-free
N(m, n))+"'+(1_ N(m,n) )I<2(n-1) 6) properties. These two features of our proposech

tree-like networks are verified in this section.

Equations {, 6) indicate that N(m,n) increases
exponentially withm"™! while < k > increases linearly
with a number smaller than(2 — 1). Consequently, the 3.1 The small-world effect
average degree k > remains relatively small compared
to N(m,n), even if the size of the network becomes A small-world network has a high clustering coefficient
extremely large. Figures 2 and 3 give a dramatic intuitiveand a short average path length. Thanks to the
expression of this phenomenon. deterministic nature of our model, we can solve it exactly.
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3.1.1 Clustering coefficient

Clustering, also known as transitivity is a typical progert

of acquaintance networks, where two individuals with a
common friend are likely to know each other. Here we
adopt the clustering coefficient definition of the graph

clustering coefficient C, a measure introduced by Watts

and Strogatzg], defined as equation4(, 11).

2ej
o - (10)
CICEEY
1 N(m,n)

wherec; denotes the clustering coefficient of the ngde
gj denotes the actual links among the neighbors of rjpde
ki denotes the degree of nodg, and hence
(kj(kj — 1))/(2) denotes the maximum possible links
among the neighbors of nogeThe clustering coefficient
C of the whole network is then given by the average of
< ¢j > over all nodes in equatioriy).

To calculate the network clustering coefficient, we
start from the node clustering coefficient. For a ngde
hierarchyi, the actual linkse; among its neighbors can be
calculated as the following three situations:

Firstly, calculate the links ej1 among its
upper-neighbors. Using equatior) (we obtain
i—1)(i—2
R a2)
Secondly, calculate the linksej among its
lower-neighbors. In this case,
n—i—1 )
ez=m-E(mn—i)=m % i-m (13)
i=
Lastly, calculate the links g3 among its
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Fig. 4: Clustering coefficients aft+n tree-like networks

equal, we can obtain the network clustering coefficient
as follows.

(m,n)

Z c

J

1
N(m,n)

o 1
I N(mvn)i

ic} mt  (16)

whereC! denotes the clustering coefficient of the nodes in
hierarchyi.

Equation (6) accurately depicts the relationship
between the clustering coefficie@ and the model
parametersm and n in m— n tree-like hierarchical
network. Figure 4 shows the curves of the clustering
coefficientC increasing with the node si2¢(m,n). It can
be found that the clustering coefficieGtapproaches an
asymptotic value all(m,n) tends to infinity.

3.1.2 Average path length

In addition to a relatively high clustering coefficient,
small-world networks have a short average path length.
We can also exactly calculate the average path lehgth
for a given mn tree-like network. For a nodg of
hierarchy i , its total path lengthL; with the other
N(m,n) — 1 nodes can be calculated as the following two

upper-neighbors and lower-neighbors. For every node ofarts:

them— n tree-like network, each of its upper-neighbors is
directly linked to all its lower-neighbors. Using equaton
(7, 8), we obtain

m-(i—1)-(1—m)

ejz = KiPPE. KOVe = - (14)
Using equationsl(2, 13,14), we obtain
€ =ej1+e2+ez3= 70 _l)z(i —2) +
m-nii)li-nf#m'(i_(ll)'_(;)_mni) (15)

Substituting equations9(15) into equation{Q), we

can easily calculate the node clustering coefficient. As the
node clustering coefficients of the same hierarchical are

The first part is the total path lengthj; with its
neighbors. _
m(1—m"")

1-m

The second part is the total path lengtf» with the
nodes besides its neighbors. The minimum links between
these nodes and nogss 2, because they can reach node
j through the main root node.

Ljp=i—1+ (17)

(1—m") —m(1—m"1)
1-m

Liz=2x ( -i)

Therefore, the total path length between nodg and

the other nodes can be stated as follows

2(1—m") —m(1—m" 1)
(1—m)

(18)

Li=Lji+Lj2= —i—1 (19
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Fig. 5: Average path length afin tree-like networks

Note that the node number of hierardhig m"' , and
the number of node pairs i§,%,<mn). Hence, we can

calculate the average path as follows

1 1 n i
L: _—— . LJ rnlil
2 Cl%l(m,n) i;

The curves of the average path lendthincreasing
with the network sizeN(m,n) are depicted in Figure 5.
We can find that the average path lengthpproaches an
asymptotic value 2 ad(m,n) tends to infinity.

(20)

3.2 The scale-free property

P{K)

Fig. 6: Degree distribution ofn-16 tree-like networks withn =
6,8,10,12
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Fig. 7: Degree distribution of 4 tree-like networks withn =
6,8,10,12

The scale-free network has a highly inhomogeneous
degree distribution, i.e., it simultaneously has a few 1sode 4.1 Initial load definition

connecting many other nodes and a large number
poorly connected one®J In our m-n tree-like network,
the probability of a random selected nogéelonging to
hierarchyi can be calculated as follows.

m?®t ml1-m

P(K) = N(mn) ~ 1-mn

Substituting equation9j into (21), we can obtain the

(21)

discrete degree distribution as the following expressions

m(1—m") _ m-1.(1-m)

-1+ 2 — 22)
P(k)zW—Hl 23)

The degree distributions of two illustrative-n tree-

of

The node load has been studied in the past as a measure
of the node centrality and influence. It is often defined to
be the function of the node degree. However, in oen-s
tree-like networks, the node hierarchy also has important
effect on node load. Therefore, we define the initial node
load L; as the coupling function of its degresy and
hierarchyh; as follows:

Lj:dj~(n—hj+1)“ (24)
where h; denotes the hierarchy of nodg n is the
hierarchies of the whole networlg > 0 denotes the
hierarchy weight, and it is a variable parameter. It is
obvious that the biggerr is, the bigger weight the
hierarchy is. Hereafter, we calt as hierarchy weight
parameter.

like network examples are shown in Figure 6 and Figure

7. It can be seen that the-n tree-like network has a fat-

tailed degree distribution as many other acquainted scale4.2 Node capacity

free networks.

4 Tree-like cascading failures model

To investigate the dynamic of cascading failuresrim-s

tree-like networks, we first propose a weighted cascading

failures model in this section.

Following previous models, each node has a capacity
threshold, which means the maximum load that it can

handle. Since the node capacity in man-made networks is
severely limited by cost, it is natural to assume that the

capacityC; of nodej is proportional to its initial load

Ci=1+B) L (25)
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wherelL; denotes the initial load of nodg B > 0 is a It is obvious that the network cascading failure size
tunable parameter. Hereafter, we gallas node capacity CF(0 < CF < 1) reflects the average remaining function
parameter. of the whole network due to the cascading failures.

CF = 0 denotes the normal function of the network, and
CF = 1 denotes the absolutely collapse.
4.3 Load redistribution Noteworthy is the fact that, as tifeincreases, a phase
transition could occur at the critical threshgbd. When
After one node failures initially, its previous load or B > PBc , no cascading failure occurs and the network
function must be distributed to its reactive neighbor nodegnaintains its normal function, i.eCF = 0 ; and when
to maintain the network's function. If these neighbor B < Pe, cascading failure emerges, i.€F > 0 . In other
nodes cannot afford the additional load, they will becomeWords, the critical threshold. is the least protection
new failure nodes, and cause the next load redistributiorstrength to avoid cascading failure. Here, we {#seto
step. Now, we need to answer the question of how to€valuate the network robustness against cascading failure
distribute the previous load of failure nodes to their APparently, the smaller thef, the more robust the
reactive neighbor nodes. In our model, we adopt thehetwork.
simple rule of “able people should do more work”. That
is, the previous load of the failure nodes is assigned to ) ] .
their active neighbor nodes according to the neighbors®> Robustness against cascading failures
capacities.
The load redistribution rule can be stated as follows Up to now, it has been shown again and again that the
topological structure of complex network has great
M= Lix( Cj ) (26) impacts on its dynamicsl), 11]. Here, we investigate the
i£ Yier Cj impacts of the tree-like hierarchical structure on dynamic
of cascading failure. We first calculate the robustness
where [1; denotes the additional load assigned to themeasure by theoretical analysis, and furthermore give an
reactive neighbor nodg @ denotes the set of all failure illustrative simulation.
nodes,L; denotes the previous load of failure nogdd™
denotes the set of all reactive neighbor no@gsdenotes

the capacity of reactive neighbor nofle 5.1 Theoretical analysis

To avoid the emergence of cascading failures, the
4.4 Robustness measure following condition should be satisfied:
It can be seen that the failure of one node may cause the Lj+ALj <Cj (29)

whole network c_ollapse due to th? cascading failure. OnwhereLj denotes the initial load of the reactive neighbor
the other hand, it may have little influence on the whole

network. To distinguish this phenomenon, we introducenOdej’ AL; denotes the additional load assigned to node
e 9 pr . N j during the cascading failure procedu, denotes the
the conception of node cascading failure size.

. . . capacity of nodg.
Nod_e casc admg failure size (CE): _the . network Substituting equation4, 25, 26) into equation 29),
cascading failure size caused by the initial failure of node .
. . we obtain
i, which can be calculated as follows.

(F-1) e

CR="N1 (27) Yjer dj-(n—hj+ 1)

<B (30)

whered; andd; respectively denotes the node degree of
the failure node and reactive neighbor node h; andh;
respectively denotes the hierarchy of failure nodend
reactive neighbor nodg n is the hierarchies of the whole
network,I” denotes the set of all reactive neighbor nodes.
Now, we can calculate the node critical threshBlds

where F denotes the number of all failure nodds,
denotes the node number of the whole network.

Based on the above conceptionCH, we furthermore
introduce the conception of network cascading failure.size
Network cascading failure size (CF): the average
cascading failure size caused by the initial failure of eachfoII

node, which can be calculated as follows. ows
- di-(n—hj+1)°
CR Be = max1+ ) (1)
_ ier di-(n—=h;j +1)@
CF=3 NN-T) (28) Sierdi-(n—hj+1)
) ) ) Finally, we obtain the network critical threshold

whereCF, denotes the node cascading failure size of node ,
i , N denotes the set of network nodes. Be = maxen{BL} (32)
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failures; on the other hand, the node initial loads of the
biggest skipping-ability networks are too big, it is easy to
occur cascading failures when one node initially failures.
Next, we analyze the impacts of the hierarchy weight
on the network robustness against cascading failures. As
can be seen in Figure 8, two conclusions are obvious.
Firstly, for the relatively bigger skipping-ability netwics,
B el for example,s = 6 ands = 7, the bigger the hierarchy
; ; ; ; ; ; ; ‘ weight, the less robust the network. This is obvious,
o i because the more weighted the network, the more easily
the cascading failures occur caused by the failure of the
Fig. 8 The impact of topology structure on network robustness top hierarchy nodes. Furthermore, we can obvious
another interesting and counterintuitive result. For the
relatively smaller skipping-ability networks, for exarapl
) ) ) s= 1 ands = 2, the relationship curves present the V'’
Obviously, the nodes in the same hierarchy have thenhapes. In other words, there is a best hierarchy weight
same degree, the same hierarchy and hence the sang,e causing the network mostly robust. These
critical threshold. That facilitates the calculation oth gy ulation conclusions may help us better understand the
robustness measure by using the equati8is3?). cascading phenomena in the real tree-like hierarchical
networks.

re
"3-8-s" tree-!ik/e/\{etwork

[+
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n

2. 2
D Ry Oy D
w

Robustness measure s
&
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™o
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=3
[=R
=

2
o
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5.2 lllustrative simulation

. . . 6 Conclusions
In last section, we discussed the theoretical calculatfon o

the r_1etw0_rk robustnesg:. Now we can investigate the . To investigate the properties of tree-like hierarchical
relat|onsh!p betyveen topology structure anq the dynar.n'cstructure, we first propose a deterministic tree-like
of cascading failures. In our weighted tree-like cascadingy i o rchical network model. Secondly, the small-world
Ianurles .mt?]del,k_twq paggllr.?etershllrkr:pgc;c the nei\;]vorkand scale-free properties of our proposed tree-like
opdo °9ya es 'pp'(?g;ﬁ "hYS W r']C e'etr]mlneﬁ' he network are discussed. The simulation and theoretical
nodes degree, an e hierarchy weighit whic analysis prove that our proposed tree-like hierarchical
determines the network characteristic of weighted, o orks conformably possess the small-world and
hierarchy. To investigate their impacts on the networkscale-free properties well

‘r‘obust,nessﬁ(;z a set of illustrative simulat!ons .based_on Furthermore, we investigate the dynamic of cascading
3-8-s tree-like networks are proposed in this SeCtion. ¢, a5 on tree-like hierarchical networks. A weighted
The forml"las that will be derived m_the following s‘ec’tlon tree-like cascading failure model is first proposed, and the
can ‘?as"y be adapted to deal with any otheri-s relationship between the tree-like structure function and
tree-like ngtwork_s. - . the networks robustness is investigated by a set of
The simulation results of the "3-8- wree-like  ,qyative simulations. We find some interesting and
networks are depicted in Figure 8. As can be seen in l:'gt:ounterintuitive simulation conclusions, which may be

8, the ordinate axisf; denotes the least protection heloful f ; :
. . . r the further ing of the tree-like networks.
strength to avoid cascading failure, and the smalleBthe elpful for the further studying of the tree-like networks

the more robust the network. The abscissa axgenotes
the hierarchy weight, and the bigger tle the more
hierarchy weighted the network. The seven curves™Cknowledgement

respectively denote the seven “38topology structures . . . )
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