
Appl. Math. Inf. Sci.7, No. 6, 2549-2562 (2013) 2549

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070651

Methods for Optimizing OpenCL Applications on
Heterogeneous Multicore Architectures
Slo-Li Chu∗ and Chih-Chieh Hsiao

Department of Information and Computer Engineering, Chung Yuan Christian University, Chung Li, 32023, Taiwan

Received: 28 Feb. 2013, Revised: 26 Jun. 2013, Accepted: 27 Jun. 2013
Published online: 1 Nov. 2013

Abstract: Heterogeneous multicore architectures with CPU and add-on GPUs or streaming processors are now widely used in
computer systems. These GPUs provide substantially more computation capability and memory bandwidth compared to traditional
multi-cores. Also, because they are highly programmable, they providethe computational performance needed for realistic graphics
rendering. Applications with general computations can also be leveragedonto these GPUs. This study discusses the architectures of
these highly efficient GPUs and applies a unified programming standard called OpenCL to fully utilize their capabilities. Despite their
great potential, applications of these GPUs are challenging because of their diverse underlying architectural characteristics. In this
study, several optimizing techniques are applied on OpenCL-compatible heterogeneous multicore architectures to achieve thread-level
and data-level parallelisms. The architectural implications of these techniques are discussed. Finally, optimization principles for these
architectures will be are proposed. The experimental reveal average speedups of 24 and 430 for non-optimized and optimized kernels,
respectively.
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1 Introduction

Traditional microprocessor designs are reaching
performance limits due to power wall from increased
frequency and circuit area and memory wall from the
performance gap between CPU and memory. Diminishing
returns on instruction-level parallelism have also
increased the difficulty of scaling performance as
predicted by Moore Law. Recently, the programmability
of these add-on graphics processing units (GPU) and
streaming processors has increased due to demands for
increased realism in 3D games and graphics applications.
Therefore, general-purpose computing on these devices is
now possible. Accordingly, almost every computer
system now has a heterogeneous platform with CPU and
GPU or streaming processor to provide both graphics
rendering and general-purpose computations. Today,
GPUs provide substantially more computational power
compared to state-of-the-art CPUs, and the performance
gap between them is expected to increase over time. In
2004, the fastest Pentium4 achieved 7 GFLOPs whereas
the ATi Radeon X850 achieved 66 GFLOPs. The Cell
processor in Sony PlayStation3 introduced in 2005
achieved over 200 GFLOPs. The fastest six-core Intel

Core i7-980X currently achieves over 100 GFLOPs
whereas the fastest GPU ATi Radeon HD5870 achieves
2720 GFLOPs. Thus, exploiting the ever increasing
computing power of modern GPUs is a challenge. In the
past, writing parallel programs for these
high-performance heterogeneous computer systems
required familiarity with graphics APIs or vendor-specific
APIs. These APIs and programming paradigms are
extremely difficult to implement [26–30]. The most
popular parallel programming paradigms, such as
OpenMP [15] and MPI, are unsuitable for these
heterogeneous multicore architectures. Vendor-specific
GPGPU APIs, such as Sh [1], Brook [2], CAL [22] are
hard to programming and porting across varied
architectures. Therefore OpenCL [4] is proposed to easily
program and migrate between diverse architectures.
Although OpenCL is computationally powerful and
compatible with different platforms, fully utilizing
OpenCL devices requires careful tuning of computing
kernels. Figure 1 compares speedups between optimized
and non-optimized kernels. The OpenCL version
benchmark ”Calculation of Pi” uses integral to approachn
value with computationally expensive operations. The
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baseline of the speedup is the sequential version that runs
on Intel Core i5-750. The speedups significantly differ
between optimized and non-optimized kernels, which
provide sufficient optimization space for performance
tuning on OpenCL-compatible devices.
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Fig. 1: The speedup difference between optimized and non-
optimized OpenCL ”Pi calculation” kernels..

Research in OpenCL has focused on algorithm
porting [5,6] or programming paradigm comparisons [7].
The limited research in kernel code optimization has
resulted in the underutilization of these devices. Similar
programming paradigms such as CUDA have been
studied for many years to enable their use on these
computing devices [8, 9, 16]. However, optimization
techniques on CUDA are specified on heterogeneous
multicore architectures with nVidia GPUs, which may be
inappropriate for various OpenCL-compatible devices.
This study presents several workloads with OpenCL and
discusses the architectural implications of the underlying
hardware. Several optimization techniques such as
vectorization, tiling memory access, and data
redistribution are then discussed. The proper
combinations of the above optimizing techniques are
discussed. Their performance differences are also
examined. Finally, suggestions for enhancing
performance are given. This paper is organized as
follows. Section 2 presents the OpenCL parallel
programming paradigm and gives a simple example.
Section 3 discusses the architectural details of OpenCL
compatible computing devices. Section 4 describes
optimization techniques for overcoming architectural
limitations. The experimental results for speedup
comparisons between OpenCL-compatible devices and
suggested optimization methods are given in section 5.
Finally, conclusions are given in section 6.

2 OpenCL Programming Paradigms

OpenCL is a standard for parallel programming for
modern heterogeneous multicore architectures. The

purpose of OpenCL is to provide a compatible code for
different devices, architectures, and applications.
Therefore, CPUs, GPUs, and other accelerators can be
used to accelerate computation-intensive or data parallel
applications.
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Fig. 2: The OpenCL platform model.

Figure 2 shows the OpenCL platform model. The host
is the processor of the modern computer system that
provides the executing platform of OpenCL runtime for
dispatch workloads for OpenCL computing devices. The
computing device may be a CPU, GPU, DSP or an
accelerator such as SPE in Cell, which executes OpenCL
kernels. Each device has several computing units
consisting of multiple processing elements and its device
memory to store input data. Each computing device
consists of multiple processing elements. Once an
OpenCL kernel is launched, the host must specify
executing dimensions (three maximum) and an
N-dimensional range. The kernel is executed in multiple
instances called work-items within this range. Multiple
work-items can also be combined into a work group to
enable communication and synchronization within a
group. The number of work-items per work group is
specified by a host program written by programmers. The
work-items within a work group are executed
concurrently on the processing elements of a single
compute unit.

3 Architecture Overview and Execution
Model of OpenCL Computing Devices

This section describes the hardware platforms and the
mappings between OpenCL and these devices.
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3.1 ATi Radeon HD5800 series

The Radeon HD5800 series [10], announced by ATi in
2009, has over 2 teraflops computing capability. Figure 3
shows the HD5800 architecture. This architecture
combines SIMD and VLIW engines. It consists of 20
SIMD engines; each SIMD engine is as wide as 16 SIMD
machines. Each element, i.e., thread processor, has a
five-issue, VLIW design consisting of four basic stream
cores. These floating-point operations are IEEE754
compatible with limited rounding mode support. Then it
contains one engine for special functions called T-Unit,
mainly responsible for sine, cosine, and reciprocal
functions. A branch unit in each thread processor solves
simple branch problems during execution. The mapping
from OpenCL computation kernel on ATi Radeon
HD5800 series is also illustrated in Fig. 3. The OpenCL
kernel is composed by work groups, each consisting of
multiple wavefronts. The wavefront, which is the basic
hardware execution unit of ATi GPU, executes N number
of work-items concurrently. The Radeon HD4670
consists of only 8 SIMD engines with 8 thread processors
each. An SIMD engine maintains multiple wavefronts and
switches between them to hide execution latency, but only
one wavefront can be executed at one time. To finish an
instruction of all threads in a wavefront, the thread
processors must use the same instructions to operate on
different data from different threads in four consecutive
cycles.

3.2 nVidia GeForce GT200 series

In early 2009, nVidia introduced its GT200 series [11]
GPU, which has over 1 teraFLOPs computing capability.
The GT200 architecture, as shown in Fig. 4, consists of
10 TPCs (Texture/Processor Clusters), each of which
contains three SMs (Streaming Multiprocessors) and one
Texture unit. The main computing elements in GT200 are
the 8 SPs (Streaming Processors), which operate in SIMD
(Single Instruction Multiple Data) fashion. Both SPs and
SFUs (Special Function Units) share the same instruction,
data and instruction L1 cache, instruction fetch and
dispatch unit in a SM. A GT200 GPU contains 240 SPs.
The mapping from OpenCL kernel to nVidia GT200
series is shown in Fig. 4. Each OpenCL kernel is a
composite of multiple workgroups, and each can be
mapped as a thread block in GT200. A thread block
consists of multiple warps, which contain 32 work-items.
The Global Block Scheduler schedules thread blocks onto
each TPC; each SM in a TPC is scheduled to work on a
warp in block. Since each warp consists of 32 computing
threads, the 8 SPs require 4 consecutive cycles for
lock-step execution of one instruction of all 32 threads in
a warp. To fully exploit processor power, each SM usually
keeps multiple warps in flight and switches between them
to hide latencies. High thread-level parallelism is thus

avoided. The warp or workgroup switches after an
instruction of all threads in a warp is completed.

3.3 IBM Cell Processor

The architecture of IBM Cell processor [12] is illustrated
in Fig. 5. PPE (Power Processor Element) is the main
control unit of Cell processor, and SPEs (Synergistic
Processor Elements) are specifically designed for
data-intensive and streaming processing computations.
The PPE is a PowerPC processor which is an in-order,
2-way simultaneous multi-threading, 64-bit Power
architecture with VMX extension, with L2 cache. SPE
(Synergistic Processing Element) is a dual-issue 128-bit
SIMD architecture with deep pipelining. All of these
processor elements, memory controller, and I/O are
attached onto EIB (Element Interconnect Bus), which is
presently implemented as a circular ring comprising four
16B-wide unidirectional channels with counter-rotating in
pairs. To access external memory, the SPEs only can rely
on DMA to move data from/to memory controller.
Meanwhile, the memory controller is shared by all
processor elements. So it limits the memory bounded
applications and programming paradigm. Additionally,
the Cell processor adopted in Sony PlayStation3 only
enables six SPEs for programmers.
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Fig. 5: The organization of IBM Cell processor.

3.4 Parameters of Evaluated OpenCL Devices

Table 1 summarizes the architectures considered in this
study. Some of the entries are inconsistent with previous
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Fig. 3: The architecture of ATi Radeon HD5800 series with OpenCL mapping.
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Fig. 4: The architecture of nVidia GT200 series with OpenCL mapping.
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discussions since high-end versions were not tested in this
study (e.g., HD5870 has 1,600 PEs whereas the HD5850
analyzed in this study has only has 1,440 PEs, and GT220
has only two TPCs consisting of 6 SMs). Except for the
thread processors in their SIMD engines and their
wavefront size, ATi Radeon HD4000 and HD5000 have
similar computing architectures

Table 1: The summary of architectures used in this study.
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size
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4 Optimizing Methods for OpenCL
Programs

This section describes two benchmarks that reveal the
architectural implications of these OpenCL compatible
platforms. One is computation-intensive application and
one is memory-intensive program. Several optimization
techniques, including massive multithreading,
vectorization, tiling, and data redistribution, are also
performed to determine their effects on performance. The
first is ”Pi calculation”, which uses integrals to
approximate the value of . Because of its high
computational expense, inter-loop independents are easily
dividable into varying numbers of work-items, which
makes it suitable for massive multithreading and
vectorization tests to enhance the performance of
computing devices with thread-level, data-level, and
instruction-level parallelisms. The compiled kernel also
uses less than ten registers (five for ATi GPU and seven
for nVidia GPU), which eliminate concerns about register
pressure [25] and keeps the computing device busy with a
huge amount of threads. The second benchmark is matrix
multiplication with two 2048 X 2048 matrices. Since it
requires large workloads in memory access operations,
typical optimization techniques such as tiling and data
redistribution can be applied to exploit its parallelism.
Different combinations of optimization techniques are
also evaluated using this benchmark. The performance

enhancements discussed in this section are demonstrated
in the speedup comparisons with its sequential version
executed in OpenCL host. The OpenCL speedups on
GPUs are based on its sequential C version running on the
Intel Core i5-750 of the host whereas where the speedups
on PlayStation3 are based on its sequential C version
running on PowerPC Processing Element against
Synergistic Processing Elements. To observe performance
enhancements on computing devices, the execution times
for OpenCL kernels described in this section do not
include compilation and data transfer between the host
and the computing device. The execution times of GPUs
are measured by the vendor-provided profiler with
microsecond accuracy. The performance breakdown
given at the end of this section is measured by host OS
timer. Table 2 shows the platform environments used in
following sections. All performance test results given in
the following sections are average values of multiple runs.

Table 2: The summary of experimental environments.

Catalyst 10.2

StreamSDK 2.0.1

ATi 
Radeon 
HD4670

Forceware 190.89

GPU Computing SDK 2.3A

Visual Studio 2008

Intel Core-i5 750

Windows7
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nVidia 
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+ OpenCL 
SDK 0.1.1

OpenCL 
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4.1 Massive Multithreading for OpenCL
Programs

The current GPU designs rely on switching between
massive multithreading to hide execution latencies in
ALU and memory accesses. The appropriate number of
computing threads or work-items should be carefully set
to fully utilize massive processing elements and hide
latencies. The number of work-items in a workgroup was
set to 16, 32 and 64. Also, the number of total work-items
was varied to observe its effects on performance and to
observe how architecture affects the number of
work-items. The selected number of iterations was
1,000,857,600, which was devisable for all configurations
in this study.

Figure 6 shows the speedups on ”Pi calculation” with
various numbers of work-items. Since the size of the
hardware wavefront in HD5850 was 64, 16 and 32
work-items per workgroup could only occupy one half
and one quarter of the wavefront, respectively, which
degraded performance. HD5850 needed at least 64
work-items per workgroup to form a full wavefront and to
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achieve full hardware utilization. The performance
enhancement reached optimal when the total number of
work-items was set to 4,608. Accordingly, wavefront size
is 64; the number of SIMD engines is 18. To fully utilize
all thread processors in HD5850 with a computationally
expensive program, each workgroup or its integer
multiple must contain 64 work-items.

Speedup vs. No. of Work-items for ATi Radeon HD5850
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Fig. 6: Speedup with different number of total work-items and
work-items per work-groups in ATi Radeon HD5850 versus its
sequential version.

Figure 7 shows the speedup of different
configurations with ”Pi calculation” on ATi Radeon
HD4670. The size of the hardware wavefront in HD5850
is 32 instead of 64, and the test results show that the
larger workgroup cannot enhance performance due to
hardware limitations. The best performance is obtained
by a workgroup size of 32 and 1,024 work-items. For a
wavefront size of 32, the number of SIMD engines is 8. If
the number of work-items per workgroup is less than 32,
performance drops because the hardware wavefront is not
fully occupied.

Speedup vs. No. of Work-items for ATi Radeon HD4670
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Fig. 7: Speedup with different number of total work-items and
work-items per workgroups in ATi Radeon HD4670 versus its
sequential version.

Figure 8 shows the speedups obtained with different
parameters of OpenCL kernel in nVidia GeForce
GTX285. The number of basic working units in hardware

is a warp in nVidia GPU, which is 32 work-items.
Experimental results indicate that doubling the number of
work-items per workgroup obtains a better performance,
which is 64. If this number is set higher than 128,
performance can exceed 64. According to the profiling
results, performance is best when the number of
work-items or computing threads is larger than or equal to
512 per SM. Each workgroup turns into one thread block
in nVidia GPU, and each SM can have maximum 8 thread
blocks with 1,024 computing threads in flight according
to its resource availability.

The best performance was obtained when each
workgroup consisted of 64 work-items, The Occupancy is
0.5, which equals 512 per SM. The hardware limitation
makes 1,024 computing threads within one SM. Also, if
the compiled kernel has a large number of register
requirements, Occupancy is reduced lower since the
register pressure limits the number of in-flight computing
threads in hardware.

The number of SIMD engine is 30 for GTX285,
which is the minimum number to keep the GPU busy with
15,360 threads. That is, the nVidia GTX285 can
accommodate tens of thousands more threads than ATi
GPUs can. The minimum number of computing threads
required to hide latencies per SM is 64 instead of 16 in
ATi GPU since the clock rate of the nVidia PE is twice as
fast as that of ATi GPU with deeper pipeline latency to
hide.

Speedup vs. No. of Work-items for nVidia GTX285
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Fig. 8: Speedup with different number of total work-items and
work-items per work-groups in nVidia GeForce GTX285 versus
its sequential version.

Figure 9 shows the speedup of nVidia GeForce
GT220. The best performance occurs when workgroup
size is 64. An abnormal point occurs when total number
of work-items equals 4,096, where a workgroup size of
16 performs better than a size of 32. The occupancy is 0.5
when workgroup size is 64, but each TPC is responsible
for 28 workgroups when workgroup size is 32. To finish
the computation, each SM must finish one third of
workgroups in a TPC, which leaves one workgroup for
either workgroup size 64 or 32. Accordingly, 64 and 32
threads left for processing on one SM cause this abnormal
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point. The best performance for GT220 is shown when
total number of workgroup is 3,072.

Speedup over Various No. of Work-items for nVidia GT220

0

10

20

30

40

50

60

256 512 1024 2048 3072 4096 5120 6144 10240 12800 15360
No. of work-items

S
p

ee
d

u
p

work-group size:16

work-group size:32

work-group size:64

Fig. 9: Performance with different number of total work-items
and work-items per work-groups in nVidia GeForce GT220
versus its sequential version.

Figure 10 presents the speedup on IBM Cell processor
in PlayStation3 with ”Pi calculation”. Since the SPE is
not hardware multithreaded, the increase in work-items
per workgroup does not help performance, so the
experiment here uses only one work-item per workgroup.
The experimental results show that the best performance
occurs when using all available SPEs in PlayStation3 and
no more.

Speedup over Various No. of Work-items for PlayStation3
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Fig. 10: Speedup with different number of total work-items in
IBM Cell processor versus its sequential version.

4.2 Vectorization for OpenCL Programs

This subsection illustrates performance and architecture
implications with vectorization. As the architectural
discussion in section 3, some of the architectures are
VLIW or SIMD design, which relies on compiler to
rearrange the code into appropriate instruction slots or
vector lanes. If the writing of kernel program can consider
writing in vectorized form, the compiler can rearrange the
kernel source to increase the efficiency of these devices.

Again, the ”Pi calculation” is used as benchmark to
illustrate the effect of vectorization. The total numbers of
work-items are 4,608 and 1,024 for ATi HD5850 and
HD4670, respectively, 30,720 and 6,144 for GTX285 and
GT220, respectively, and 6 for PlayStation3. The size of
workgroup is 32 for HD4670, 1 for PlayStation3 and 64
for others. The OpenCL provides vector primitive like
float2, float4, float8, float16 and double2 to present vector
type of floating-point. To write OpenCL kernel into
vectorized version requires only minor modifications if it
is vectorizable.

4.3 Tiling and Data Redistribution for OpenCL
Programs

This subsection discusses optimization techniques with
tiling, data redistribution and various combinations of
optimization techniques. Since each computing device in
an OpenCL platform model has its own memory, all
computing units must access this memory to process
resident data. Therefore, access to device memory should
be carefully managed to avoid conflicts or redundancies.
Conventional tiling and data redistribution mechanisms
can reduce the pressure on the memory subsystems of
OpenCL computing devices. The adopted benchmark is
”Matrix Multiplication”. The number of work-item is
launched with two dimension range, which consists of
(matrix width/4) x (matrix height/4) work-items in total.
Each work-item is responsible for a 4 x 4 region of result
matrix C. Workgroup size is 32 for ATi Radeon HD4670,
64 for all other GPU devices and 1 for PlayStation3. In a
naive implementation, each element within its 4 x 4
region performs intuitive multiply and accumulates
operations in all rows in matrix A and in all columns in
matrix B. To discover the computing power from SIMD
or VLIW designs in ATi GPUs or IBM Cell, the inner
loop of naive kernel is unrolled and jammed with vector
primitive.

4.4 The Combinations of the Optimizing
Methods

Figure 11 shows the experimental results for various
combinations of optimization techniques in terms of
speedup, compared with Intel Core i5. The speedup is
obtained from the ratio of execution time of OpenCL
version program on various OpenCL devices over the
execution time of sequential version program on host
Intel Core i5 processor. Excluded the setup and compiling
time of OpenCL program, the execution time here is only
adopted the net execution time of OpenCL kernel.
Although many-core OpenCL compatible computing
devices must access their global memory without a
well-designed pattern, their high bandwidths still enable
performance enhancements. Since the nVidia GT220,
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which is the low-end GPU in market, has insufficient
hardware resources for executing multiplication tasks for
two 2048x2048 matrices, a 1024x1024 matrix was run on
nVidia GT220. The speedups in PlayStation3 were
insignificant because memory access was limited by its
EIB ring interconnection network to its memory
subsystem. However, the speedup on the naive version
and on all vectorized or data redistribution versions were
about 2.2 against its sequential version on PPE due to this
limitation. In ATi GPUs, vectorization of the naive kernel
can expand memory bandwidth and enhance
computational capability due to drawbacks in the VLIW
design. However, the speedup improves until vector
length reaches 16 and 8 for HD5850 and HD4670,
respectively. These speedup reductions result from
register pressure because the length of the native vector
register of ATi GPUs is only four single-precision
floating-point values. Because nVidia GPUs have a scalar
design, the benefits of vectorization are minimal [23].
Tiling helps all architectures to reuse read in data and
significantly improve performance. All temporal registers
are declared with scalar variables when use tiling alone.
Therefore, register pressure degrades HD5850
performance when tile size is increased to 4x4. The
HD4670 still exhibits enhanced performance because
each workgroup has only 32 work-items instead of 64,
which reduces register pressure. For both nVidia GPUs,
performance continues to scale up due to data reuse.
Notably, the PlayStation3 is 8.5 times and 31.8 times
faster than its previous version when tile size is 2x2 and
4x4, respectively. If the data distribution, processing
elements read a portion of the element from one row of
matrix A and then multiply and accumulate it while
directly accessing matrix B. Since it is not vectorized or
tiled, it does not benefit overall performance during
execution and may even degrade performance if the
barrier requires synchronization.

The following paragraph reports the results of
performance tests of various combinations of the above
optimization techniques. Data redistribution combined
with vectorization enhances computational capacity only
in ATi GPUs. In HD5850, this combination is 20% faster
than vectorization alone. Use of data redistribution with
tiling, which puts one input tile into local memory, can
help to reduce register pressure from local variables
generated by unroll-and-jam. Therefore, performance
significantly improves. When vectorization is combined
with tiling, the native vector register can be applied in ATi
GPUs, which greatly reduces register pressure and
significantly increases the number of in-flight threads and
performance. Finally, all optimization techniques were
combined. This final version of the kernel improved
performance for some GPUs. The lack of improvement is
due to driver issues on GT220 and local memory mapping
issues on HD4670. The speedup in GT285 was lower than
that in HD5850 because vectorization increased register
pressure and reduced occupancy from 0.5 to 0.25.
PlayStation3 performance was also limited by its effective

bandwidth, which limited the maximum speedup obtained
from this kernel is about 32.

In the final optimization version, the ATi Radon
HD5850 performed nearly as twice as fast as the nVidia
GTX285, which indicated that program optimization is
more important for HD5850 than for nVidia GPUs. Also,
the computations of this benchmark are multiply and add,
which requires all five stream cores in thread processor.
Accordingly, the theoretical performance of ATi HD5850
can be determined only if the kernel is carefully tuned and
no special function is needed in T-unit.

4.5 Summary of Optimization of Pi Calculation

This subsection shows that overall speedup includes
kernel compilation time and memory from/to OpenCL
computing devices on selected configurations and then
gives the performance breakdown. The configurations in
this subsection are the optimal numbers of work-items
and vectorization with float8 for all GPUs and float4 for
PlayStation3. Due to the inefficiency of the PlayStation3
compiler, compilation is performed offline. Figure 12
shows the overall speedup.
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Fig. 12: Overall speedups on optimizations of ”Pi Calculation”
versus its sequential version on host.

If only execution time is considered, speedups are
significantly lower. Some are even slower when
vectorization is applied. To identify the cause of the
reduced speedup, Compile, Memory setup, Execution and
Memory read back, were analyzed separately. Figure 13
shows the performance results.

The overall performance shows multithreading (MT)
obtains performance improvements in all OpenCL
compatible devices, especially in GPUs that require
thousands of threads to hide execution latencies against
non-optimized version (Org). Whereas the vectorization
(Vec) helps almost all OpenCL compatible devices in
terms of increased hardware utilization in VLIW and
SIMD designs or reduced control flow operations. Only
the nVidia GeForce GTX285 revealed no performance
enhancement, which was inconsistent with the profiling
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Speedup of Optimizing Methods for Matrix Multiplication (OpenCL Kernel Only)
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Fig. 11: Speedups of different optimizing methods on matrix multiplication. Excludedthe setup and compiling time, the execution time
here only adopts net execution time of OpenCL kernel.
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Fig. 13: Overall performance breakdown of optimized ”Pi calculation” with Massively Multithreading and Vectorization.

results. However, the timer may have lacked sufficient
precision to measure an extremely small performance
improvement. Figure 13 shows that, since this kernel is
small, the overall performance of the optimized OpenCL
program suffers if kernel compilation is excessively time
consuming. Speedup ratio is also decreased accordingly.

4.6 Summary of Optimization of Matrix
Multiplication

This subsection compares the overall speedups and
performance breakdowns between different versions of

optimized matrix multiplications. Comparison of overall
speedups in terms of execution time only indicated that
speedups were significantly lower. Moreover, the extreme
optimized version with all optimization techniques
obtained lower speedups with 4x4 tiling and
vectorization. In other cases, the performance trend was
similar in the execution time only version. Figure 14
shows the performance breakdowns. The speedup is
obtained from the ratio of total execution time of OpenCL
version program on various OpenCL devices over the
execution time of sequential version program on host Intel
Core i5 processor. Different from Fig. 11, the execution
time here includes the setup and compiling time.
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Speedup of Optimizing Methods for Matrix Multiplication (Total Execution Time)
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Fig. 14: Overall performance comparison of different combinations of optimized matrix multiplication. The execution time here is total
execution time which includes the execution time of OpenCL kernel, setup andcompiling time.

The configurations in Fig. 15 are Naive (NAV) kernel,
4x4 tiling with vectorization (TV) and 4x4 tiling with
vectorization and data redistribution (TVD). Also, the
GT220 matrix size is 1024x1024 instead of 2048x2048
due to hardware resource limitations. The Memory Setup
time includes memory allocated for two matrices and for
initializing all internal entries, so the setup time is longer
than in ”Pi Calculation”. Since the number of applied
optimizations increases, compilation time in runtime is
also longer. Overall speedups are therefore lower than
that for execution time alone.

5 Experimental Results

This section, measures the overall speedup of optimized
OpenCL programs, including speedup in compilation and
in memory transfer from/to host. The two above
benchmarks and selected optimization results are
reviewed. Then, two additional speedup benchmarks are
compared between the non-optimized and optimized
versions.

5.1 Experimental Setup

This study included five OpenCL compatible platforms,
which are two GPUs from ATi, two GPUs from nVidia
and IBM Cell processor in PlayStation3. The speedups
compare with sequential version of two benchmarks run
on OpenCL host device is Intel Core i5-750 for all GPUs
and PPE for Cell. The speedup in different platforms was
measured with timer provided by host OS with average
value from multiple runs in seconds. All OpenCL kernels
and host codes were identical across these five different
OpenCL compatible platforms, except for vendor name
string, linking library and kernel NDRange lunch
parameters. Also, the OpenCL kernel compilation process

in PlayStation3 was performed offline since it required
tens of seconds to complete.

5.2 Pi Calculation

Figure 16 compares the non-optimized and optimized
version of ”Pi calculation”. For GPUs, the original
version uses only 200 work-items with 50 work-items per
workgroup to solve this problem. Whereas the optimized
version uses massive multithread as discussed in previous
section and vectorization (with float8). Due to VLIW
design in ATi and SIMD design in IBM Cell, these results
show significantly improved performance compared to
the non-optimized version. The speedups vary from 5 to
130 between different versions.

Pi Calculation: Optimized vs. Original
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Fig. 16: Overall speedups on optimizations of ”Pi Calculation”
versus its sequential version on host.
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Fig. 15: Overall performance breakdown of optimized matrix multiplication.

5.3 Matrix Multiplication

Figure 17 shows the selected results for matrix
multiplication from the previous section. The original
version is the naive O(N3) algorithm whereas the
optimized version with vectorization and 4x4 tiling
leverages compilation overheads against net execution
time. The speedups vary from 2 to 320 between different
versions.

Matrix Multiplication: Optimized vs. Original
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Fig. 17: Overall speedups on optimizations of ”Matrix
Multiplication” versus its sequential version on host.

5.4 N-Body Simulation

The benchmark in this subsection, N-Body simulation
with all-pairs N-body algorithm, is a famous physics

problem. The total force on each body in the system is
determined by computing each pair-wise force in the
system and then summing for each body. In each
component in OpenCL vector primitive in this kernel,
float4 is used as different directions of velocities, and
each work-item calculates one body. The number of
bodies and the number of work-items are both 65,536.
However, the number of work-items per workgroup is 32
for ATi HD4670, 1 for IBM Cell and 64 for the others.
The original version is the one with vector primitives as
velocities of different directions. The optimized version
applies tiling, data redistribution with local memory, and
loop unrolling two times. Figure 18 shows the results.
Since not all operations in the loop can be represented by
vector operator and the dependencies between
instructions, the VLIW and SIMD designs do not achieve
optimal performance. The packing ratio of ATi GPU is
38% for the original version and 56% for the optimized
version. In PlayStation3, the compiler cannot efficiently
utilize these non-vector operators to fill its SIMD lanes.
Local memory mapping is also problematic. The
optimized version on ATi HD4670 does not perform as
well as the original due to local memory mapping
problem. The speedups vary from 20 to 660 between
different versions.

5.5 K-Means Clustering

A K-means clustering algorithm is commonly used for
collecting digital information and for analytical tasks
such as data mining. Clustering is a means of arranging n
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N-Body Simulation: Optimized vs. Original
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Fig. 18: Overall speedups on optimizations of ”N-Body
Simulation” with 65,536 bodies versus its sequential version on
host.

data points into k clusters where each cluster has maximal
similarity as defined by an objective function. This
subsection describes the conversion of a parallel K-Means
clustering CUDA program [25] into OpenCL. The
settings for this benchmark are 1,048,576 points and
4,096 clusters, where each work-item calculates one point
against all clusters to identify the cluster with maximal
similarity. The original one is the same as the CUDA
version with OpenCL native function. The optimized
kernel applies rectangular 1x8 tiling and unroll-and-jam
with vector primitive (float8). Figure 19 shows the results.
Since data access is sequential and has good locality, the
speedups obtained from local memory are lagged by its
longer compilation time (not shown). The optimized
version can double the VLIW packing ratio from 30% to
60% for ATi GPUs and improves performance by
unrolling the original loop eight times. Although the
vector primitive is used, the operators in loop cannot be
represented via vector operator. The speedup of
PlayStation3 degrades performance because its compiler
cannot arrange the code in SIMD fashion effectively. The
speedups for different versions vary from 71 to 625.

5.6 Summary

This study examined four benchmarks and various
optimization techniques. Full utilization of different
platforms requires careful tuning of source codes. This
subsection summarizes the discussion of optimization
techniques their application in the various platforms
shown in Table 3.

The GPUs require numerous threads to hide execution
latency, so that it needs massive multithreading for hiding
and prioritizing. Programmers could adopt the above
discussion to adjust the total number of work-items and
the size of the workgroup regardless of the
N-Dimensional range used. When applying SIMD and
VLIW architecture in IBM Cell and ATi Radeon GPU,
the programmer must code the vector primitives in
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Fig. 19: Overall speedups on optimizations of ”K-Means
Cluster” with 1,048,576 points and 4,096 clusters versus its
sequential version.

Table 3: The summary of experimental environments.

1. Vectorization

2. Loop Unrolling

3. Tiling Mem Access
4. Local Share Memory

5. Massively Multithread

1. Massively Multithread

2. Tiling Mem Access
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5. Vectorization

1. Massively Multithread

2. Vectorization

3. Loop Unrolling
4. Tiling Mem Access

5. Local Share Memory

Suggested 
optimization 

techniques (* 
list according 
to its priority)

IBM CellnVidia GeForce GPUATi Radeon GPU
Device

Opt. tech

1. Vectorization

2. Loop Unrolling

3. Tiling Mem Access
4. Local Share Memory

5. Massively Multithread

1. Massively Multithread

2. Tiling Mem Access
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4. Loop Unrolling
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3. Loop Unrolling
4. Tiling Mem Access

5. Local Share Memory

Suggested 
optimization 

techniques (* 
list according 
to its priority)

IBM CellnVidia GeForce GPUATi Radeon GPU
Device

Opt. tech

OpenCL which may enhance code generation and
scheduling of its OpenCL compiler. Therefore, its priority
is first and second IBM Cell and ATi Radeon GPU,
respectively. However, its scalar design methodology
limits its use in nVidia GPU. Vectorization applied on an
nVidia GPU may impair performance by increasing
register pressure and lowering Occupancy. Loop unrolling
is helpful in almost all architectures and obtains the
second and third largest performance improvements in
IBM Cell, and ATi GPU respectively. Since the nVidia
GPU design does not have a vector register to reduce
register pressure generated from loop unrolling, unrolling
may degrade performance. Therefore, it is fourth on the
list for nVidia GPU. All memory access optimization
techniques help to hide access latencies and requires for
most of the GPUs. A massive multithread list yields the
smallest performance gain in IBM Cell since it is not
natively multithreaded.

This study addressed the mapping of OpenCL to
hardware architectures, its execution model, and
optimization techniques for different architectures. The
OpenCL-compatible devices used in this study were ATi
Radeon HD5850, ATi Radeon HD4670, nVidia GeForce
GTX285, nVidia GeForce GT220 and PlayStation3. To
use the same OpenCL kernel on different platforms, only
the N-Dimensional range kernel launch processes require
adjustment. The program itself need not be modified. The
portability of OpenCL is a significant advantage over
traditional GPGPU paradigms such as CUDA. The
architectural implications for different architectures were
also discussed in this study. Except for some OpenCL
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runtime and device driver issues, the OpenCL kernel
requires careful tuning based on underlying hardware to
maximize computation ability. For ATi Radeon GPU, the
VLIW design requires skillful coding of vectorization or
loop unrolling to simplify the compiler and to enable
instruction packing. Moreover, the theoretical
performance limitation is determined by the division
instruction as shown in subsections 4.3 and 4.4. The high
clock rates and deep pipelined scalar processors in nVidia
GeForce GPUs require huge amounts of threads to hide
execution latencies, and their scalar designs limit the
speed improvement obtained by vectorization. Of the
OpenCL-compatible devices examined in this study, the
OpenCL runtime and compiler on IBM Cell is relatively
immature and revealed the worst performance. Finally,
overall speedups were compared, and programming
recommendations were given. Average speeds in
non-optimized and optimized kernels were 24 and 430,
respectively. This demonstrates the huge optimization
space for OpenCL on different hardware architectures.
For effective use of this open and portable programming
paradigm, programmers must carefully tune OpenCL
kernels to their underlying hardware characteristics.
Although programming in OpenCL is harder than that in
conventional OpenMP, a fine-tuned OpenCL provides a
substantial performance gain in general-purpose
computing on heterogeneous multicore architectures at a
low cost.

6 Conclusions

This study addressed the mapping of OpenCL to
hardware architectures, its execution model, and
optimization techniques for different architectures. The
OpenCL-compatible devices used in this study were ATi
Radeon HD5850, ATi Radeon HD4670, nVidia GeForce
GTX285, nVidia GeForce GT220 and PlayStation3. To
use the same OpenCL kernel on different platforms, only
the N-Dimensional range kernel launch processes require
adjustment. The program itself need not be modified. The
portability of OpenCL is a significant advantage over
traditional GPGPU paradigms such as CUDA. The
architectural implications for different architectures were
also discussed in this study. Except for some OpenCL
runtime and device driver issues, the OpenCL kernel
requires careful tuning based on underlying hardware to
maximize computation ability. For ATi Radeon GPU, the
VLIW design requires skillful coding of vectorization or
loop unrolling to simplify the compiler and to enable
instruction packing. Moreover, the theoretical
performance limitation is determined by the division
instruction as shown in subsections 4.3 and 4.4. The high
clock rates and deep pipelined scalar processors in nVidia
GeForce GPUs require huge amounts of threads to hide
execution latencies, and their scalar designs limit the
speed improvement obtained by vectorization. Of the
OpenCL-compatible devices examined in this study, the

OpenCL runtime and compiler on IBM Cell is relatively
immature and revealed the worst performance. Finally,
overall speedups were compared, and programming
recommendations were given. Average speeds in
non-optimized and optimized kernels were 24 and 430,
respectively. This demonstrates the huge optimization
space for OpenCL on different hardware architectures.
For effective use of this open and portable programming
paradigm, programmers must carefully tune OpenCL
kernels to their underlying hardware characteristics.
Although programming in OpenCL is harder than that in
conventional OpenMP, a fine-tuned OpenCL provides a
substantial performance gain in general-purpose
computing on heterogeneous multicore architectures at a
low cost.
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