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Abstract: The aim of this paper is to construct generating functions for q-beta polynomials. By using these generating functions, we
define the q -beta polynomials and also derive some fundamental properties of these polynomials. We give some functional equations
and partial differential equations (PDEs) related to these generating functions. By using these equations, we find some identities
related to these polynomials, binomial coefficients, the gamma function and the beta function. We obtain a relation between the q-
beta polynomials and the q-Bernstein basis functions. We give relations between the q-Beta polynomials, the Bernoulli polynomials,
the Euler polynomials and the Stirling numbers. We also give a probability density function associated with the beta polynomials.
By applying the Mellin transform, the Fourier transform and the Laplace transform to the generating functions, we obtain not only
interpolation function, but also some series representations for the q-Beta polynomials. Furthermore, by using the p-adic q-Volkenborn
integral, we give relations between the q-beta polynomials, the q-Euler numbers and the Carlitz’s q-Bernoulli numbers.
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1 Introduction

Polynomials have many algebraic operations. They have
been used several branches of Mathematics, Physics and
Engineering. Because of closure under addition,
multiplication, differentiation, integration, and
composition, they have been utilized in computational
models of scientific and engineering problems [4, 5, 12].

Recently, generating functions have been played an
important role in the investigation of many fundamental
properties of the polynomials and sequences. These
functions can be use to find many identities and formulas
for the polynomials and sequences. There are various
applications of these functions in many areas of
Mathematics and Mathematical Physics, especially
including Statistics, Probability, Analytic Number
Theory [13, 19].

We summarize our paper results as follows:
In Section 2, we define the q-beta polynomials. We

give some properties of these polynomials. In Section 3,
we construct generating functions for the q-beta
polynomials. We investigate some properties of these
functions. We give a relation between the Bernstein basis
functions and the q-beta polynomials. In Section 4, we
give integral representations for the (q)-beta polynomials.
Using these integral representations, we derive some

interesting identities. In Section 5 and 6, we define some
functional equations and PDEs of the generating
functions. By using these functions, we obtain not only
differentiating and recurrence relations, but also some
identities for the q-beta polynomials. In section 7, we give
relations between the q-Beta polynomials, the Bernoulli
polynomials, the Euler polynomials and the Stirling
numbers. In Section 8, we define probability density
function which is related to the beta distribution and the
q-beta polynomials. We give mean and variance of this
probability density function. In Section 9, by applying the
Mellin transform, the Fourier transform and the Laplace
transform to the generating functions for the q-Beta
polynomials, we define interpolation function and some
series representations for the q-Beta polynomials. In
Section 10, by using the p -adic Volkenborn integrals on
Zp, we derive some identities, which are related to the
q-beta polynomials, the q-Euler numbers and the Carlitz’s
q-Bernoulli numbers.

2 The q-beta polynomials Bn
k(x;q)

In this section, we define the q-beta polynomials. We
investigate and derive some properties of these
polynomials.
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Definition 2.1. Let x ∈ [−1,0]. Let n and k be nonnegative
integers. Then we define

Bn
k(x;q) = [x]k [x+1]n−k , (1)

where k = 0,1,2, . . . ,n and

[x] =
1−qx

1−q

with q ∈ C (|q|< 1).
By using the following well-known identity

[a+b] = [a]+qa [b] , [7]

we modify (1) as follows:

Bn
k(x;q) =

n−k

∑
j=0

(
n− k

j

)
qn− j [x]n− j ,

Bn
k(x;q) =

n−k

∑
j=0

n− j

∑
d=0

(−1)n− j−d
(

n− k
j

)(
n− j

d

)
qx(n− j−d)+n− j

(1−q)n− j , (2)

and

Bn
k(x;q) = ∑∞

m=0 ∑n−k
j=0 ∑n− j

d=0(−1)n− j−d
(

m+n− j−1
n− j−1

)(
n− k

j

)
(

n− j
d

)
qx(n− j−d)+n− j+m.

Remark 2.1. For mathematical convenience, we usually
set

Bn
k(x;q) = 0

if k < 0 or k > n [16].
Remark 2.2. Observe that

lim
q→1

Bn
k(x;q) =Bn

k(x;1) = xk(1+ x)n−k (3)

[2, 6, 15, 16].

2.1 Some properties of the q-beta polynomials

By substituting x = 0 and x =−1 into (1), we have

Bn
k(0;q) =Bn

k(−1;q) = 0.

By (1), we obtain

v

∏
j=1

B
n j
k j
(x;q) =Bn1+n2+···+nv

k1+k2+···+kv
(x;q).

Using (1), the q-beta polynomials are easy obtain. We
now compute some of them as follows:

B0
0(x;q) = 1,B1

0(x;q) = 1+q [x] ,B1
1(x;q) = [x] ,

B2
0(x;q) = q2 [x]2 +2q [x]+1,B2

1(x;q) = q [x]2 +[x] ,

B2
2(x;q) = [x]2 ,

B3
0(x;1) = ∑3

j=0

(
3
j

)
(q [x])3− j ,B3

1(x;q) = q2 [x]3 +2q [x]2 +[x] ,

B3
2(x;q) = q [x]3 +[x]2 ,B3

3(x;q) = [x]3 ,

Bn
n−1(x;q) = [x]n−1 +q [x]n ,Bn

n(x;q) = [x]n ,

Bn
0(x;q) =

n

∑
j=0

(
n
j

)
(q [x])n− j .

3 Generating function for the q-beta
polynomials

We now construct generating functions for the q-beta
polynomials. We also derive functional equations and
PDEs related to these functions. By using these
equations, we give some fundamental properties of these
polynomials.
In [16], we constructed generatiog functions for the
functions Mk,n(x). We now define q-version of these
functions by means of the following generating functions:

hk,q(t,x) =
(

[x]
[1+ x]

)k

et[1+x] =
∞

∑
n=0

Mk,n(x;q)
tn

n!
, (4)

where k ∈ N0 = {0,1,2, · · ·}.
By using (4), we have

Mk,n(x;q) = [x]k [1+ x]n−k ,

where n,k ∈ N0 ( [16]).
From (4), if n ≥ k, we defined

Mk,n(x;q) =Bn
k(x;q)

and if n < k, we set

Mk,n(x;q) = bk,n(x;q),

where

bk,n(x) =
[x]k

[1+ x]k−n

and n ∈ {0,1,2, · · · ,k−1}.
Thus, from , we have

Mk,n(x;q) =Bn
k(x;q)+bk,n(x;q).
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Generating functions for the q-beta polynomials Bn
k(x;q)

can be defined as follows:
Definition 3.1.

Fq,k(t,x) = hk(t,x)−∑k−1
n=0 bk,n(x) tn

n! = ∑∞
n=k B

n
k(x;q) tn

n! ,
(5)

where B0
k(x;q) = . . .=Bk−1

k (x;q) = 0.
Note that there is one generating function for each value
of k.
We now give these generating functions explicitly by the
following theorem.
Theorem 3.1. Let k be nonnegative integer. Then we have

Fq,k(t,x) =
(

[x]
[1+ x]

)k

et[1+x], (6)

where t,q ∈ C (|q|< 1) and x ̸=−1.

Proof. Substituting (1) into the right-hand side of (5), we
obtain

Fq,k(t,x) =
∞

∑
n=0

(
[x]k [x+1]n−k

) tn

n!
.

Therefore

Fq,k(t,x) =
[x]k

[x+1]k
∞

∑
n=0

[x+1]n
tn

n!
.

The right-hand side of the above equation is a Taylor series
for e[1+x]t . Thus we arrive at the desired result.�

Observe that

Fq,k(t,x) = et[1+x]
∞

∑
m=0

(−1)m
(

m+ k−1
k−1

)
qm [x]k+m ,

where |q [x]|< 1.
Fq,k(t,0) = 0,

Fq,k(t,−1) = ∞,

and

Fq,1(t,1) =
e(q+1)t

q+1
.

From the above equation, we get

Bn
1(1;q) =

n−1

∑
j=0

(
n−1

j

)
q j.

3.1 Identity for the q-Bernstein basis functions
and the q-beta polynomials

Here we give relation between the q-Bernstein basis
functions and the q-beta polynomials. Firstly, we give
definition of the q-Bernstein basis functions as follows:

bn
k(x;q) =

(
n
k

)
[x]k q(n−k)x [1− x]n−k

or

bn
k(x;q) =

(
n
k

)
[x]k (1− [x])n−k (7)

[17].

We set

bn
k(x

v;q) =
(

n
k

)
[x]vk (1− [x]v)n−k (8)

We note that

lim
q→1

bn
k(x

v;q) = Bn
k(x

v) =

(
n
k

)
xvk (1− xv)n−k ,

where Bn
k(x) denotes the Bernstein basis functions [1, 4, 5,

10, 12, 14, 15, 17].
Theorem 3.2. The following identity holds true.

bn
k(x;q)Bn

k(x;q) = bn
k(x

2;q).

Proof. Multiplying both sides of Equations (1) and (7), we
get

Bn
k(x;q)bn

k(x;q) =
(

n
k

)
[x]2k

(
1− [x]2

)n−k
.

Using (8), we arrive at the desired result.�

4 Integral Representations

In this section, integral representations for the q-beta
polynomials are given.
Theorem 4.1. Let 0 < q < 1. Then we have

1∫
0

Bn
k(x;q)dx =

n−k

∑
j=0

n− j

∑
d=0

(−1)n− j−d+1
(

n− k
j

)(
n− j

d

)

× [n− j−d]qn− j

(1−q)n− j−1 (n− j−d) ln(q)
.

Proof. From (2), for 0 < q < 1, we get

1∫
0

Bn
k(x;q)dx =

n−k

∑
j=0

n− j

∑
d=0

(−1)n− j−d+1
(

n− k
j

)(
n− j

d

)

× 1

(1−q)n− j

1∫
0

qx(n− j−d)dx.

Thus, we arrive at the desired result.�
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We also easily see that

0∫
−1

Bn
k(x;q)dx =

n−k

∑
j=0

n− j

∑
d=0

(−1)n− j−d+1
(

n− k
j

)(
n− j

d

)

× [ j+d −n]qn− j

(1−q)n− j−1 ( j+d −n) ln(q)

where 0 < q < 1.
Theorem 4.2. Then we have

0∫
−1

Bn
k(x;1)dx =

n−k

∑
j=0

(−1)n− j
(

n− k
j

)
1

n− j+1
(9)

and
0∫

−1

Bn
k(x;1)dx =

(−1)k

(n+1)
(

n
k

) . (10)

Proof of (10). Integrating equation (3) with respect to x
from −1 to 0, we get

0∫
−1

Bn
k(x;1)dx =

0∫
−1

xk(1+ x)n−kdx.

From the above equation, we get

0∫
−1

Bn
k(x;1)dx = (−1)k

1∫
0

xk(1− x)n−kdx. (11)

By using the following well-known result, which is related
to the Beta function and gamma function [11, 20], for 0 <
x < 1 and α > 0,β > 0,

B(α ,β ) =
1∫

0

xα−1(1− x)β−1dx =
Γ (α)Γ (β )
Γ (α +β )

(12)

in (11), we arrive at the desired result. If we integrate
equation (3) from −1 to 0, we easily get proof of (9), so
we omit it.�

Binomial coefficients play an important role in many
branches of Mathematics and Mathematical Physics,
especially including statistics, probability and analytic
number theory.
By using (9) and (10), we arrive at the following theorem:
Theorem 4.3.

n−k

∑
j=0

(−1)n− j
(

n− k
j

)
1

n− j+1
=

(−1)k

(n+1)
(

n
k

) .

5 Differentiating of the q-beta polynomials

In this section we give derivatives of the q-beta
polynomials. Taking derivative of (6), with respect to x,
we obtain the following PDE:

∂Fq,k(t,x)
∂x

=
kqx ln(q)

[1+ x] (q−1)
(
Fq,k−1(t,x)−qFq,k(t,x)

)

+
tqx+1 ln(q)
(q−1)

Fq,k(t,x). (13)

By using this equation, we obtain derivative formula for
the q-beta polynomials by the following theorem.
Theorem 5.1.

d
dx

Bn
k(x;q) =

kqx ln(q)
[1+ x] (q−1)

(
Bn

k−1(x;q)−qBn
k(x;q)

)
+

nqx+1 ln(q)
(q−1)

Bn−1
k (x;q).

Proof. By substituting the right-hand side of (5) into (13),
we obtain

∞

∑
n=0

d
dx

Bn
k(x;q)

tn

n!

=
kqx ln(q)

[1+ x] (q−1)

∞

∑
n=0

(
−Bn

k(x;q)+qBn
k−1(x;q)

) tn

n!

+
qx+1 ln(q)
(q−1)

∞

∑
n=0

Bn
k(x;q)

tn+1

n!
.

Thus, we have
∞

∑
n=0

d
dx

Bn
k(x;q)

tn

n!

=
kqx ln(q)

[1+ x] (q−1)

∞

∑
n=0

(
−Bn

k(x;q)+qBn
k−1(x;q)

) tn

n!

+
qx+1 ln(q)
(q−1)

∞

∑
n=0

nBn−1
k (x;q)

tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the
above equation, we arrive at the desired result.�

We also derive the following second order PDE as
follows:

∂ 2Fq,k(t,x)
∂ t∂x

=
qx lnq
q−1

Fq,k−1(t,x)+
qx+1 lnq

q−1
[x] tFq,k−1(t,x)

+(k−1)
qx lnq
q−1

(
Fq,k−1(t,x)−qFq,k(t,x)

)
.
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Using the above equation, we also obtain other derivative
formula for the q-beta polynomials by the following
theorem.

Theorem 5.2.

dBn
k(x;q)
dx

=
qx lnq
q−1

Bn
k−1(x;q)+n

qx+1 lnq
q−1

[x]Bn−1
k−1(x;q)

+(k−1)
qx lnq
q−1

(
Bn

k−1(x;q)−qBn
k(x;q)

)
.

Proof of this theorem is same as that of Theorem 5.1,
so we omit it.

6 Recurrence Relation

In this section we give recurrence relations for the q-beta
polynomials. Taking derivative of the generating functions
for the q-beta polynomials with respect to x, we obtain the
following PDEs:

∂ vFq,k(t,x)
∂ tv = [x]v Fq,k−v(t,x) (14)

and
∂ vFq,k(t,x)

∂ tv = [1+ x]v Fq,k(t,x).

Theorem 6.1.

Bn+v
k (x;q) = [x]vBn

k−v(x;q)

and
Bn+v

k (x;q) = [1+ x]vBn
k(x;q).

Proof. By substituting the right-hand side of (5) into (14),
we obtain

∞

∑
n=v

Bn
k(x;q)

tn−v

(n− v)!
= [x]v

∞

∑
n=0

Bn
k(x;q)

tn

n!
.

Thus we have

∞

∑
n=0

Bn+v
k (x;q)

tn

n!
= [x]v

∞

∑
n=0

Bn
k(x;q)

tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the
above equation, we arrive at the desired result.�

7 Relations between q-Beta polynomials,
Bernoulli polynomials, Euler polynomials
and Stirling numbers

In this section, we derive some identities related to the
q-Beta polynomials, the Bernoulli polynomials, the Euler
polynomials and the Stirling numbers of the second kind.

The Bernoulli polynomials B(v)
n (x) of higher-order,

the Euler polynomials En(x) and the Stirling numbers of
the second kind are defined by means of the following
generating functions, respectively: Let v be a positive
integer.

tvetx

(et −1)v =
∞

∑
n=0

B(v)
n (x)

tn

n!
,(|t|< 2π) (15)

2etx

et +1
=

∞

∑
n=0

En(x)
tn

n!
,(|t|< π) (16)

and
(et −1)v

v!
=

∞

∑
n=0

S(n,v)
tn

n!
(17)

which of course
B(v)

n (0) = B(v)
n

and
En(0) = En

where B(v)
n and En are denoted the Bernoulli numbers of

higher-order and the Euler numbers, respectively [2,8–10,
12, 13, 20, 21].
Theorem 7.1.

Bn
k(x;q) =

k!
(n)k

[x]k

[x+1]k
n

∑
j=k

(
n
j

)
B(k)

n− j ([1+ x])S( j,k).

Proof. By using (5), (15) and (17), we get

∞

∑
n=0

Bn
k(x;q)

tn

n!
=

k! [x]k

(t [x+1])k

(
∞

∑
n=0

B(k)
n ([1+ x])

tn

n!

)

×

(
∞

∑
n=0

S(n,k)
tn

n!

)
.

Thus, by using the Cauchy product in the above equation
and then equating the coefficients of tn

n! on both sides of
the resulting equation, we get the desired result.�

Theorem 7.2.

Bn
k(x;q) =

[x]k

2 [x+1]k
(En (1+[1+ x])+En ([1+ x])) .

c⃝ 2013 NSP
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Proof. By using (5) and (16), we obtain

∑∞
n=0B

n
k(x;q) tn

n! =
[x]k

2[x+1]k
∑∞

n=0 (En (1+[1+ x])+En ([1+ x])) tn

n! .

Thus, equating the coefficients of tn

n! on both sides of the
resulting equation, we get the desired result.�

8 Beta distribution

In this section we give some remarks and comments on
the q-Beta polynomials and the beta distribution. The beta
distribution has the following probability density function

f (x) =
(x−a)β (b− x)α

(b−a)α+β+1B(β +1,α +1)
(18)

where a ≤ x ≤ b and B(u,v) is denoted the beta function,
which is given by equation (12).
The above formula is the work of Xiu and Karniadakis
[22].
By substituting β = n − k, n ≥ k, n,k ∈ N, α = k, a =
−1 and b = 0 into (18), domain of f (x) is −1 ≤ x ≤ 0.
Therefore, we now give the following probability density
function associated with the beta polynomials.

Let X be a continuous random variable, defined on the
interval (−1,0). A continuous random variable X has the
following distribution with parameters k and n:

fB(x;k,n) =
(−1)kBn

k(x;1)
B(n− k+1,k+1)

(19)

−1 < x < 0. One can easily see that

0∫
−1

fB(x;k,n)dx = 1.

A moment generating function of a random variable X
is defined as follows:
Definition 8.1. The moment generating function of a
random variable X , denoted by MX (t), is defined as

MX (t) = E
(
ext)

provided that the expectation is finite for |t| < a with
some a > 0 ( [11, p. 79, Definition 2.3.3]).

Due to definition of the expectation, one can easily see
that

MX (0) = 1.

The moment generating function has many applications in
probability theory and statistics.

The rth moment ηr of X is given by the following
formula:

ηr =
dr

dtr MX (t) |t=0. (20)

By using (19) and (20), one can easily see that

dr

dtr MX (t) =
dr

dtr

0∫
−1

ext fB(x;k,n)dx,

and then it becomes clear that, by using differentiation
under the integral sign, dr

dtr MX (t) when evaluated at t = 0
will coincide with

ηr =

0∫
−1

xr fB(x;k,n)dx.

From the above rth moment formula, we now compute
some moments as follows:

η1 =

0∫
−1

x fB(x;k,n)dx =−B(k+2,n− k+1)
B(n− k+1,k+1)

=− k+1
n+2

,

and

η2 =

0∫
−1

x2 fB(x;k,n)dx =
B(k+3,n− k+1)
B(n− k+1,k+1)

=
k2 +3k+2

n+3
.

By using η1 and η2, we find expectation E(X) and
variance σ2 of the probability density function fB(x;k,n)
as follows, respectively:

E(X) = η1 =− k+1
n+2

and
σ2 = η2 −η2

1

=
k2 +3k+2

n+3
−
(

k+1
n+2

)2

.

Remark 8.1. The q-beta polynomials may be related to
(q-) beta distribution in q-probability density function.

9 Application of some integral transforms to
the generating function

In this section, by applying the Mellin transform, the
Fourier transform and the Laplace transform to the
generating functions for the q-Beta polynomials, we
obtain not only interpolation function, but also some
interesting series representations for the q-Beta
polynomials.
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In terms of the generating function Fq,k(t,x) occurring
in (6), integral representation for the interpolation
function of the q-Beta polynomials, which involves the
Mellin transformation is given by

Sq(x,n,k) =
1

Γ (s)

∞∫
0

ts−1Fq,k(−t,x)dt,

where
ℜ(s)> 0

the additional constraint |q|< 1 and 1+x > 0 are required
for the convergence of the above integral. Therefore, we
assume that |q [x]|< 1, then we obtain

Sq(x,s,k) =
∞

∑
j=0

(−1) j
(

j+ s+ k−1
s+ k−1

)
q j [x]k+ j .

We modify the function Sq(x,s,k) as follows:

Sq(x,s,k) =
[x]k

[1+ x]s+k , (21)

where |q| < 1 and x ∈ (−1,0] and k is a nonnegative
integer.

The function Sq(x,s,k) is a meromorphic function.
One can see that Sq(−1,s,k) = ∞. This function has also
a zero of order k at x = 0.

Upon substituting s =−n, (n ∈ N) into (21), we easily
find that

Sq(x,−n,k) =Bn
k(x;q).

By using (6), we get the following functional equation:

Fq,k(t,x)e
− t

1−q =

(
[x]

[1+ x]

)k

e−
tq1+x
1−q . (22)

Combining (5) and (22), we obtain

∞

∑
n=0

Bn
k(x;q)

tn

n!
e−

t
1−q =

(
[x]

[1+ x]

)k

e−
tq1+x
1−q . (23)

Integrating this equation with respect to t from 0 to ∞, we
get

∞

∑
n=0

Bn
k(x;q)
n!

∞∫
0

tne−
t

1−q dt =
(

[x]
[1+ x]

)k ∞∫
0

e−
tq1+x
1−q dt,

where the additional constraint 0 < q < 1 and 1+ x > 0
are required for the convergence of the above integral. By
using the Laplace transform in the above equation, we
arrive at the following theorem:
Theorem 9.1. Let 0 < q < 1 and x ∈ [−1,0]. Then we have

∞

∑
n=0

Bn
k(x;q)(1−q)n = q−(1+x)

(
[x]

[1+ x]

)k

.

By applying the Fourier transform to (22), we get

∞

∑
n=0

Bn
k(x;q)
n!

∞∫
0

tne−
t

1−q e−istdt

=

(
[x]

[1+ x]

)k ∞∫
0

e−
tq1+x
1−q e−istdt.

After some elementary calculations from this equation,
we arrive at the following theorem:
Theorem 9.2. Let 0 < q < 1 and x ∈ [−1,0] and s ∈ R.
Then we have

∞

∑
n=0

Bn
k(x;q)

(1−q)n

(1+(1−q) is)n+1

=
1

q1+x +(1−q) is

(
[x]

[1+ x]

)k

.

where
∣∣∣ 1−q1+x

1+(1−q)is

∣∣∣< 1.

By using (22), we find the following identities related
to the q-Beta polynomials.
Theorem 9.3.

n

∑
j=0

(
n
j

)
(q−1) jB j

k(x;q) =
(

[x]
[1+ x]

)k

qn(1+x),

and

Bn
k(x;q) =

(
[x]

[1+ x]

)k n

∑
j=0

(−1) j
(

n
j

)
q j(1+x)

(1−q)n .

10 Applications the p-adic Volkenborn
integral to the q-beta polynomials

By using the p-adic Volkenborn integrals on Zp, we
derive some identities associated with the q-beta
polynomials, the Carlitz’s q-Bernoulli numbers, and the
Kim’s q-Euler numbers.

In order to derive the main results in this section, we
recall some well known results related to the p-adic
Volkenborn integral.

Let p be a fixed prime. It is known that

µq(x+d pNZp) =
qx

[d pN ]

is a distribution on Zp for q ∈ Cp with | 1− q |p< 1 [8,
9, 21]. Let UD(Zp) be the set of uniformly differentiable
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functions on Zp. The p-adic q-Volkenborn integral of the
function f ∈UD(Zp) was defined by Kim [9] as follows:

∫
Zp

f (x)dµq(x) = lim
N→∞

1
[pN ]

pN−1

∑
x=0

f (x)qx (24)

see also [8, 21].
By using the above integral, we have the Witt’s formula
for the Carlitz’s q-Bernoulli numbers βn,q as follows:∫

Zp

[x]n dµq (x) = βn,q (25)

[8, 9, 21]. These numbers are given explicitly as follows:

β0,q = 1

and

q(qβ +1)n −β =

{
1, n = 1
0, n > 1

with the usual convention of replacing β j by β j [3, 21].
The Witt’s formula for the q-Euler numbers Kn,q was

given by Kim [9] as follows:∫
Zp

[x]n dµ−q (x) = Kn,q. (26)

These numbers are defined by

Kn,q = [2]
(

1
1−q

)n n

∑
j=0

(−1) j
(

n
j

)
1

q j+1 +1

[8, 9].
Observe that

lim
q→1

Kn,q = En,

En is denoted the Euler numbers, which are defined by
means of the following generating function:

2
et +1

=
∞

∑
m=0

En
tn

n!

[8, 9].
Theorem 10.1.∫

Zp

Bn
k(x;q)dµq (x) =

n−k

∑
j=0

(
n− k

j

)
qn−k− jβn− j,q.

Proof. By using (1), we get

Bn
k(x;q) =

n−k

∑
j=0

(
n− k

j

)
qn−k− j [x]n− j . (27)

By applying the p-adic q-Volkenborn integral to the above
equation, we obtain∫
Zp

Bn
k(x;q)dµq (x)=

n−k

∑
j=0

(
n− k

j

)
qn−k− j

∫
Zp

[x]n− j dµq (x) .

By using (25) in the above equation, we arrive at the
desired result.�

Theorem 10.2.∫
Zp

Bn
k(x;q)dµ−q (x) =

n−k

∑
j=0

(
n− k

j

)
qn−k− jKn− j,q.

Proof. By replacing q by −q in (24), one has the p-adic
fermionic q-Volkenborn integral. By applying this integral
to (27), we get∫
Zp

Bn
k(x;q)dµ−q (x)=

n−k

∑
j=0

(
n− k

j

)
qn−k− j

∫
Zp

[x]n− j dµ−q (x) .

By using (26) in the above equation, we arrive at the
desired result.�
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