
Appl. Math. Inf. Sci.7, No. 6, 2515-2518 (2013) 2515

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070646

Different Types of Periodic Activities in a Calcium
Oscillation Model
Li Yuanhua, Zhou Yi and Ji Quanbao∗

Dept. of Math., Huainan Normal University, Huainan 232038, Anhui, P. R. China

Received: 12 Apr. 2013, Revised: 17 Aug. 2013, Accepted: 19 Aug. 2013
Published online: 1 Nov. 2013

Abstract: In this paper, a model proposed by Marhl et al. is considered to investigate the effect of several parameters on the calcium
bursting oscillation behavior. Different types of bursting are presented. Fast-slow burster analysis and first return map are used to
explain the mechanism of the four types of bursting. The results are instructive for understanding the role of these parameters played in
complex dynamics in the Marhl-Haberichter calcium oscillation model.
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1 Introduction

In excitable as well as in non-excitable cells, many
processes, such as cell secretion and egg fertilization, are
performed by the oscillatory changing of free cytosolic
calcium concentration. Calcium oscillations were found
experimentally in the 1980s [1]. A large number of
experimental works have confirmed the significant role of
bursting oscillations in cell signaling. Due to the
importance of oscillations, several mathematical models
were established in order to explain the
mechanism [2–10].

The first model was established by Shen and
Larter [5], and its functioning bases on two main
mechanisms, i.e. the calcium-induced calcium release
(CICR) and the inositol trisphosphate crosscoupling
(ICC). A more detailed research in explaining the
complex calcium oscillations in non-excitable cells have
been given by Borghans et al. [6] and Houart et al. [7]
followed. In this paper, we focus on effects of different
parameters to study their physiological roles in generating
complex Ca2+ oscillations. Another model demonstrating
bursting oscillations was proposed by Kummer et al. [8],
which incorporates the feedback inhibition on the initial
agonist receptor complex by Ca2+ and activated
phospholipase C (PLC), as well as receptor
type-dependent self-enhanced behavior of the activated
Ga subunit. In the present article, the Marhl-Haberichter

Ca2+ oscillation model [2, 3, 9, 10] is analyzed by using
the so-called fast-slow burster analysis and first return
map [11, 12]. The dynamic mechanism of different
calcium oscillations in non-excitable cells has been
extensively investigated. For more details and analysis
about these results see Ref. [13].

2 Materials and methods

The mathematical model we used was proposed by Marhl
et al. [2]. The model is described by the following
differential equations:

dCacyt

dt
= Jch− Jpump+ Jleak+ Jout− Jin + JCaPr− JPr (1)

dCaer

dt
=

βer

ρer
(Jpump− Jch− Jleak) (2)

dCam

dt
=

βm

ρm
(Jin − Jout) (3)

whereJch = kch
Ca2

cyt

Ca2
cyt+K2

1
(Caer−Cacyt), Prtot = Pr+CaPr,

Jpump = kpumpCacyt, JPr = k+CacytPr, JCaPr = k−CaPr,

Jleak= kleak(Caer−Cacyt), Jout = (km
Ca2
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Ca2
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1
+ kmit)Cam,
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Catot = Cacyt + ρer
βer

Caer + ρm
βm

Cam + CaPr,

Jin = kin
Ca8

cyt

Ca8
cyt+K8

2
.

Three variables in the system are: the free Ca2+

concentration in the cytosol (Cacyt), free Ca2+

concentration in the endoplasmic reticulum(ER) (Caer),
and the free Ca2+ concentration in the mitochondria
(Cam).

Parameters for which all calculations are made if not
otherwise stated:kleak = 0.01s−1, kpump = 20.0s−1,
kin = 300µMs−1, km = 125s−1, k+ = 0.09µMs−1,
k− = 0.01s−1, K1 = 5.0µM, K2 = 0.8µM, Catot = 90µM,
Prtot = 120µM, ρer = 0.01, βer = 0.0025, ρm = 0.01,
ρm = 0.0025.

Equations (1)-(3) construct a full system with the fast
subsystem (FS.) and the slow subsystem (SS.). In the
fast-slow analysis, we determine the type of bursting by
behavior of FS, where the slow variableCam is
considered as bifurcation parameter.

3 Results

When kch = 1500, there is a point-cycle bursting of
subHopf-suHopf type, as shown in Fig.1 and 2. HB and
LPC are subcritical Hopf bifurcation and fold limit cycle
bifurcation respectively. Solid and doted lines (right and
left side of HB) are stable and unstable steady state. Dash
(thin solid) lines are stable (unstable) periodic solutions.
The closed line represents the limit cycle trajectory of the
complete system.

Fig. 1. Time series ofCacyt with kch = 1500 of point-cycle
bursting.

Fig. 2. Fast-slow dynamical analysis of point-cycle bursting.

The main character of this type is the active and silent
phases of bursting depend on a stable steady state and a
stable limit cycle related to a subHopf bifurcation at HB,
see Fig.2. When the trajectory passes the subcritical Hopf
bifurcation (HB), the stable steady state branch turns
unstable. Therefore, the trajectory unfolds from the
unstable steady state to stable periodic attractors. This
starts the active phase of bursting. As time progresses the
trajectory passes through the unstable limit cycle. Due to
the attractive stable foci, the trajectory turns to the stable
steady state on the other side of the subcritical Hopf
bifurcation. The silent phase of bursting starts again.

When kch = 2225 andkleak = 0.03, this system has
two attractors. The trajectory tends to one of them,
depending on the different initial conditions. This
phenomenon is called birhythmicity. For one initial
condition (Cacyt = 0.5,Caer = 0.5,Cam = 0.85), there is
only regular spiking ofCam shown in Fig.3, so the
trajectory is a simple unfolded limit cycle, as illustratedin
Fig.4. However, for another initial condition
(Cacyt = 0.5,Caer = 0.5,Cam = 1) one period of
oscillations ofCam composes of two spikes differed in the
amplitude (as shown in Fig.5, which leads to a double
folded limit cycle (see Fig.6. Bifurcation analysis is
similar to the above and omitted here).

Fig. 3. Time series of birhythmic bursting withkch = 2225 and
kleak = 0.03.

Fig. 4. Unfolded limit cycle trajectory of the complete system in
(Cacyt ,Cam)-plane.
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Fig. 5. Time series ofCam with kch = 2225 andkleak = 0.03 for
different initial conditions.

Fig. 6. Folded limit cycle trajectory of the complete system in
(Cacyt ,Cam)-plane.

When kch = 2000 andkpump = 17.8, the full system
has four attractors. We call this phenomenon
quadric-rhythmicity (see Fig.7). For some strict
conditions, the trajectory of the complete system can
show quadruple folded limit cycle (as shown in Fig.8).
Fig.9 shows such a return map for an example of
quadric-rhythmic bursting. In this figure, the successive
maxima of Cam are plotted against their predecessors.
Points of the bisector line represent cycles of constant
amplitudes. Each single point of the return map represents
one cycle of the system trajectory.

Fig. 7. Time series of quadric-rhythmic bursting with
kch = 2000 andkpump = 17.8.

Fig. 8. Trajectory of the complete system in(Cacyt ,Cam)-plane
with kch = 2000 andkpump = 17.8.

Fig. 9. Return map ofCam with kch = 2000 andkpump = 17.8.

We start at the point A (marked by an arrow in the
anti-clockwise direction), along the grey line, then we pass
point B, C and D. At last we return to point A. This is a
strong evidence for quadric-rhythmic bursting.

Fig. 10. Time series of chaotic bursting withkch = 1800 and
kpump = 17.8.

Fig. 11. Return map ofCam with kch = 1800 andkpump = 17.8.

When kch = 1800 andkpump = 17.8, the full system
displays a chaotic bursting. These chaotic behaviors are
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characterized by a positive value of the largest Lyapunov
exponent and neglected here. Forkch = 1800 and
kpump= 17.8, the time course of chaos is shown in Fig.10.
Note that the amplitudes of theCacyt spikes keep almost
constant all the time. The corresponding return map to the
time series is presented in Fig.11. In this figure, the
successive maxima ofCam are plotted against their
predecessors. From this figure we can see that these
points is very messy, which means the occurrence of
chaos.

4 Discussion

In this paper, the effects of different parameters on the
Ca2+ oscillations have been studied. Four types of
bursting Ca2+ oscillations are given. Separately, we
analyze point-cycle bursting of subHopf-subHopf type,
birhythmicity, quadric-rhythmicity and chaos. Lots of
studies show that frequency encoding and amplitude
encoding play an extraordinary role in information
processing and signal transduction in many biological
systems. From this point of view, it is very important to
analyze different types of bursting calcium oscillations,
since different types of bursting behavior could reflect
different encoding of biologically relevant information.
Therefore, more types of bursting behavior should be
found and further studies will be necessary to determine
more precisely effects of different parameters on the Ca2+

oscillations.
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