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Abstract: In this paper, we introduce a new system of quasi variational inequalities.The projection technique is used to establish the
equivalence between this new system of quasi variational inequalities andthe fixed point problem. The fixed point formulation enables
us to suggest some parallel projection iterative methods for solving the system of quasi variational inequalities. Convergence analysis
of the proposed methods is investigated. Several special cases are discussed. Results proved in this paper continue to hold for these
problems.
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1 Introduction

Variational inequalities theory, which was introduced by
Stampacchia [24], is rich in contents. It offers many
beautiful results that are simple and yet striking in their
formulation, diverse as well as powerful in their
applications. Variational inequalities have been
generalized and extended in several directions using
innovative and novel techniques. A useful generalization
of the variational inequalities is called quasi variational
inequalities, the origin of which can be traced back to
Bensoussan and Lions [2, 3]. It is worth mentioning that
the involved convex set in the formulation of quasi
variational inequalities depends upon the solution
implicity or explicitly. For the recent applications,
numerical methods, and other aspects of quasi variational
inequalities, see ( [1]- [25]) and the reference their in.

It turned out that quasi variational inequality is very
difficult class of problems. To develop implementable and
efficient methods for solving new quasi variational
inequalities is still a challenging task. The normal
technique is to show that the quasi variational inequalities
are equivalent to the fixed point problem. This alternative
equivalent formulation is used to propose some projection
type methods for solving the quasi variational
inequalities, see [4, 12, 13, 18, 22] for a special class of

convex-valued set.

Motivated and inspired by the recent research going in
this field, we introduce and consider a new system of
quasi variational inequalities. The projection method is
used to establish the equivalence between the system of
quasi variational inequalities and the fixed point
problems. This alternative equivalence is used to suggest
and analyze some parallel projection algorithms for
solving this system of quasi variational inequalities. The
convergence analysis of the proposed parallel algorithm is
consider under suitable conditions. Some special cases
are discussed. Results proved in this paper continue to
hold for these cases. Our results may be viewed as a
refinement of the known results for quasi variational
inequalities and related optimization problems. It is
expected that the ideas and techniques of this paper
stimulate further research in this field.

2 Preliminaries and Basic results

Let H be a real Hilbert space, whose inner product and
norm are denoted by〈., .〉 and‖.‖ respectively. LetK be a
nonempty closed and convex set inH andT1,T2 : H → H
be two different operators.
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Given two point-to-set mappingsK1 : x → K1(x) andK2 :
y → K2(y), which associate two closed convex setsK1(x)
and K2(y) with any elementsx,y of H, we consider the
problem of finding(x,y) ∈ K1(x)×K2(y) such that

〈ρ1T1y+ x− y,x1− x〉 ≥ 0, ∀x1 ∈ K1(x)
〈ρ2T2x+ y− x,x2− y〉 ≥ 0, ∀x2 ∈ K2(y)

}

, (1)

whereρ1 > 0 andρ2 > 0 are constants. The system (1) is
called a system of quasi variational inequalities.

I. If T1 = T2 = T , an operator, then problem (1) is to find
(x,y) ∈ K1(x)×K2(y) such that

〈ρ1Ty+ x− y,x1− x〉 ≥ 0, ∀x1 ∈ K1(x)
〈ρ2T x+ y− x,x2− y〉 ≥ 0, ∀x2 ∈ K2(y)

}

, (2)

is also called the system of quasi variational inequalities
and appears to be a new one.

II. If K1(x) = K2(y)≡ K(x) andT1 = T2, then problem (1)
reduces to findingx ∈ K(x) such that

〈T x,v− x〉 ≥ 0, ∀v ∈ K(x), (3)

is known as quasi variational inequality, introduced and
studied by Bensoussan and Lions [2, 3]. For the
formulation, applications, numerical methods and other
aspects of the quasi variational inequalities, see
( [1]- [23]) and the references therein.

III. If K1(x) = K1, a closed convex set inH andK2(y) =
K2, a closed convex set inH, then problem (1) collapses
to: Find(x,y) ∈ K1×K2 such that

〈ρ1T1y+ x− y,x1− x〉 ≥ 0, ∀x1 ∈ K1
〈ρ2T2x+ y− x,x2− y〉 ≥ 0, ∀x2 ∈ K2

}

, (4)

which is called a system of variational inequalities and
appears to be new.

IV. If K1 =K2 =K, a closed convex set inK, then problem
(4) reduces to finding(x,y) ∈ K such that

〈ρ1T1y+ x− y,x1− x〉 ≥ 0, ∀x1 ∈ K
〈ρ2T2x+ y− x,x2− y〉 ≥ 0, ∀x2 ∈ K

}

, (5)

which has been studied extensively in recent years.

V. If K1(x) = K2(y) = K(x), a closed convex-valued set in
H, then problem (1) is equivalent to finding(x,y) ∈ K(x)
such that

〈ρ1T1y+ x− y,x1− x〉 ≥ 0, ∀x1 ∈ K(x)
〈ρ2T2x+ y− x,x2− y〉 ≥ 0, ∀x2 ∈ K(x)

}

, (6)

which is called the system of quasi variational
inequalities and appears to be new one.

VI. If T1 = T2 = T , an operator andK1 = K2 = K, then
problem (5) is equivalent to findingx ∈ K such that

〈T x,x1− x〉 ≥ 0, ∀x1 ∈ K, (7)

which is known as the original variational inequality
introduced and studied by Stampachia [24] in 1964. For
the applications, generalizations, numerical methods and
related optimization problems, see ( [1]- [25]).
We now recall some basic results and concepts.

Lemma 2.1 [9]. Let K be a closed and convex set inH.
Then, for a givenz ∈ H, u ∈ K satisfies the inequality

〈u− z,v−u〉 ≥ 0,∀v ∈ K,

if and only if,

u = PKz,

wherePK is the projection ofH onto the closed convex
set.
It is known that the projection operatorPK is
nonexpensive, that is

‖PKu−PKv‖ ≤ ‖u− v‖, ∀u,v ∈ H.

The projection operator of H onto the closed
convex-valued setK(u) is denoted byPK(u). It is known
that the projection operatorPK(u) is not nonexpensive.
However, it satisfies Lipschitz type continuity condition.
We need the following assumption for the operatorsPK1(x)
andPK2(y), see [14]

Assumption 2.1. The operatorsPK1(x) and PK2(y) satisfy
the conditions:

‖PK1(x1)w−PK1(x2)‖ ≤ υ1‖x1− x2‖, ∀x1,x2,w ∈ H

and

‖PK2(y1)w−PK2(y2)‖ ≤ υ2‖y1− y2‖, ∀y1,y2,w ∈ H

whereυ1 > 0 andυ2 > 0 are constants.
Assumption 2.1 plays an important role in the
investigation of the convergence analysis of the iterative
methods.

Definition 2.1. An operatorT : H → H is said to be:
(i) strongly monotone, if there exists a constantα > 0 such
that

〈Tu−T v,u− v〉 ≥ α||u− v||2, ∀u,v ∈ H.

(ii) Lipschitz continuous, if there exists a constantβ > 0
such that

||Tu−T v|| ≤ β ||u− v||, ∀u,v ∈ H.

Note that, ifT satisfies(i) and(ii), thenα ≤ β .

3 Main Results

In this section, we first show that the system of quasi
variational inequalities (1) is equivalent to a system of
fixed point problems. This alternative equivalent
formulation is used to suggest a parallel projection
iterative methods for solving (1).
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Lemma 3.1. The system of quasi variational inequalities
(1) has a solution,(x,y) ∈ K1(x)×K2(y), if and only if,
(x,y) ∈ K1(x)×K2(y) satisfies the relations.

x = PK1(x)[y−ρ1T1y] (8)

y = PK2(y)[x−ρ2T2x], (9)

whereρ1 > 0 andρ2 > 0 are constants. HerePK1(x) and
PK2(y) are projection ofH onto the closed convex-valued
setsK1(x) andK2(y), respectively.

Proof.Let (x,y)∈ K1(x)×K2(y) be a solution of (1). Then,

〈ρ1T1y+ x− y,x1− x〉 ≥ 0, ∀x1 ∈ K1(x)

and

〈ρ2T2y+ y− x,x2− y〉 ≥ 0, ∀x2 ∈ K2(x).

Using Lemma 2.1, we have (8) and (9). �

Lemma 3.1 implies that the system (1)is equivalent to the
fixed point problems (9) and (8). We can rewrite (9) and
(8) in the following equivalent forms.

x = (1−αn)x+αnPK1(x)[y−ρ1T1y] (10)

y = (1−βn)y+βnPK2(y)[x−ρ2T2x], (11)

whereαn,βn ∈ [0,1] for all n ≥ 0.
This equivalent formulation is used to suggest the
following parallel projection iterative method for solving
system of quasi variational inequalities (1).

Algorithm 3.1. For a given(x0,y0) ∈ K1(x0)× K2(y0),
find (xn+1,yn+1) by the iterative schemes

xn+1 = (1−αn)xn +αnPK1(xn)[yn −ρ1T1yn] (12)

yn+1 = (1−βn)yn +βnPK2(yn)[xn −ρ2T2xn]. (13)

Algorithm 3.1 is called the parallel projection method,
which is suitable for implementation on two different
processor computers. It is well known that parallel
projection methods are better than the sequential iterative
methods. To the best of our knowledge, Algorithm 3.1 has
not been studied previously for solving the system of
quasi variational inequalities.

I. If T1 = T2 = T , then Algorithm 3.1 reduces to

Algorithm 3.2. For a given(x0,y0) ∈ K1(x0)× K2(y0),
find the approximate solution by the iterative schemes

xn+1 = (1−αn)xn +αnPK1(xn)[yn −ρTyn]

yn+1 = (1−βn)yn +βnPK2(yn)[xn −ρT xn],

whereαn,βn ∈ [0,1] for all n ≥ 0.

II. If K1(x) = K1 andK2(y) = K2 are closed convex sets
in H, then Algorithm reduces to the following parallel
algorithm for solving the system of variational
inequalities (3).

Algorithm 3.3. For a given(x0,y0) ∈ K1 ×K2, find the
approximate solution(xn,yn) by the iterative schemes

xn+1 = (1−αn)xn +αnPK1[yn −ρ1T1yn]

yn+1 = (1−βn)yn +βnPK2[xn −ρ2T2xn],

whereαn,βn ∈ [0,1] for all n ≥ 0.

For suitable and appropriate choice of the operators,
convex sets and space, one can obtain several new and
known iterative methods for solving system of (quasi)
variational inequalities and related problems.

We now investigate the convergence analysis of
Algorithm 3.1 and this is the main motivation of our next
result.

Theorem 3.1. Let T1,T2 be strongly monotone with
constantsα1 > 0,α2 > 0 and Lipschitz continuous with
constantsβ1 > 0,β2 > 0, respectively. If Assumption 2.1
and following conditions hold:

(i) θ1 =
√

1−2ρ1α1+β 2
1 ρ2

1 such that 0< θ < 1.

(ii) θ2 =
√

1−2ρ2α2+β 2
2 ρ2

2 such that 0< θ < 1.

(iii) 0≤ αn,βn ≤ 1,(αn(1−υ1)−θ2βn)≥ 0
and

(βn(1−υ2)−θ1αn)≥ 0,

such that
∞

∑
n=0

(αn(1−υ1)−θ2βn) = ∞,

∞

∑
n=0

(βn(1−υ2)−θ1αn) = ∞,

then sequences{xn} and {yn} obtained from Algorithm
3.1 converge tox andy respectively.

Proof. Let (x,y) ∈ K1(x)× K2(y) be a solution of (1).
Then, from (9), (10) and (12), we have

‖xn+1− x‖

≤ (1−αn)‖xn − x‖+αn‖PK1(xn)[yn −ρ1T1yn]

−PK1(x)[y−ρ1T1y]‖

≤ (1−αn)‖xn − x‖+αn‖PK1(xn)[yn −ρ1T1yn]

−PK1(x)[yn −ρ1T1y1]‖

+αn‖PK1(x)[yn −ρ1T1yn]−PK1(x)[y−ρ1T1y]‖

≤ (1−αn)‖xn − x‖+αnυ1‖xn − x‖

+αn‖yn − y−ρ1(T1yn −T1y)‖

= (1−αn(1−υ1))‖xn − x‖

+αn‖yn − y−ρ1(T1yn −T1y)‖. (14)

SinceT1 is strongly monotone with constantsα1 > 0 and
Lipschitz continuous with constantβ1 > 0, so

‖yn − y−ρ1(T1yn −T1y)‖2

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2496 M. A. Noor, K. I. Noor: Some Parallel Algorithms for a New System of...

≤ ‖yn − y‖2−2ρ1〈T1yn −T1y,yn − y〉+ρ2‖T1yn −T1y‖2
,

≤ (1−2ρ1α1+ρ2
1β 2

1 )‖yn − y‖2
. (15)

From (15) and (14), we obtain

‖xn+1− x‖

≤ (1−αn(1−υ1))‖xn − x‖+

αn

√

1−2ρ1α1+ρ2
1β2‖yn − y‖ (16)

= (1−αn(1−υ1))‖xn − x‖+αnθ1‖yn − y‖.

In a similar way, from (11), (13) and (15), we have

‖yn+1− y‖

≤ (1−βn)‖yn − y‖+βn‖PK2(yn)[xn −ρ2T2xn]

−PK2(y)[x−ρ2T2x]‖

≤ (1−βn)‖yn − y‖+βn‖PK2(yn)[xn −ρ2T2xn]

−PK2(y)[xn −ρ2T1xn]‖

+βn‖PK2(y)[xn −ρ2T2xn]−PK2(y)[x−ρ2T2x]‖

≤ (1−βn)‖yn − y‖+βnυ2‖yn − y‖

+βn‖xn − x−ρ2(T2xn −T2x)‖

= (1−βn(1−υ2))‖yn − y‖

+βn

√

1−2ρ2α2+ρ2
2β2‖xn − x‖

= (1−βn(1−υ2))‖yn − y‖+βnθ2‖xn − x‖, (17)

where we have used the fact that Assumption 2.1 holds
and the operatorT2 is strongly monotone with constant
α2 > 0 and Lipschitz continuous with constantβ2 > 0
respectively.
From (17) and (16), we have

‖xn+1− x‖+‖yn+1− y‖

≤ (1−αn(1−υ1)+βnθ2)‖xn − x‖

+(1−βn(1−υ2)+αnθ1)‖yn − y‖

≤ max{((1−αn(1−υ1)−βnθ2),

(1−βn(1−υ2)−αnθ1))(‖xn − x‖+‖yn − y‖)}

≤ max(w1,w2)(‖xn − x‖+‖yn − y‖), (18)

where

w1 = 1− (αn(1−υ1)−βnθ2)

w2 = 1− (βn(1−υ2)−αnθ1).

Define the norm‖(., .)‖ on H by

‖(u,v)‖= ‖u‖+‖v‖, ∀u,v ∈ H ×H.

Using the fact thatH×H is a Banach space, and from (18),
we have

‖(xn+1,yn+1)− (x,y)‖ ≤ max(w1,w2)‖(xn,yn)− (x,y)‖.

From assumption (iii), we have

lim
n→∞

‖(xn+1,yn+1)− (x,y)‖= 0.

This implies that

lim
n→∞

‖xn+1− x‖= 0,

and

lim
n→∞

‖yn+1− y‖= 0,

the required result. �

We now suggest and analyze some new iterative methods
for solving system of quasi variational inequalities (1).

Using Lemma 3.1, one can easily show that
(x,y) ∈ K1(x)×K2(y) is a solution of (1) if and only if,
(x,y) ∈ K1(x)×K2(y) satisfies

x = PK1(x)z (19)

y = PK2(y)w (20)

z = y−ρ1T1y (21)

w = x−ρ2T2x. (22)

This alternative formulation can be used to suggest and
analyze the following iterative methods for solving the
system of quasi variational inequalities (1).

Algorithm 3.4. For a given(x0,y0), find the approximate
solutionsxn+1 andyn+1 by the iterative schemes

xn+1 = PK1(xn)zn (23)

yn+1 = PK2(yn)wn (24)

zn = yn −ρ1T1yn (25)

wn = xn −ρ2T2xn, n = 0,1,2. . . (26)

If T1 = T2 = T , an operator, then Algorithm 3.4 reduces
to:

Algorithm 3.4. For a givenx0 andy0 find the approximate
solutionsxn+1 andyn+1 by the iterative schemes:

xn+1 = PK1(xn)zn

yn+1 = PK2(yn)wn

zn = yn −ρ1yn

wn = xn −ρ2T xn, n = 0,1,2. . .

For appropriate and suitable choice of the operators,
convex sets and spaces, one can obtain several new and
previously known iterative methods for solving system of
quasi variational inequalities and related optimization
problems.

We now consider the convergence of Algorithm 3.4 and
this is the main motivation of our next result.

Theorem 3.2.Let T1,T2 be strongly monotone with
constantsα1 > 0,α2 > 0 and Lipschitz continuous with
β1 > 0,β2 > 0, respectively. If the Assumption 2.1 and
the following conditions hold:

(i) θ1 = ν1+
√

1−2ρ2α2+ρ2
2β 2

2 < 1

(ii) θ2 = ν2+
√

1−2ρ1α1+ρ2
1β 2

1 < 1,
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then the approximate solutionsxn +1 andyn +1 obtained
from Algorithm 3.4 converge to the exact solutionx and
y, respectively.

Proof. Let (x,y) ∈ K1(x)× K2(y) be a solution of (1).
Then, from (15), (21) and (25), we have

‖zn − z‖

= ‖yn − y−ρ1(T1yn −T1y)‖

≤
√

1−2ρ1α1+ρ2
1β 2

1‖yn − y‖. (27)

In a similar way, from (15), (22) and (26),

‖wn −w‖

= ‖xn − x−ρ2(T2xn −T2x)‖

≤
√

1−2ρ2α2+ρ2
2β 2

2‖xn − x‖. (28)

Using Assumption 2.1, from (19), (23) and (27), we have

‖xn+1− x‖

= ‖PK1(xn)(zn)−PK1(x)(z)PK1(zn)‖

≤ ‖PK1(xn)(zn)−PK1(x)(z)PK1(zn)‖

+‖PK1(xn)(zn)−PK1(x)(z)PK1(zn)‖

≤ ‖zn −Z‖+ν1‖xn − x‖

≤ ν1‖xn − x‖+(
√

1−2ρ1α1+ρ2
1β 2

1 )‖yn − y‖. (29)

Similarly, from (20), (24), (28) and using Assumption 2.1,
we have

‖yn+1− y‖

= ‖PK2(yn)(wn)−PK2(y)(w)PK2(wn)‖

≤ ‖PK2(yn)(wn)−PK2(y)(w)PK2(wn)‖

+‖PK2(yn)(wn)−PK2(y)(w)PK2(wn)‖

≤ ‖wn −w‖+ν2‖yn − y‖

≤ ν2‖yn − y‖+(
√

1−2ρ2α2+ρ2
2β 2

2 )‖xn − x‖. (30)

From (29) and (30), we have

‖xn+1− x‖+‖yn+1− y‖

≤ (ν1+
√

1−2ρ2α2+ρ2
2β 2

2 )‖xn − x‖

+(ν2+
√

1−2ρ1α1+ρ2
1β 2

1 )‖yn − y‖

≤ θ1‖xn+1− x‖+θ2‖yn+1− y‖

≤ max(θ1,θ2)(‖xn − x‖+‖yn − y‖),

where

θ1 = ν1+
√

1−2ρ2α2+ρ2
2β 2

2

θ2 = ν2+
√

1−2ρ1α1+ρ2
1β 2

1 .

Using the technique of Theorem 3.1, it follows that

‖(xn+1,yn+1− (x,y))‖ ≤ maxθ‖(xn,yn)− (x,y)‖,

where
θ = max(θ1,θ2).

From condition (i) and (ii), it follows thatθ1 < 1 andθ2 <

1. This implies thatθ < 1. Thus, one can conclude that

lim
n→∞

‖(xn+1,yn+1− (x,y))‖= 0.

This implies that

lim
n→∞

‖(xn+1− x‖= 0,

and
lim
n→∞

‖(yn+1− y‖= 0;

the required result. �

4 Conclusion

In this paper, we have introduced a new system of quasi
variational inequalities. We have established the
equivalence between the system of quasi variational
inequalities and the fixed point problems. This alternative
formulation is used to suggest and analyze some parallel
algorithms for solving the system of quasi variational
inequalities. Convergence analysis of the proposed
iterative methods investigated. Several special cases are
discussed. The comparison of the proposed methods with
other methods is an open problem. The interested readers
are encouraged to find novel and new applications of the
quasi variational inequalities in pure and applied sciences.
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