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Abstract: In Class-D Power Amplifiers (CDPAs), the power supply noise can intermodulate with the input signal, manifesting into
power-supply induced intermodulation distortion (PS-IMD) and due to the memory effects of the system, there exist asymmetries in
the PS-IMDs. In this paper, a new behavioral modeling based on the Elman Wavelet Neural Network (EWNN) is proposed to study the
nonlinear distortion of the CDPAs. In EWNN model, the Morlet wavelet functions are employed as the activation function and there
is a normalized operation in the hidden layer, the modification of the scale factor and translation factor in the wavelet functions are
ignored to avoid the fluctuations of the error curves. When there are 30 neurons in the hidden layer, to achieve the same square sum
error (SSE)εmin = 10−3, EWNN needs 31 iteration steps, while the basic Elman neural network (BENN) model needs 86 steps. The
Volterra-Laguerre model has 605 parameters to be estimated but still can’t achieve the same magnitude accuracy of EWNN. Simulation
results show that the proposed approach of EWNN model has fewer parameters and higher accuracy than the Volterra-Laguerre model
and its convergence rate is much faster than the BENN model.

Keywords: Class-D Power Amplifier, Behavioral Model, Elman Wavelet Neural Network, Power-Supply Intermodulation Distortion.

1 Introduction

The Class-D Power Amplifiers (CDPAs) are increasingly
ubiquitous largely because of their significantly higher
power efficiency attribute compared to their linear
counterparts [1]. The PWM (Pulse Width Modulation) is
the most prevalent modulation technique. The output
transistors of CDPAs operate in the ohmic and cut-off
regions, make the output voltage contains ripple [2],
whose power spectral density is high at multiples of
switching frequency. But noise in the power-supply has a
greater impact than the switching frequency [3]. One of
the reasons is that the power supply noise may
intermodulate with the input signal, manifesting into
power-supply induced intermodulation distortion
(PS-IMD) [4,5], and that, in some instances, the PS-IMD
can be significantly larger than the output distortion
component at supply noise frequency. As a drawback of
CDPAs, it’s necessary to have a research on the PS-IMD.
A feasible way is to modeling the CDPAs’ nonlinearity
accurately and analysis the spectrum of model’s output.

Behavioral modeling [6] is often used in PA’s
nonlinear analysis because it provides a convenient and
efficient mean to predict system-level performance
without the computational complexity of full circuit
simulation or physical level analysis, thereby significantly
speeding up the analysis process. There has been
intensive research in memoryless nonlinear behavioral
modeling of PAs, however, memory effects in real PAs
often arise due to thermal effects and large time constants
in dc-bias circuits [7]. In the simulations, the PS-IMD is
asymmetrical between the upper and lower sidebands
obviously, which should be caused by the memory effects.
Based on this, behavioral models which have memory
effects are used, such as Volterra series expansion models
[8] and the neural network models [9,10].

Anding Zhu and Thomas J. Brazil proposed a
behavioral model for power amplifiers in [11], by
projecting the classical Volterra series onto a set of
Orthogonal Basis Functions, namely, the Laguerre
functions. This approach enables a substantial reduction
in the number of parameters involved, and allows the
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Fig. 1: Structure of the half-bridge D-class power
amplifier

reproduction of both transient and steady-state behavior
of power amplifiers [12] with excellent accuracy.

The basic Elman neural network (BENN) [13] is a
partial recurrent network model first proposed by Elman
in 1990. Its back-forward loop employs context layer
which is sensitive to the history of input data, so the
network can manifest the memory effect of the power
amplifiers. Since signals of interest can usually be
expressed using wavelet decompositions [14], and signal
processing algorithms can be performed by adjusting only
the corresponding wavelet coefficients, we propose a
behavioral modeling based on BENN and the wavelets
[15] in this paper, namely the Elman Wavelet Neural
Network (EWNN) model [16]. In EWNN model, the
nonlinear Morlet wavelet functions are used as a
substitute for the activation function of hidden layer
neurons in the BENN model. The input data before
wavelet transformation is normalized to guarantee the
convergence of the algorithm. In the learning process of
the EWNN model, the update of the scale factor and
translation factor in the wavelets are ignored as they do
little contribution to the convergence of the algorithm.
The update of two parameters causes a lot of fluctuations
to the square sum error (SSE) and may lead the SSE to a
local minimum. Combining with the fast convergence of
wavelet networks, the proposed modeling is more
effective for power amplifiers than the BENN model.

The remainder of this paper is organized as follows.
The asymmetry of PS-IMD is analyzed in Sect. 2. The
theory of the BENN model is illustrated in Sect. 3. Then
Sect. 4 gives the principle of the EWNN model. The
simulation results and the discussion are given in Sect. 5.

2 THE ASYMMETRY OF PS-IMD IN THE
HALF-BRIDGE CDPA

In this paper, the half-bridge CDPA circuit showed in Fig.
1 [2] is used to analyze the asymmetry of the PS-IMD.

Fig. 2: Output spectrum with the input signal’s frequency
of 3700Hz

The amplitude of input sinusoidal signal is 3V. The
triangular signal has the frequency of 58kHz and the
amplitude of 4V. The power supply is added with a 5%
sinusoidal voltage ripple with the frequency of 400Hz.
The cut-off frequency of the LC low-pass filter is about
10kHz. Since the voltage ripple can’t be filtered by the LC
low-pass filter, there exist PS-IMDs in the output signal.

In two-tone or multi-tone input PAs, there exist
asymmetries in lower and upper sidebands and the
intermodulation distortion magnitude variation depending
on input frequency interval. It is known that these
phenomena come from the memory effects [7], which
means that the output depends not only on the input signal
at the moment but also on the history of past input levels.
Adding a sinusoidal power ripple to the power supply of
the open-loop CDPA circuit, the expression of the PWM
signal before the low-pass filter is given in [4]. It shows
that the PS-IMD should be symmetrical in the output
signal. But in actual, there exists obvious asymmetries in
lower and upper PS-IMDs. We attribute the asymmetry to
the memory effects according to the system of two-tone
input PAs. Fig. 2 gives the output spectrum of the circuit
when the input frequency is 3700Hz. As marked in Fig. 2,
f1 = 400Hz is the frequency of power ripple,f2 = 800Hz
is the second harmonic component off1. f5 = 3700Hz is
the frequency of input sinusoidal signal.

f3 = f5 − 2 f1 and f7 = f5 + 2 f1 are the third-order
intermodulation distortion (PS-IMD3),f4 = f5 − f1 and
f6 = f5 + f1 are the second-order intermodulation
distortion (PS-IMD2). It can be seen that there exists
asymmetry in PS-IMD2 and PS-IMD3.

Fig. 3 gives the measured asymmetry results in
PS-IMD2 and PS-IMD3 by sweeping the input signal’s
frequency from 1.9kHz to 4.3kHz. It can be seen from
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Fig. 3: PS-IMD2 and PS-IMD3 asymmetries

Fig. 4: Structure of the BENN model

Fig.3 that the measured PS-IMD2 difference between
lower and upper terms ranges from 1.21dB to 6.7dB. The
measured PS-IMD3 difference between lower and upper
terms ranges from 2.439dB to 11.92dB. The amount of
the asymmetry depends on the frequency spacing between
the input signal and the power ripple. With the increasing
of the frequency spacing, the asymmetry grows.

3 THE BASIC ELMAN NEURAL
NETWORK

Considering the multi-input and multi-output system, the
BENN model is illustrated in Fig. 4. The BENN model is
composed of four layers: input layer, hidden layer,
context layer, and output layer. The input layer has N

input nodes. It accepts the input variables and transmits to
the hidden layer. The hidden layer has L nodes and
contains the transfer function f. The context layer is the
feedback loop of hidden layer with a self-loop coefficient
α and it has L neural nodes, too. The output of the
context layer atp− th learning step is related to the
output of the hidden layer at(p− 1)th step. The output
layer has M nodes and the outputy j ( j = 1,2, ...,M) is
the linear combination of the output of the hidden layer.
There are three kind of weight in the network:W1 is the
L×M dimensional weight matrix from the hidden layer
to the output layer.W2 is theN× L dimensional weight
matrix from the input layer to the hidden layer.W3 is the
L×L dimensional weight matrix from the context layer to
the hidden layer. The dynamical equations [9] of the
BENN model are as follows:

y(p) =W1(p)H(p) (1)

H(p) = f [W2(p)u+W3(p)Xc(p)] (2)

Xc(p) = αH(p−1) (3)

Wherep is the number of iteration steps andf (x) usually
represents the Sigmoid function.

f (x) =
1

1+e−x (4)

By using the gradient descent (GD) method [15], the
weight values are adjusted so that the SSE is minimized
after training cycles. Suppose that the p-th iteration output
of the network is y(p) , the objective performance
error-function is defined as

E(p) =
1
2
[(yd −y(p))T(yd −y(p))] (5)

Whereyd is the desired output of the model. The partial
derivative of error-function with respect to the weight
parameters are as follows

∆W1
im(p) =−η1

∂E(p)

∂W1
im(p)

= η1δ o
m(p)Hi(p) (6)

∆W2
ji (p) =−η2

∂E(p)

∂W2
ji (p)

= η2δ h
i (p)

∂Hi(p)

∂W2
ji (p)

(7)

∆W3
ki(p) =−η3

∂E(p)

∂W3
ki(p)

= η3δ h
i (p)

∂Hi(p)

∂W3
ki(p)

(8)

With
δ o

m(p) = yd,m−ym(p) (9)

δ h
i (p) =

M

∑
m=1

(δ o
m(p)W

1
im(p)) (10)

∂Hi(p)

∂W2
ji (p)

= f
′

i (.)[u j +α.W3
ii (p).

∂Hi(p−1)

∂W2
i j (p−1)

(11)

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2448 L. Wang et al: Modeling based on Elman Wavelet Neural Network...

∂Hi(p)

∂W3
ki(p)

= f
′

i (.)[α .Hk(p−1)+α .W3
ii (p).

∂Hi(p−1)

∂W3
ki(p−1)

(12)

Where j represents thej − th neuron of the input layer
( j = 1,2, ...,N); i represents thei− th neuron of the hidden layer
(i = 1,2, ...L); k represents thek− th neuron of the context layer
(k = 1,2, ...,L); m represents them− th neuron of the output
layer. η1,η2,η3 represent the learning rate ofW1,W2,W3

respectively.f
′

i is the derived function of the transfer functionf .

4 THE ELMAN WAVELET NEURAL
NETWORK

4.1 The structure of the Elman Wavelet Neural
Network

Since signals of interest can usually be expressed using wavelet
decompositions, and signal processing algorithms can be
performed by adjusting only the corresponding wavelet
coefficients, we use the nonlinear wavelets as the substitute of
the Sigmoid function in the hidden layer and propose a new
model-the Elman Wavelet Neural Network (EWNN) model. The
structure of EWNN is similar to BENN, the only difference is
that the transfer function in the hidden layer is replaced by
wavelet functions. EWNN has combined the properties such as
attractor dynamics of RNN (Recurrent Neural Network) and the
fast convergence of WNN (Wavelet Neural Network), it can
capture the past information of the network and can adapt
rapidly to sudden changes. In this paper, the Morlet wavelet
which is the Gauss wavelet of cosine modulation is chosen as
the mother wavelet in the hidden layer. The mother wavelet
Ψ(x) and the wavelet transformΨai ,bi

zi are defined as follows:

Ψ(x) = cos(1.75x).exp(−
x2

2
) (13)

Ψai ,bi
(zi) = cos(1.75zi).exp(−

z2
i

2
) (14)

In this model, a very important step is to normalizez(p) of the
hidden layer. This operation ensures the convergence of the
algorithm. If don’t do this, the SSE will keep a large value
instead of decreasing with the increasing of the iteration steps.
The normalization function is

zi(p) =
z
′

i(p)

max(|z′(p)|)
(15)

With z
′

i = (hi − bi/ai), where
hi(p) =W2

ji (p).u j(p)+W3
ki(p)Xc,k(p) is the input ofi − th node

in the hidden layer, andai ,bi , are termed as the scale factor and
translation factor of the wavelets in the hidden layer,
respectively. The dynamical equation (2) for hidden layer is
replaced by [17]

H(p) =Ψa,b[W
2(p)u+W3(p)Xc(p)] (16)

Equations (11) and (12) are modified to

∂Hi(p)

∂W2
ji (p)

=
Ψ ′

ai ,bi
(zi)

ai(p)
[u j +α .W3

ii (p).
∂Hi(p−1)

∂W2
i j (p−1)

] (17)

∂Hi(p)

∂W3
ki(p)

=
Ψ ′

ai ,bi
(zi)

ai(p)
[α .Hk(p−1)+α .W3

ii (p).
∂Hi(p−1)

∂W3
ki(p−1)

]

(18)

Ψ
′

ai ,bi
(zi) =−1.75sin(1.75zi).exp(−

z2
i

2
)−zicos(1.75zi).exp(−

z2
i

2
) (19)

The partial derivative of error-function with respect toa andb
are

∆ai(p) =−η4
∂E(p)
∂ai(p)

= η4δ h
i (p)

∂Hi(p)
∂ai(p)

(20)

∆bi(p) =−η4
∂E(p)
∂ai(p)

= η4δ h
i (p)

∂Hi(p)
∂bi(p)

(21)

∂Hi(p)
∂ai(p)

=Ψ
′

ai ,bi
(zi).[−

zi

ai(p)
+α .W3

ii (p).
∂Hi(p−1)
∂ai(p−1)

] (22)

∂Hi(p)
∂ai(p)

=Ψ
′

ai ,bi
(zi).[−

1
ai(p)

+α .W3
ii (p).

∂Hi(p−1)
∂ai(p−1)

] (23)

where η4 and η5 represent the learning rate ofa and b
respectively. The initial value of the parameter vectorsa andb is
usually random. As the changes ofa andb are unpredictable, the
update of them will cause large fluctuations to SSE with the
increase of iterative times. This may make the SSE curve fall
into local minimum and stop the learning process at a wrong
place. To avoid this, here, we take the parametersa and b as
constants and ignore the modification of them. Which means
when training the EWNN model, formulas (20) to (23) are
ignored. Theai(p) in (17) and (18) are also set to 1 to avoid the
fluctuations.

4.2 The training of the EWNN model

By using the GD method updating the weight matrixes, the
training steps to determine the optimal number of hidden
neurons of the EWNN model are as follows:

Step1: Initialize the network. Choose a initial number for
the neurons in hidden layerL = 10. Set the weight matrix
W1,W2,W3to zero matrixes and parametersa, b to be randomly
subject to the standard normal distribution. Set
∂Hi(0)
∂W2

ji (0)
= 0, ∂Hi(0)

∂W3
ki(0)

= 0. Determine the maximum number of

iterations Nmax = 100 and the threshold value of SSE
εmin = 10−3. The initial value of the context layer isXc(0) = 0.
Set the self-loop coefficient of the context layerα = 0.001, the
learning rateη1 = η2 = η3 = 0.01

Step2: According to formula (1) (16) (3), calculate the
outputy(p). Calculate the SSE of thep− th iteration stepE(p),
if E(p) < εmin or the number of iterationp ≥ Nmax, end the
training process, else execute step 3.

Step3: Acquire the adjustment values of the weight
matrixes:∆W1

im(p),∆W2
ji (p), ∆W3

ki(p). Then the parameters are

updated as: W1
im(p + 1) = W1

im(p) + ∆W1
im(p),

W2
ji (p + 1) = W2

ji (p) + ∆W2
ji (p),

W3
ki(p+1) =W3

ki(p)+∆W3
ki(p). Jump to step 2.

Step4: With the weight matrix obtained in step3, calculate
the final outputy of EWNN.

Step5: Change the number of hidden neurons and repeat
step1 to step4. By continuously testing, find the most suitable
number for the hidden neurons.
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Fig. 5: Error curves of the BENN model with the increase
of L,L = [10 : 10 : 110]

5 SIMULATION RESULTS AND THE
ANALYSIS

The simulation data is acquired from the half-bridge CDPA
circuit showed in Fig. 1. The frequency of the input signal is
3700Hz. The data for modeling is achieved by sampling the
circuit’s input x and outputy between 10ms and 20ms and the
sampling frequency is 100kHz. In both the BENN and EWNN
model, the self-feedback coefficientα is set to 0.001 and the
learning rateη1,η2,η3 are set to 0.01.

5.1 Error curves of the BENN and the EWNN
model

Firstly, a study on the relationship between the number of
hidden neurons and the error curve of SSE with the increase of
the iteration steps is done. Set a large number for iteration times
Nmax= 100.

For the BENN model, make the number of hidden neuronsL
increases from 10 to 110 with the interval of 10. The error curves
of SSE with the increase of the number of hidden neurons are
showed in Fig. 5.

For the EWNN model, make the number of hidden neurons
L increases from 10 to 60 with the interval of 5. The error curves
of SSE are showed in Fig. 6. As showed in Fig. 5 and Fig. 6,
with the increase of the iteration number, the error curves of
SSE drop rapidly. The larger the number of hidden neuronsL is,
the faster the error curve drops, and the less iteration number
needed to reach the same SSE. The comparison of the part of
error curves shows that EWNN model has faster convergence
speed than BENN model. WhenL = 30, to achieve the SSE of
0.1, BENN needs about 65 iteration steps, while EWNN needs
only about 25 iteration steps, which is a big reduction of
calculation. To reach the same SSE with the same iteration
times, EWNN needs fewer hidden neurons than BENN. For
instance, when SSE=0.1 and the iteration number is 30, BENN
needs more than 60 hidden neurons while EWNN needs only
about 25 hidden neurons.

Fig. 6: Error curves of the EWNN model with the increase
of L,L = [10 : 5 : 60]

Fig. 7: Error curve of EWNN whenL = 30,εmin = 10−3

In the following paper,L = 30 is selected as the number of
hidden neurons which is appropriate for two neural network
models according to the error curves.

5.2 The influence of the update of parameters a
and b in EWNN

When L = 30, εmin = 10−3, η4 = η5 = 0.01, a comparison
between the EWNN model’s error curve with or without the
update ofa andb of the Morlet wavelets in the hidden layer is
showed in Fig. 7. Herea and b are randomly subject to the
standard normal distribution. It can be seen in Fig.7 that in the
same initial conditions and to achieve the same error threshold,
there are a lot of fluctuations in the error curve with the update
of a, b, and inversely increases the number of iteration steps.
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The fluctuations have no regular pattern. With different
initial value of a and b, the performance of SSE changes:
Sometimes the SSE has local minimum and leads the training
process to a wrong ending or need more iteration steps; In some
other cases, it may need fewer iteration steps than the EWNN
without the update ofa and b. But no matter how to set the
initial value of a and b, the fluctuations are always there.
Making comprehensive consideration for the performance of the
model, it is better to ignore the update ofa and b. In the
following paper, the value ofa andb in EWNN are the same as
used in the simulation of Fig.7.

5.3 Simulation results of three behavioral
models

The Volterra-Laguerre model is proposed in [9] for RF power
amplifiers which is also suitable for modeling CDPAs. There are
two parameters in this model: the number of Laguerre orthogonal
functionsK and the pole of Laguerre functionsλ , |λ |< 1. When
K = 3, this model can’t reconstruct the output no matter how to
set the value ofλ . In this paper, we chooseK = 5 andλ = 0.994.
There are 605 parameters needed to be estimated.

For the BENN and EWNN model, set the iteration times
Nmax = 40. Comparisons among the simulation results of the
Volterra-Laguerre model, the BENN model and the EWNN
model in time domain are given in Fig. 8, the spectrum and
spectrum error are showed in Fig. 9.

The SSE and the maximum error in time domain of three
models are listed in Table 1.

Table 1: SSE and the maximum error of three models in
time domain

Parameter Volterra-Laguerre BENN EWNN
SSE 0.9029 37.86 2.495×10−6

Max. error(V) 0.1172 0.3311 6.8812×10−5

It can be seen in Fig. 8 that the models can reconstructed the
output data from the input sinusoidal signal with different
accuracy. Comparing EWNN to the Volterra-Laguerre model,
there are 605 coefficients needed to be estimated in the
Volterra-Laguerre model and the maximum error in time domain
is 0.1172V while EWNN only has 30 hidden neurons, and the
time domain error is very subtle. EWNN model has a large
reduction in the amount of calculation and much more precise in
the model’s output than the Volterra-Laguerre model. EWNN is
also much more precise than BENN with the same amount of
calculation.

The spectrum errors of three models are listed in Table 2.
The frequencies are the same as marked in Fig. 2.

It can be seen that the spectrum errors of the
Volterra-Laguerre model fluctuate a lot and are especially large
at f2 and f7, this model loses the correct information of power
ripple harmonics and the PS-IMDs in frequency domain. The
output spectrum of the basic Elman neural network is

(a) Volterra-Laguerre model

(b) BENN model

(c) EWNN model

Fig. 8: Comparison among three behavioral models in
time domain
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(a) Volterra-Laguerre model

(b) BENN model

(c) EWNN model

Fig. 9: Comparison of three behavioral models in
frequency domain

Table 2: Measured spectrum and the spectrum error of
three models

Spectrum(dB) f1 f2 f3 f4 f5 f6 f7
Measured spectrum 56.78 18.61 16.98 33.51 72.47 37.54 26.55

Volterra spectrum error 0.0025 7.532 0.2936 0.0177 1.3×10−5 0.0430 6.496
BENN spectrum error 0.0817 0.0817 0.0817 0.0817 0.0817 0.0817 0.0817

EWNN spectrum error1.69×10−5 1.69×10−5 1.69×10−5 1.69×10−5 1.69×10−5 1.69×10−5 1.69×10−5

0.08171dB smaller than the desired output spectrum at each
frequency point. The spectrum of EWNN is the most precise
and there is almost no spectrum error.

Fix the number of hidden neuronsL = 30 and set the
threshold of SSEεmin = 10−3, training the basic Elman model
and EWNN model, the iteration number needs to reach the SSE
threshold and the simulation results are given in Table 3. When

Table 3: The convergence of the BENN and EWNN model

SimulationIteration SSE Max. time domainSpectrum error
results number error(V) (dB)
BENN 86 0.000817 0.0015 0.000378
EWNN 31 0.000914 0.0013 0.000323

the parameters are consistent in these two network models,
EWNN has faster convergence speed and less amount of
calculation than the BENN. As showed in Table 3, the BENN
model needs 86 iteration steps while EWNN needs only 31 steps
to achieve the same magnitude accuracy, the calculation has
been reduced by nearly 64%.

6 CONCLUSION

In this paper, the asymmetric PS-IMD caused by memory
effects is demonstrated and a new behavioral modeling based on
the Elman neural network and the wavelets-EWNN is proposed
for CDPAs. The Elman network structure manifests the memory
effects and the wavelets provide the model fast convergence
performance. In the proposed model, the Morlet wavelet
functions are employed as the activation function and there is a
normalized operation in the hidden layer before the wavelet
transform. To obtain more stable convergence performance in
SSE curve, the update of the scale factor and translation factor
in the wavelet functions are also ignored. The merits of the
proposed model are validated through a comparison with the
Volterra-Laguerre model and the BENN model. The simulations
carried out in the time and frequency domain indicate that the
EWNN model is prior to the Volterra-Laguerre model in both
accuracy and calculation. With the same network size, the
EWNN model can more accurately characterize PAs than the
BENN model and to achieve the same SSE, it’s superior to the
BENN model in learning speed. Based on the above discuss and
the comparison of computer simulation results, the conclusion
can be draw that the proposed model is more suitable for
analyze both the time domain and the frequency domain
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nonlinear distortion in PA systems, such as the asymmetric IMD
phenomenon. The EWNN model is also appropriate for the RF
power amplifiers.
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