
Appl. Math. Inf. Sci.7, No. 6, 2427-2437 (2013) 2427

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070636

Rescheduling Oriented Dependent Tasks Spread Domain
Computing

Tingwei Chen1,∗, Hongning Zhu1, Yu Dai2 and Xianwen Hao3

1 College of Information, Liaoning University, Shenyang 110036, China
2 College of Software, Northeastern University, Shenyang 110819, China
3 China Mobile Group Liaoning Company Limited, Shenyang 110179, China

Received: 28 Mar. 2013, Revised: 30 Jul. 2013, Accepted: 31 Jul. 2013
Published online: 1 Nov. 2013

Abstract: To narrow the scope of rescheduling tasks is one of the effective waysto improve the grid dependent tasks rescheduling
efficiency. For how to determine the scope which should improve the efficiency of rescheduling problem as far as possible without
affecting the application performance, this paper proposed the rescheduling tasks spread domain concept and its method of computation.
Beginning with a minimum tasks set to rescheduling, the computing process isoriented by resource share conflict and data transmission
dependent of tasks, and limited by the degree of task to optimize the performance of the whole application. Experimentation results
show that static scheduling strategy could maintain the performance advantages compare with the dynamic strategy, thus the efficiency
of proposed rescheduling tasks spread domain is validated.

Keywords: Grid, dependent tasks, rescheduling, rescheduling tasks spread domain.

1 Introduction

Because the existence of dependent relation between
tasks, the resources assignment will have an impact on the
other tasks in the grid dependent task scheduling process.
Therefore, in order to improve the performance of grid
application, grid dependent tasks scheduling generally
adopts static scheduling strategy, this strategy is generate
a global scheduling plan before runtime, and rescheduling
at the time of resources changing [1–5].

In order to achieve the scheduling goal of optimal
application performance, it needs global optimization
method, the grid dependent tasks rescheduling will take
all unfinished tasks as scheduling object, so the grid
dependent tasks rescheduling problem is a NP complete
problem [6]. The solution to this problem will influenced
by quantity of the gird application resources and tasks. If
the quantity of the gird application resources and tasks is
too large, the solution to this problem will requires a long
time. At present, the study in this filed is using heuristic
algorithm or AI optimization algorithm to improve the
efficiency of the algorithm. However, rescheduling
happens at application operating time, the executing
efficiency of rescheduling algorithm is not only influence

the cost of rescheduling, but also affect the performance
of application, therefore, compared with the initial
scheduling, rescheduling efficiency demanded more strict.
In rescheduling triggered frequently cases, only improve
the efficiency of rescheduling optimization algorithm is
hard to ensure efficiency of the grid dependent tasks
rescheduling, apart from this, also need to consider to
reduce the size of the resources and tasks involved in
rescheduling. However, in general sense, to reduce the
size of the resources and tasks will influence the
application performance [6]. Therefore, how to determine
the involved scope of rescheduling tasks is a key problem
in the gird dependent tasks rescheduling.

In view of this problem, this paper analyses the degree
of data transmission dependent between tasks, the degree
of resource sharing conflicts between tasks and the degree
of task support to performance optimization in dynamic
environment, put forward rescheduling tasks spread
domain computation method which initial scope is the set
of rescheduling tasks as minimum required, oriented as
the sharing conflicts and data transmission dependent
between tasks, bordered by the degree of task support to
performance optimization, defined with gradually expand
the scope of the rescheduling task. To calculate by this

∗ Corresponding author e-mail:t.w.chen@163.com

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070636

2428 T. Chen et al: Rescheduling Oriented Dependent Tasks...

method, suitable rescheduling tasks scope can be
obtained, strongly influence each other within the scope,
weakly influence each other without the scope, thus, the
rescheduling of the tasks scope will improve the
efficiency, without affecting the gird application
optimization as much as possible.

Section 2 of this paper introduces related work,
Section 3 describes the concept of rescheduling task
spread domain and computation methods, Section 4 is a
experiment part, in the end is conclusions.

2 Related work

Different researchers have different ideas to deal with
static scheduling problems in grid environment.

One type take increase the prediction accuracy, reduce
dynamic and multi-resources backup as target. Such as
Plan Switching method, which constructing a series of
activity graphs before application executed, each activity
graph representing a scheduling plan, if an activity graph
failure at runtime, other activity graphs will be selected.
Actually it is a method that uses a lot of alternative
scheme to increase the feasible and optimization of static
scheduling plan. The problem is that it cannot get real
operating tasks, resource information. This paper does not
care of such solutions.

The other takes reduce the dependent of prediction
accuracy, adapt to dynamic as target. It is mainly based on
rescheduling plan adjusting strategy as means.

To a certain extent, SIL and MQD algorithm [2] are
able to solve the dependent problem about the static
scheduling algorithm of performance prediction accuracy,
and have good performance for data-intensive and
compute-intensive applications, only the algorithm orients
the independent grid application type of Bag-of-Task,
rather than the application of dependent tasks workflow.

Low-Cost rescheduling strategy [3] orients the
application of dependent tasks workflow, consider
rescheduling at the special key points when the
application running. Its main purpose is to solve contract
conflict when static global scheduling predictions about
tasks are not accurate, without considering resources
change.

DAG - Man [4] is the scheduling system of Condor -
G project, which support dependent task scheduling and
rescheduling, considering the resources change, but only
as a fault-tolerant technique, passive processing reserved
resources exit events, without considering other change of
resources affect scheduling plan in the maintenance
optimization aspect.

AHEFT algorithm [5] meanwhile consider various
resources changes and the scheduling optimization
influenced by performance prediction accuracy, and
realized the adjustment strategy of scheduling plan based
on HEFT heuristic algorithm, have good performance in
high parallelism degree data-intensive applications. But
this method in the adaptation degree of resources

isomerism is completely consistent with the original
HEFT algorithm, and also without considering the
rescheduling frequent trigger problems.

To conclude, by now about the research of dependent
task rescheduling, the solution to the low efficiency of
rescheduling problem is limited to improve the efficiency
of rescheduling algorithm itself. This paper puts forward
the rescheduling task spread domain conception and its
method of computation, besides rescheduling algorithm,
by reasonably narrow the involved scope of rescheduling
tasks to further improve the execution efficiency of
rescheduling.

3 Rescheduling tasks spread domain and its
method of computation

In order to improve execution efficiency of the grid
dependent tasks rescheduling, this paper proposed the
rescheduling tasks spread domain and its method of
computation in the aspect of narrowing the scope of
rescheduling tasks. The description of rescheduling tasks
spread domain as follows.

3.1 Rescheduling tasks spread domain

Rescheduling tasks spread domain is a new concept
proposed in this paper, which is the scope that
rescheduling tasks considered, for this scope appears the
change process of gradually expanding, which take
minimal scope as center (as shown in figure 1), it can be
visually called spread process of scope, so we define this
scope as rescheduling tasks spread domain.

Definition 1: rescheduling tasks spread domainas
to the application expressed by DAG= 〈V,E〉,
rescheduling tasks spread domain is the task and the
relation between tasks which consider in rescheduling
process, in short of spread domain. It can be also defined
as formal asRT SD = 〈V1,E1〉, among it,V1 is a task node,
the nodes inv1 are all in V , the nodes that need
rescheduling are inV1,E1 is the edge between tasks, for
two nodes inV1, if there is a transferring relation of data
in E, then there is also the relation in the two nodes, that
is ∀v1,v2 ∈ V1 ∧ 〈v1,v2〉 ∈ E,∃〈v1,v2〉 ∈ E1, for the two
nodes inV1, which are in transferring relation of data,
they have the point spread relation, or they have
dependent spread relation, or they have connective spread
relation. That is ∀v1, v2 ∈ V1, ∃ (v1
Rpointv2)∨ (v1Rdepenv2) ∨(v1Rconnv2) (the three relations
will be described in the back of this section)

This paper considers rescheduling tasks spread domain
from the three respects.

(1) In order to shorter the application completing
time, assign the effective resource or increase parallelism
for task. The performance of task is different in various
resources. So this paper establishes the scope considered

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2427-2437 (2013) /www.naturalspublishing.com/Journals.asp 2429

Fig. 1 The graph of rescheduling tasks spread domain

commonly in the rescheduling process according to the
degree of competition to resource for tasks. Because the
expanding process of spread domain shows in the task
chart of DAG, it is a expanding process that rescheduling
task discrete, non-continuous, therefore, this paper call
this spread process as Point spread process, which is also
called for computing process of point spread domain. The
relation between tasks which the point spread process
refer to is called for relation of point spread, recorded as
Rpoint .

(2) For the view of improving the performance of
dependent task, in the process of task redistribution, the
dependent relation between tasks is supposed to consider,
by reason of considering rescheduling tasks in the
non-global scope, the dependent relation between the
boundary nodes in the scope and nodes outside is
supposed to consider. The greater dependence is, the
greater requirement that scheduling tasks considered is.
To a large extent, the advantages and disadvantages of
performance optimization dependent on the advantages
and disadvantages of dealing method, which uses in
dependent relation between tasks. Therefore, in the view
of this article, add dependent relation between tasks and
extraterritorial tasks which the dependence degree
between tasks satisfy a certain threshold on the spread
domain boundary. This paper calls this spread process as
dependent spread process, also computing process of
dependent spread domain. The relation between tasks
which dependent spread process refer to is called as
relation of dependent spread recorded asRdepen.

(3) The dependent relation between tasks that within
spread domain, which we get through the above two
spread process have not totally embodied. Assuming that
tasks rescheduling would be done on this domain, the
phenomenon of time distribute deadlock will appear.
According to this, if there is the predecessor and
successor relation between the domain tasks, all paths
between two task nodes should be added to the domain,
including all the tasks and the dependent relation on the
path. However, the spread domain handled by above
process may not be connected, only lots of connected
sub-graph, but there is no relation between connective
sub-graphs, so in order to establish connected spread
domain, pseudo-entrance nodes also should be added to
ahead of many entrance nodes in each sub-graph, and the
pseudo-export nodes should be added to back of many
export nodes in each sub-graph to achieve connectivity,
furthermore, the reasonable node and the pseudo-edge
weight should be set for achieving the assumptions in the
task graph of DAG, preparing the conditions for solving
the rescheduling. New tasks also added to this process, so
this process is a domain spreading process, this article
call it as connective spread domain process; also call it as
computing process of connective spread domain. The
relation between tasks which connective domain spread
process considered is called as connective spread relation,
recorded asRconn..

3.2 Spread domain computing method

Spread domain computing is based on minimum task
collection which needs rescheduling, forming single entry
finally, and the task sub-graph with a single export. Its
basic steps of the computing are as follows:

1. Get the minimum task set which needs
rescheduling from rescheduling trigger case, combine
with the task graph of DAG, forming the minimum spread
domain;

2. Compute point spread domain on the basis of
minimum spread domain. Sort as task which needs
rescheduling and expected completion time of successor
task that conflict with it on each resource (the compute
method is shown in formula 1), add the resource which
complete time earliest to the spread domain; And remove
tasks from the spread domain, whose average expected
completing time outside the average change cycle of
resources environment;

3. Then based on the scheduling scheme, compute the
interval time (the computation method is shown in
formula 2) between tasks on each resource and sorting,
add resource tasks in the largest interval time to spread
domain, then according to the rule 1, remove the tasks of
average expected finishing time (computation method is
shown in formula 4) out of the average change cycle of
resources environment from spread domain;

4. Dependent spread domain computing. On the basis
of task graph DAG, compute the degree of dependence

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2430 T. Chen et al: Rescheduling Oriented Dependent Tasks...

between tasks through formula 3, mark the task graph
DAG. Compute the degree of dependence of external task
on the spread domain boundary; add extra-territorial tasks
with its degree of dependence more than threshold and
dependent relation to the spread domain, until there is no
dependent relation which is more than threshold. And
according to rule 1, remove the tasks of average expected
finishing time (compute method is shown in formula 4)
out of the average change cycle of resources environment
from spread domain;

5. Connective spread domain computing. Add the all
paths between region nodes which have dependent
relation to the spread domain. For the nodes we get whose
in-degree is 0 in spread domain, add pseudo-entrance task
nodes to the head of it. Assuming thatsi is a node with its
in-degree is 0, then the weightci of pseudo-edge between
pseudo-task nodesentry and task node with its original
in-degree is 0, is the maximum weight ofsi which is in
graph DAG and direct precursor original node(that means
suppose that the resource of pseudo-entrance nodes is
assigned as the resource which is assigned by direct
precursor original node corresponded with its weight),
and supposed that the pseudo-edge weight is 0, which is
connected with pseudo-exit nodesexit .

The computing process of rescheduling tasks spread
domain is shown as follows:

In the example, according to the results of performance
prediction in rescheduling tasks5, the optimal resource ar1
in performance can be achieved, which assigned for it are
the resourcess4 ands9, and define the dependent relation
as powerful dependent relation, whose dependence degree
is more than 0.8.

3.2.1 Computation method of nodes in spread domain

In the size of resources under certain circumstances, we
should not delay application completion time on it as far
as possible, which is mean increasing parallelism on
tasks. In addition, in terms of requirements on the
performance of the replaced resources, sort as completing
time of tasks which need rescheduling and the successor
tasks on each resource, looking for better resource; On
the other hand, in order to improve the parallelism, we
should consider the internal time on between tasks on the
allocation of resources, the possibility on solving this
problem is bigger in the bigger internal time. So this
paper adds the tasks on two kinds of resources to the
spread domain. According to this, the computation
method of point spread domain is shown as follows.

In the computation method of point spread domain,
we need to compute the completion time of tasks which
need rescheduling on each resource currently. Assuming
that si is a task which need rescheduling currently, the
computation method of expected completing time on

Fig. 2 The computing process schematic of rescheduling tasks
spread domain

resource mj as follows

si.EstiET =







NOW +
wi j×m j ·p
m j ·pnow

,si ·EstiET ≺ t2

t2+
wi j×m j ·p−m j ·pnow(t2−NOW)

m j ·p ,other
(1)

Among it, t2 shows the changing time of next
resource, which resourcem j get on the basis of its
average change cycle of resources environment, if it can
be done beforet2, compute only with the current
performance of resource, instead, if more thant2, with the
average performance computing on resource.

In addition, the tasks time of a resource need to be
computed in the computation method, to arrange for free
time. Assuming thatsexit is ending task nodes of
application, the computation method of task time

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2427-2437 (2013) /www.naturalspublishing.com/Journals.asp 2431

arranging internal on a resource as follows

SpareTime(m j) =
n

∑
i=2

(si.ST − si−1.ET)+(s1.ST −NOW)

+(sexit .ET − sn.ET) (2)

Among it, {s1,s2, . . . ,sn} is the task collection which
assigns on the resource mj.

Get the tasks which need rescheduling from its trigger
case, combined with DAG-task-graph to generate the
smallest spread domain, sort according to the expected
finishing time of the tasks which need rescheduling and
their successor tasks which conflict with them, on every
resource (see the calculation method as formula 1). Add
the waiting tasks to spread domain, which have the
earliest finishing time on resource and the starting
executing time in the average change cycle of resources
environment; and then based on the scheduling plan,
calculate the tasks time interval on each resource, add the
tasks to spread domain, which have the largest time
interval on resource and have finished in the average
change cycle resources environment.

3.2.2 Dependent Spread Domain calculation methods

For improving the dependent tasks’ performance, it’s
necessary to take the dependent between tasks in the
process of rescheduling into account, as there is
re-allocation of tasks in a non-global scope of tasks to
consider, so the existence of the dependent relations
between boundary nodes within the scope and the
external. The greater dependent, the larger demand needs
to consider on the distribution of tasks at the same time.
To a large extent, performance optimization depends on
the processing of the dependent between tasks. Therefore,
from this point of view, this paper will add
extra-territorial tasks which satisfy certain threshold and
the dependent relations between tasks on the boundary of
the spread domain into spread domain.

Based on the analysis of the dependent relations
between tasks, this paper gives the quantitative methods
of task dependence degree.

In the DAG-based model of the grid application, the
task has multiple inputs and multiple outputs. If multiple
inputs trigger the task at the same time, after the execution
of tasks they will transfer data to the successor task at the
same time, during the execution period they will not accept
external parameters or export any parameters neither, so
the dependent relations between tasks totally embodied in
the data transmission between tasks. Under the premise of
using the available resources which generally support all
the tasks, the task dependence degree can be measured by
the amount of transmission between tasks.

Definition 2 Task Dependence Degree Mapping all
the value intervals of data transmission amount between
tasks to [0,1] interval, then get the score of data
transmission amount, this paper define the data

transmission amount between tasks as task dependence
degree, to express the intensity of dependent relations
between tasks. The computation method of task
dependence degree as follows:

TaskDependenceDegree(si,s j) =

ci j − Min
ci j∈C

(ci j)

Max
cri j∈C

(ci j)− Min
cri j∈C

(ci j)

(3)
At the determination of initial range of task allocation,

we will take the task which exceeds the threshold as a
strong dependent task by setting the threshold. In
dependent spread domain algorithms, it needs to
gradually calculate the external dependent degree of
boundary tasks in spread domain, to add the external
tasks which have strong dependent relation to spread
domain until there is not dependent relation which exceed
threshold.

First of all, we compute the task dependence degree,
and mark DAG-task-graph. In view of all the tasks, which
have been calculated within the point spread domain and
have dependent relations with the external domain tasks,
to compare task dependence degree with the setting
threshold: 06 λ 6 1 one by one, then add the tasks which
are bigger than the threshold and the task dependent
relations to the spread domain until there is no bigger
dependent relations exceed the threshold.

The basic calculation steps as follows:

(1) Find the task in rescheduling set, which has data
transmission relation with the external, and form a
boundary task set;

(2) Compare the threshold with the dependence degree
of each task in boundary set and external tasks, add
the task which is bigger than threshold to the task set
needs rescheduling, and determine whether it is the
boundary task, if it is, add it to the boundary task set
too;

(3) Repeat step 2 until all the boundary tasks have been
traversal.

3.2.3 Connected spread domain calculation method

The dependent relations between tasks that within spread
domain, which we get through the above two spread
processes have not totally embodied. The task
re-distribution result by these spread processes will lead
to time arrangement deadlock. Figure 3 is a local task
graph, task s1, s3, s6 will in spread domain after
dependent spread calculation. If rescheduling begin at this
time, do not guarantee the distribution time ofs2 is not
diverted for other uses, then, after reschedulings2 maybe
need to postpone backwards in the adjusting process of
scheduling plan, and the following tasks5 is the
predecessor task ofs6, whose time arrangement needs to
remain unchanged, then the deadlock will occur.

Therefore, if there is predecessor and successor
relation between two tasks in domain, then all paths

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2432 T. Chen et al: Rescheduling Oriented Dependent Tasks...

Fig. 3 The deadlock graph of task

Fig. 4 The calculating results of rescheduling arrangement time
tasks spread domain

between two task nodes should be added to the spread
domain, including all the tasks and all dependent relations
on the path. In the above graph,s2 ands5 will not add to
the spread domain. And the spread domain after above
mentioned treatment maybe still unconnected, but just
multiplies of connected sub-graphs, and do not exist
dependent relation between sub-graphs. Therefore, in
order to establish connected spread domain, it needs to
add pseudo- entrance nodes before the entrance nodes of
each sub-graph, and add pseudo- exit nodes before the
exit nodes of each sub-graph, then achieve the
connectivity. And by setting reasonable nodes and
pseudo-edge weight, it realizes the assumptions of the
DAG task graph, and it also prepares for the following
re-allocation algorithm. Also adds new tasks into this
process, so this process is a spread process.

In this paper, we add all paths which have dependent
between nodes in the domain to the spread domain. For
the nodes whose in-degree is 0 in spread domain, it needs
to add pseudo- entrance nodes whose executing cost is 0
before them. Suppose the nodesi’s in-degree is 0, then the
pseudo-edge weightci is the weight summation ofsi’s
original the direct precursor node in DAG graph, which is

between the pseudo-nodesstart and the node whose
original in-degree is 0. While the setting principles of
pseudo-exit node’s weight and the pseudo-edge weight is
as the same.

The example of rescheduling tasks spread domain
calculating results is shown in Figure 4.

3.2.4 The spread domain limitation method based on
dynamic measurement of resource

The grid resources are dynamic, for the grid application,
the resource may be change again and trigger
rescheduling in the executing process which we get the
global scheduling plan through a rescheduling, that is, the
previous rescheduling influence on the optimization
scheduling results of the current unfinished tasks will
failure, it needs rescheduling to update the optimal
results. Thus, this rescheduling towards such tasks did not
support the performance optimization of grid application,
that is, we can ignore the rescheduling to such tasks in the
previous rescheduling process, and this narrowing task
domain method will not affect the grid application
performance optimization. While in a rescheduling
decision to identify and filter these tasks needs to capture
the dynamic change discipline of resources. Therefore,
dynamic measures for grid resource are needed, to
reasonably narrow the scope of the rescheduling, to
improve the efficiency of rescheduling while that does not
affect performance optimization of grid application at the
same time.

Above we described the spread process of spread
domain, in the point spread process and dependent spread
process, we make limitation to the spread process by
taking the average change cycle of resources environment
as constraint condition, and the task based on the current
performance of resources, the average performance of
resources, and the average change cycle of resources,
when it is in the calculation execution time of resource.
However, in the third spread process, dynamic is not be
considered, because the nodes we added into this spread
process or between paths within domain, while the end
node on path has been in the average change cycle of
resources environment, the nodes on path will certainly
satisfy it, and as the added pseudo-nodes just realize the
convenience of scheduling algorithm, therefore they are
not taken into account. To calculate the executing cost
with the current performance of resources, the average
performance of resources, and the average change cycle
of resources will improve the reliability of the
expectation, The usage of the average change cycle of
resources environment limits the scope of the affected
domain and improves efficiency by a certain dynamic
conditions and a reasonable way to meet the performance.

In the calculation process of the point spread domain
and the dependence spread domain, it needs to calculate
the average expected finishing time of a task, its

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2427-2437 (2013) /www.naturalspublishing.com/Journals.asp 2433

calculating method as follows:

si.EstiET = si.ST +

k
∑
j=1

(wi j ×m j.p)

k× p
(4)

Among it, p is the average performance of resources
environment, that is, take this task’s beginning time of
scheduling plan as the starting executing time, and
calculate the average expected finishing time on the
application of available resources set in according to the
task’s average executing time on all the available
resources.

IF(si.EstiET > NOW +Tf) THEN shouldBeRemoved
(si) == TURE

[Rules 1]The limitation rules of spread domain based
on the dynamic measurement of the resources environment

IF(si.EstiET > NOW +Tf) THEN shouldBeRemoved
(si) == TURE

That is, if a task’ s average expected finishing time is
larger than the average change cycle of resources
environment, then the task should be removed from the
spread domain.

4 Experimentation Analysis

In order to validate the efficiency of proposed
rescheduling tasks spread domain, validation should be
done with the compared result of rescheduling, so this
paper achieve the solution of rescheduling problem based
on the HEFT (Heterogeneous Earliest-Finish-Time)
algorithm.

4.1 The solution of rescheduling problem on the
basis of HEFT algorithm

HEFT algorithm is proposed by Haluk, it is a classic
static scheduling heuristic algorithm under the
heterogeneous environment. The basic idea of the
algorithm is based on the calculation of tasks and
relationship of tasks constraints, which compute the
weight of the task node and generate a list, and then
repeats the following two steps until a feasible scheduling
program is achieved: (1) Select a highest priority node
from the list; (2) Select an appropriate resources for the
node. Before the start of the scheduling process, first
calculate the weights of each node, in the scheduling
process to select the highest priority node for scheduling,
in the second step, select the resources which the task can
execute earliest for the task. Grid project
ASKALON [8] use HEFT algorithm, and prove greater
than the performance of the HEFT algorithm [9]. In order
to put it into the runtime rescheduling, this paper has
improved the HEFT algorithm, named IHEFT algorithm.

4.1.1 Basic thinking of algorithm

First, the formalization expression of HEFT algorithm
that stems from the traditional parallel distributed
environment. In order to fit in with expression of grid
environment and keep consistent with the concept
definition of former rescheduling model, this paper
change a part of variable symbols of the HEFT algorithm,
in addition as a result of dealing with the different
problem, some function names of the original algorithm
easily lead to be misunderstand, so they have also been
made to adjust, in addition add the part of the increased
variables. The predecessor part of this paper will describe
meaning of symbols when first use the new symbols.

Task priority definition is as same as HEFT in IHEFT
algorithm and, HEFT algorithm is achieved from
expanding heterogeneous systems on the basis of the
heterogeneous scheduling program, at the same time, the
algorithm takes into account the execution time of tasks
and the communication time among tasks. Task priority
has been recursively defined as:







ranku(si) = wi + max
n j∈succ(ni)

(ci j + ranku(s j))

ranku(sexit) = wexit

(5)

Among it, s shows task, succ(si) shows thatsi direct
successor set of task,ci j shows that the transmission cost
between resourcefrm and resourcefrn assigned by tasksi
and tasksk, ci j = datai j/crmn. ci j shows that the average
communication cost betweensi and s j for tasks,wi is si
average computing cost.

In this paper, the priority of resources continues to
definite the earliest completion times of task, but its
computing method improves as follows:

EFT (si, f r j,NOW) = wi j +EST (si, f r j,NOW) (6)

Compared with the original formula, computing
method of the earliest start time EST function of task
changes as follows:























EST (si, f r j,NOW) = max

{

avail[j],

max
sm∈pred(si)

(EDA(sm,si, f r j,NOW))

}

EST (sentry, f r j) = 0

(7)

EDA(sm,si, f r j,NOW)

=



















PFT (sm)+ cmi, case1
AFT (sm), case2
max(NOW,AFT (sm)+ cmi), case3
NOW + cmi, case4

(8)

Among it, PFT(si) shows the time expected to complete
after the task allocates resources,AFT(si) shows the real

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2434 T. Chen et al: Rescheduling Oriented Dependent Tasks...

completion time after implementation of the task,EDA
(sm,si, fr j,NOW) show the time that at NOW moment the
data ofsm earliest transmit to the resourcesf r j which si
locate.

Case1: Whensm is not completed;
Case2: Whensm is completed, and the resources that

sm is assigned isf r j;
Case3: Whensm is completed,and the resources thatsm

is assigned is notf r j, however, transfer data that has been
designated tof r j;

Case4: Whensm is completed, and the resources that
sm is assigned is notf r j, and transfer data that has not
been designated tof r j;

Changes in the second max function, which is shown
as PFT(sm)+cmi in original formula, that is expected
completion time which the nodes of pioneer tasks gain
after the resources is assigned, this is because the original
algorithm deals with the one-time static scheduling
problems before the implementation, thus in the entire
scheduling process, tasks have not been implemented.

4.1.2 The description of algorithm

The solving algorithm of improving HEFT rescheduling as
follows:
Algorithm one: Improving solving algorithm of HEFT
rescheduling
Input: the set of unfinished tasks is TaskSet in DAG, the set of
applied available resources FR, the price matrix CC that task
executed, the network bandwidth matrix CR of the available
resources of application, NOW present moment
Output: New scheduling scheme NewSchedule;
Algorithm Improved HEFT(TaskSet, FR,CC,CR,NOW)
{
using the formula 5 calculate rank for all task in TaskSet;
Rank the tasks as the non-increasing sequence of ranku
while there is the non-scheduling task in the an ordered list of

task
Select the first task of the ordered list;
for each resource fr[k] in FR do
using the formula 6 calculate EFT(s[i], fr[k], CC,CR, NOW)
if(EFT(s[i],fr[j]) is the minimum){
assign job s[i] to the resource fr[j]
// Record the resources allocation of tasks and the results of

time arrangement to new task scheduling program
NewSchedule<-{s[i],fr[j],EST(s[i],fr[j]),EFT(s[i],fr[j]) }
}

endwhile
return NewSchedule;//Return to a new scheduling scheme
}

4.2 Experimentation Design

This paper adopts the simulative experimentation method
proposed by literature [7], according to characteristic
parameters, generated test cases randomly, including two
parts of the task graph and resources environment.

Furthermore, the method is improved further, on
simulation of resources environment, to embody the
dynamic nature.

In order to reduce the complexity of experiment and
stress the core issues, the experiment assumed that in a
reasonable scope: First of all, it is assumed that the
prediction of performance is accurate; ignore the network
delay of resources; don’t consider the sharing conflict
with other applications, reckon the available time
quantum of resources in the interval [0,∞) It is assumed
that the task graph has the single entrance and exit nodes.

The required feature parameters which are randomly
generated by DAG task graph and the resources
environment include:

v: The number of tasks in the task graph.
α: The parallelism factor.(the parameters which is

controlled by task graph shape)Height of task graph (H) is
randomly generated by the normal distribution whose
mean is

√
v/α, and integer H. the number of task on each

level In the graph is randomly generated by the normal
distribution whose mean isα ×√

v and integer value. The
largerα is, the higher parallelism is.

In order to ensure that the graph generated has one
entrance and one exit node, the disposal of dealing with
graph is shown as follows: If the number of nodes of
which the in-degree is 0 is more than one, add a node to
connect with all the nodes whose in-degree is 0, the node
is recorded as the start node; If the number of nodes
whose the out-degree is 0 is more than one, then add a
node to connect with all the out-degree nodes whose
out-degree is 0, the node is recorded as the end node.

Out-degree: The maximum value of out-boundary of
the task node shows as a percentage ofv. The
out-boundary of the node is randomly generated in the
interval [1, out-degree].

CCR: The ratio of the average communication cost to
the average computing cost in the task graph indicates that
the application is a data-intensive parameter or compute-
intensive one.

β : The heterogeneous factor of resource capacity. The
values ofβ change in the interval [0, 2). The higher value
is, the greater the difference of disposing ability of
resources is.β = 0 shows that resources isomorphism.
wDAG is the average computing cost of all tasks in the
DAG. The average computing costwi of one task calledsi
is randomly generated in the interval [0, 2×wDAG]. The
average computing cost of taskwi j in the resourcef r j is
chose in the interval [wi × (1− β/2),wi × (1+ β/2)]
randomly.

γ: Resources dynamic factor. It is expressed by the
times of average task computing costwDAG, the time
interval of resources changes is randomly selected in [0,
γ].

δ : Network performance isomer factor. The difference
of network bandwidth embodied the changes scope of
resource connecting with bandwidth in the grid, in this
paper, the value of network transmition bandwidth
between resources is any random numbers in the interval

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2427-2437 (2013) /www.naturalspublishing.com/Journals.asp 2435

[B/δ ,Bδ]. B is the average network bandwidth of the
available resources of application. In the DAG the
average data transmission quantity between tasks is
dataDAG = CCR× wDAG ×B. The transmission quantity
between tasks datai j randomly generated in the interval
[0, 2×dataDAG].

m: The amount of available resources in the initial
application.

INR: the proportion of events which join available
resources to all the events. This paper studied join and
exit event of available resources.

In the simulation experiment of this paper, the
parameters are set in table 1 as follows.

Table 1 task graph, the parameter table of resource randomly
generate

parameter value
v 10,20,50
α 0.5,1,2
out degree 0.1, 0.5,1
CCR 0.1,0.5,1,2,10
β 0.1,0.5,1,1.5
δ 2,3,5,8,10
γ 100,50,20,10,5
m 10,20,50
INR 0,0.2,0.5,0.8,1

4.3 Experimentation results

In order to validate the supporting role of rescheduling
tasks spread domain to the static scheduling strategy, this
paper compare IHEFT algorithm with the classic dynamic
scheduling algorithm, including Max-Min, Min-Min,
Max-Int [10], the experimentation results shown in figure
5:

The experiment results shown, in the supporting of
rescheduling tasks spread domain, the performance
advantages of the static scheduling strategy is still very
obvious, in the whole the efficiency of gird dependent
tasks rescheduling mechanism of resource-based dynamic
organizations is validated.

At the same time, we did the comparative experiment
of performance optimization and efficiency in different
dynamic, compared IHEFT (IHEFT) algorithm based on
tasks spread domain, IHEFT (IHEFT without TSD)
algorithm based on all the unfinished tasks with the
dynamic the Max-Min algorithm.

Experimentation shown that under the low dynamic
IHEFT algorithm of based on spread domain, the
performance optimization effect of the application close
to the IHEFT algorithm, under the strong dynamic,
gradually close to the Max-Min algorithm, however under

Fig. 5 The performance comparison of IHEFT algorithm and
classical dynamic scheduling algorithm

3000

6000

9000

12000

15000

18000

100 50 20 10 5

γ

A
v

er
ag

e
m

ak
es

p
an

(m
s)

Max-Min

IHEFT without TSD

IHEFT

Fig. 6 The performance comparison of Max-Min and IHEFT
under different dynamic without supporting of tasks spread
domain

the strong dynamic the IHEFT without TSD algorithm
performance decreased obviously, experimentation shown
that spread domain proposed adapt to the variety of
dynamic resources, under the low dynamic, the loss of
performance optimization is very small, and under the
strong dynamic, close to the degree of dynamic
scheduling. Thus avoid the performance of global
optimization under dependent rescheduling task and the
strong dynamic decline obviously.

The comparison of three algorithms in the aspect of
efficiency as follows:

As the number of tasks grew, the efficiency of IHEFT
algorithm between the efficiency of IHEFT without TSD
algorithm and Max-Min algorithm, and IHEFT algorithm
still has an approximate linear relation with the amount of
tasks, however, compared with IHEFT without TSD, it has
obviously declined.

And, the efficiency of IHEFT increased gradually as
the dynamic enhanced, close to the efficiency of Max-Min,
however in the weak dynamic, due to spread computing
of spread domain, the spread domain is not contained all
the unfinished tasks, therefore, the efficiency is still higher

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2436 T. Chen et al: Rescheduling Oriented Dependent Tasks...

200

600

1000

1400

1800

2200

10 20 50 100 200

v

A
v

er
ag

e
ex

ec
u

ti
o

n
 t

im
e

co
st

(m
s) IHEFT without TSD

IHEFT

Max-Min

Fig. 7 The efficiency comparison of IHEFT, IHEFT without
supporting of tasks spread domain and Max-Min under different
applications scale

0

20

40

60

80

100

120

140

100 50 20 10 5

γ

A
v

e
ra

g
e
 e

x
e
c
u

ti
o

n
 t

im
e
 c

o
st

(m
s)

Fig. 8 The relation of the efficiency and dynamic of IHEFT
algorithm

than IHEFT without TSD. Thus the efficiency of proposed
rescheduling tasks spread domain is validated.

5 Conclusion

In order to resolve how to determine the tasks scope of
the grid dependent tasks rescheduling, which should
improve the efficiency of rescheduling problem as far as
possible without affecting the application performance,
this article proposed rescheduling tasks spread domain
concept and computation method, which initial scope is
the set of rescheduling tasks as minimum required,
according to the degree of data transmission dependent
between tasks, the degree of resource sharing conflicts
between tasks, the degree of task support to performance
optimization in dynamic environment, gradually expand
and determine the scope of task, makes strong influence
each other within the scope, weak influence each other
without the scope. Experimentation results show that
rescheduling tasks spread domain makes static scheduling
strategy maintain the performance advantages compare

with the dynamic strategy, improve the rescheduling
efficiency without affecting the gird application
optimization as much as possible, thus the efficiency of
proposed rescheduling tasks spread domain and
computation method is validated.

Acknowledgements

This work is supported by National Natural Science
Foundation of China(No.60903008) and General
scientific research project of the Education Department of
Liaoning Province (No.L2011004)

References

[1] Yu H, Marinescu D C, and et al. Plan switching: an
approach to plan execution in changing environments
[A]. Proceedings of the 2006 International Parallel and
Distributed Processing Symposium[C], 33–41 (2006).

[2] Lee Y C and Zomaya A Y. Practical Scheduling of Bag-
of-Tasks Applications on Grids with Dynamic Resilience,
IEEE TRANSACTIONS ON COMPUTERS,56, 815–825
(2007).

[3] Sakellariou R and Zhao H. A low-cost rescheduling policy
for efficient mapping of workflows on grid systems[J].
Scientific Programming,12, 253–262 (2004).

[4] Imamagic E, Radic B, Dobrenic D. An approach to grid
scheduling by using condor-G matchmaking mechanism.
Information Technology Interfaces [A]. Proceedings of the
28th International Conference[C], 625–632 (2006).

[5] Yu Zhinfeng and Shi Weisong. An Adaptive Rescheduling
Strategy for Grid Workflow Applications Parallel and
Distributed Processing Symposium [A]. Proceedings of
the 2007 International Parallel and Distributed Processing
Symposium[C], 1–8 (2007).

[6] Ullman J. NP-Complete Schedulling Problems [J]. Journal
of Computer and System Sciences,10, 384–394 (1975).

[7] Topcuoglu H, Harir S, and Wu M Y. Performance-effective
and low-complexity task scheduling for heterogeneous
computing [J]. IEEE Trans. on Parallel and Distributed
Systems,13, 260–274 (2002).

[8] Fahringer T, Jugravu A, et al. ASKALON: a tool set
for cluster and Grid computing [J]. Concurrency and
Computation: Practice and Experience,17, 143–169 (2005).

[9] Wieczorek M, Prodan R, and Fahringer T. Scheduling of
scientific workflows in the askalon grid environment [J].
SIGMOD,34, 56–62 (2005).

[10] Prodan and Fahringer T. Dynamic scheduling of scientific
workflow applications on the grid: a case study [A].
Proceedings of the 2005 ACM symposium on Applied
computing[C], 687–694 (2005).

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2427-2437 (2013) /www.naturalspublishing.com/Journals.asp 2437

Tingwei Chen received
the PhD degree in computer
science from Northeastern
University in 2007.
He is currently an associate
professor in Liaoning
University. His research
interests are in the area of
Distributed computing, Cloud
computing and Big data.

Hongning
Zhu received the PhD
degree in computer science
from Northeastern University
in 2009. He is currently
an associate professor
in Liaoning University.
His research interests
are in the area of Services
computing and Intelligent
systems engineering.

Yu Dai received the PhD
degree in computer science
from Northeastern University
in 2008. She is currently
an associate professor in
Northeastern University. Her
research interests are in the
area of Cloud computing and
Performance management.

Xianwen
Hao received the PhD
degree in computer science
from Northeastern University
in 2008. He is currently
an engineer in China Mobile
Group Liaoning Company
Limited. His research
interests are in the area of
Cloud computing, Artificial
intelligence and Big data.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related work
	Rescheduling tasks spread domain and its method of computation
	Experimentation Analysis
	Conclusion

