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Abstract: In order to solve the urgent issue of the energy consumption in the ctouage system. An Energy-effective adaptive
replication strategy (FARS) is proposed in this paper, in which data partition mechanism, miniplkidas determining model, replicas
placement strategies and the adaptive gear-shifting mechanism aneatdfpdesigned. We try to conserve the energy consumption
while satisfying the users’ desired response time by &S scheme. Mathematical analysis show that GRS scheme will save
energy consumption definitely when the system’s workload is light or e#sgsponse time is loose. And the simulation experiment
results demonstrate that through o#ARS scheme energy consumption can be saved while with Qos satisfiethendvailability
guaranteed, when varying the arrival rate, desired respondieaspumber, parallelism degrees.

Keywords. Energy consumption, Energy conservation, replicas managemeud, stiorage system, gear-shifting mechanism.

1 Introduction and Motivation replicating strategies make it possible to power off some
data nodes to conserve energy consumption while
Cloud Storage is emerging as a powerful paradigm forguaranteeing data avai_IabiIity and satisfying the QoS of
sharing information across the Internet, which satisfies/S€"- However, Powering down some nodes make the
people’s mobile data demand anywhere and anytimepro.blem of bqlancn)g the workload on the remaining
Many corporations and R&D institutions employ the active nodes is curial. Therefore, how the placing the
Cloud Storage as the datacenter to store large amount gfPlicas in nodes is be off importance. Accordingly, in
the data material. However, a recent industry reportt IS paper, we attempt to.solve .t.he. overall pfOb.'e”? of
reveals that storage devices account for almost 27% of th§2ViNd €energy consumption utilizing the replication
total energy consumed by a data centdr [This trend strategies by setting the foIIownjg' basic problems:
will continue undoubtedly in the near futurg]] therefore (1) How to determine the minimal number of the data
the energy-consumption problem in data centers willblocks to_ach[eve essential requirement of storage system:
become even serious. Study also found that: on the ongat@ availability. _ _
hand, data centers consume large amount of the energy, (2) How to determine the parallelism degree by
on the other hand, the utilization of the servers of disks ofPartitioning the data to shorten the response time.
the data centers is lowly to average 2530%. (3) How to placing the primary or replicas in the data
Therefore, how to utilize and manage the servers or thé'odes make it possible to power off some nodes to save
disks of the DataCenter efficiently to conserve the energyenergy while guaranteeing data availability as the
consumption is an urgent issue concerned both in researctforkload is light.
and industry domain. Traditionally, data replication has  (4) On the above grounds, try to solve the problem of
been widely used in the large distributed system as éow to determine the number of nodes to be turned off
mean of increasing the data availability and to balance theéccording to the workload, and how to make the load on
workload etc. Recently, more and more researcherghe remaining nodes balanced, in order to meet the
employ replication technique to skew workload in order desired response time.
to save energy consumption while the utilization or the  On the whole, the mismatching between on the energy
workload of Storage System is low. Reasonableconsumption and the utilization of the large scale storage
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system is the motivation of our research. An enable flexible energy management. The main difference
energy-effective adaptive replication strategy (calledbetween PARAID and FREP is that PARAID shifts gear
E°ARS) is present in this paper. We try to employ within a RAID unit by spinning up/down one or more
replication strategies to achieve energy proportionaldisks in the array, while FREP do it across multiple RAID
which means the energy consumption is approximatelyarrays. Another difference is the conditions leading to a
proportional to the utilization of the storage system while gear-shift, PARAID relies on disk utilization to make its
satisfying the user’s requirement. gear-shift decisions, while FREP monitors the degree of
SLA satisfaction for reconfiguration. In their experiments
FREP dramatically reduces energy consumption with a
2 Related Wor k minimal response time penalty. Near recently, M.Nijim
etc. develop an adaptive energy-saving scheme (DCAPS)
A great deal of work has done on energy conservation forin parallel disk system 18], which consists of a data
large-scale storage systems based on data managemeydrtitioning mechanism, a response time estimator, and an
and DVS (Dynamic Voltage Scaling), which is based onadaptive energy-conserving mechanism. Experimental
caching, 3], data placement4], data migration $,6], results consistently show that DCAPS significantly
and data replication5[7,8,9]. These techniques try to reduces energy consumption of parallel disk systems in a
prolong disk idle times, so as to make it possible to placedynamic environment over the same disk systems without
idle disks in low-power state, thus saving energy. T. Xie using DCAPS.
proposes a novel energy-aware strategy, called Above related work show that employing replication
striping-based energy-aware (SEA), which can betechnique to conserve energy consumption is feasible and
integrated into data placement in RAID-structured storageeffective. However, most of the replication strategies are
systems to noticeably save energy while providing quickused in the RAID or the parallel disk system, and they
responses 1[1], in which they implement two can't solve the all of the problems mentioned in our first
SEA-powered stripping-based data placement algorithmssection. Furthermore, how to employ and design the
SEAO and SEAS5, by incorporating the SEA strategy into replication strategy to save energy according to the
RAID-0 and RAID-5, respectively. Extensive feature of the cloud system is an urgent problem to be
experimental results demonstrate that compared witrsettled. In this paper, the present&RS try to conserve
non-stripping data placement algorithms, SEA algorithmsthe energy consumption through the following consisted
significantly improve performance and save energy. Riniparts: data partition mechanism ,the minimal replicas
T. Kaushik propose the Green HDFS using determining model, replicas placement strategy, adaptive
data-classification-driven ~ data  placement  allowsgear-shifting mechanism, in which some of the parts are
scale-down by guaranteeing substantially long periods otonstructed on the basics of the properties of the cloud
idleness in a subset of servers in the datacenter designatetorage system.
as the Cold Zones1p,13]. There are many other
literatures employ data management strategies to
conserve energy consumption and achieve the expected E2ARS: Ener gy-Effective Adaptive
performance 14,1516]. However, among these ——
techniques, exploiting data replication is an attractiveRep“Catlon Strategy
practical option, since it is widely employed in server
clusters for diverse purpose, including data availahility
durability, load balancing, etc. Although replication
requires additional storage capacity, it usually comes at
very low cost, since it is well known that storage
resources in data centers are often considerabl
under-utilized at around 1/3 of total available capacity
[10,7,8]. C. Weddle etc. 9] built the power-aware RAID
(PARAID) based on the elaborated data placement and.1 System Architecture
replication strategies, which reduces energy user of
commodity server class disks without specializedFigure 1 outlines the system architecture ofARS.
hardware. PARAID uses a skewed stripping pattern toClients send the disk requests to cloud storage system
adapt to the system load by varying the number of thewith a tetrad attributes, according which the present
powered disks. By spinning disks down during light Energy-Effective Adaptive Replication Strategy’ffRS)
loads, PARAID can reduce power consumption, while determine the minimal replicas number of the file in the
still meeting performance demands. Furthermore, J.Kimrequest, partitioning the file, and place the replicas in the
and D. Rotem based on the PARAID, using replicationdata nods according to a certain strategy, finally combine
for energy conservation in RAID System&g[17], in with status of the cloud storage system to gear shifting on
which they present a novel approach, called FREP. FRERhe data nodes. The constituent parts 8ARS will be
includes a replication strategy and basic function todiscussed in the following subsections.

We describe the Energy-Effective Adaptive Replication
Strategy (EARS) in this section. Firstly, we construct the
aflramework of the BEARS. And then the detailed
implement procedures will be described in the following
fubsections.

© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 6, 2409-2419 (2013)www.naturalspublishing.com/Journals.asp NS 2 2411

this subsection. Assume the requegsto be processed in

I Client | [ Client } the f" node, and thg energy congumption of request is:
Eij =g - 6, where6 is the processing time of the request

ri . Therefore, energy consumption of Node j can be

U Disk Regquest ( r; = {a;.5;, di.a¥i}) written as below:

o R E=3 3 &b (1)

f ~ LK

i | Data Partition Minimal Replicas ‘l =N

: e s Dekinitaing Modsl : The whole system energy consumption can be

i expressed as:

]

: |

| Adaptive Gear Replicas Placement ' m o o

I cie o | E=3E=3 3 Ei=3 Je6 @

| | Shifting Mec a oes | =1 j=1rew, j=1rew,

| 4

L T capn g Now we can obtain the following non-linear optimum
problem formulation to compute the energy consumption

m

of the parallel disk system. MinimizE = 5 3 ¢.6,

e, o . . - =TaY
------- subject tore; < tj, wherere; is the response time of the ith
application request.

(2) Data Partitioning Mechanism Different from the
traditional storage system, the Cloud Storage System
Fig. 1: Framework of the BARS. often strip the application data into blocks for parallel
processing. However, too many blocks lead to much
communication overhead, too few blocks resulting in
) poor performance of the application. Therefore, how to
3.2 The Algorithm of BARS partitioning the application data is the first important
. . ) issue for improve system performance. Our data
We will describe the EARS as the following procedures:  partitioning mechanism designed to optimize the parallel
Firstly, modeling the s_ys_tem state, disk request and tthegree of the application request= {a;,t,d,aV} in
data nodes characteristic of the cloud storage systemyrder to minimize the response time of the application.
Secondly, according to disk request characteristic, W8pe denote the parallelism degree of the application
design _the data partition me(_:hanism to optimize therequestri with p; , and thep; can be calculated as the
parallelism degree, and then build a mathematical formulgg)iowing procedures. Lets first formally derive the disk
to calculate the minimal replicas number of the dataggryice timeTyisk(ch, pi) Of requestr; . Thus, the disk

blocks. Finally, replicas placing strategy is employed t0seryice time can be computed as:
facilitate gear-shifting mechanism implement on the

cloud storage system.
(1) System Status and Energy Consumption Modeling  Tqisk(di, pi) = Tseek i) + Trot (Pi) + Terans(di, pi)  (3)
In this paper, requests to all of the files are modeled as
a Poisson process with the overall arrival rate _ WhereTseed pi) , Trot(Pi) , Trrans(di, pi) are the seek
We consider a sequence of application requesté'me' rotation time, and transfer time of the disk request
R = {r1,f2,.....tn} will be submitted to the Cloud ESPectively.Tseedpi) can be approximately as Eq (4)

Storage System. Each requestq R) is a tetrad. That is [22,23]

ri = {a&,t,d;,aV}, wherea;,t;,d;,aV is the arrival time, T ) —eC(1—a—bin(p f 4

the desired response time, the data size and the seel i) = eC{ (p))+ @)
availability of the request;, respectively. Furthermore, Where C is the number of cylinders on a disk, a and b

nodes set in the Cloud Storage System is expressed aare two disk-independent constants, whereas e and f are
N = {Ng,N2,... ,Nm} , in which the number of the nodes disk-dependent constants. The value of rotation time can
is m. Each nodeN; € N, j € (1~ m)) is a six-tuple, that  be expressed aJt(pi) = %Tm , whereTrot is the
is Nj = {Aj, 75, fj,bw;, e, sny} , whereA;, 7j, fj,bwj,sm  normal rotation time of a disk. The disk request transfer
is the arrival rate of request, and the average service tim&;me can also be given &ans(dh, pi) = q Bl We can

. - . ’ Pi * Bdisk "
the fa|lure_probab|llty, the network bandwidth, the energy tain the value of disk service time as- S
consumption rate, maximal sessions can be connected 0

theN;, respectively. Taisk(di, pi) = eC(1—a—bin(pi))
According to the above system modeling, we model pi d 1
the energy consumption of the Cloud Storage System in + fr D +1TROI+E'Bdisk ®)
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Now we are positioned to calculate the optimal (b) First replica (bJl ) placement Accordingly, the first
parallelism degree of requeSisk(di, pi) by determining  replica ¢b! ) of blocks of the fileF; is placed before the
the minimum of the function . Thus we can obtain the primary bIOCkS, That is given as Eq(ll)
optimal value of (parallelism degree of ) by solving the

Eq. (6): rbf = NLj 1 (j€[2,p]) while rbj—NLy 1 (11)
d(‘ﬂiigl(((%aﬁ)) _ T_Riﬂ _ pi~TRO'|2' _ech_ %_81_ =0 (6) (c) Second replicar()j2 ) placement Naturally, the

4 4 (D)™ P Po ik second replicarb! ) of blocks of the fileF is placed
(3) Minimal Replicas Determining Model before the first replica, That is written as Eq.(12),Eq.(13)

When we obtained the optimal valypg combine with
the  parameter aVi: availabilty of request
ri = {&,t,d,aVi} and the node failure probability
pgrameterfj,. of the Nj = {)\j,Tj,.fj,bWhej,Sm}, the if(j—2< o),erZ — NLj_2:p, (13)
minimal replicas number of the file request hycan be
deduced as[24]: The availability of file F is expressed as (Of
R is the number of the replicas):

er-l—>NLj,1 (] € [2, piD (12)

(d) General replicas placement strategies Without loss
generality, the replica number &f is R;, the replicas
placement strategy is expressed in the following Eq.s,

_ pi Kl K R . where .
P(FA)=1-P(FA) =1— Z(—l) + Cpi(l_llfj) @) rb‘f—>NLj,k (j—k>0) (14)
k=1 c=
Our E’ARS should be designed to guarantees the X = NLj_p  (j—k<O0) (15)
availability of the request. That is: (5) Response Time Estimator Based Gear Shifting
P(FA) = 1- P(FA) Mechanism The above replicas plgicement strategies gim
o R to conserve the energy consumption while guaranteeing
' k+1 .k k the QoS of the user. In this subsection, we describe how
fnd — — H > 1
1 k;( D7 e (Cllfj) = av (®) to gear shift among the cloud storage nodes according to

the response time estimator. Firstly, the time spent by
1 BEA application request can be deduced by formula (16), in
= P(FA) = 1-P(FA) which Tqueue is the queuing delay at the client side.

1 % (_1)k+1ck (Rﬁ“ f_)k Tpartition iS the time spent in datg partitionin@;m is the '
& Pi o ] system processing delay experienced by the ith stripe unit

—av ) of the request.

- |

WhereRnn is the minimal replicas number of the file T(r, p) = Tqueuet Tpartition + m%lx{T,',roc(n p} (16)
request byri. By solving the Eq.(9), we can get th&in =1
. In order to assure to access the file, we make additional EQ.16 is designed to be our time response time
restrictionsif (Ryin < 2), Rmin = 2. estimator, and we will describe how to deduce the related
(4) Energy-Conserving Replicas Placement Strategieparameters in the next section. Secondly, the above
Replicas in Cloud Storage System, not only can guaranteeeplicas placement strategies allow powering down some
files availability but also can conserve energy of the Cloud Storage nodes to save energy consumption
consumption when placing appropriately, which meanswhile guaranteeing the availability of the files request by
when the workload of Cloud Storage System is light, ri [12]. Furthermore, assume the number of figs
some of nodes be powered down to save energyeplicas isR that are placed amongi nodes, the
consumption, the left replicas can also guarantee filesvailability of the file can be guaranteed and the load
availability and balanced nodes’ workload approximately. balanced among the nodes can be achieved approximately
To obtain the objectives, our Energy-Conserving Replicas only need to meetk +1 nodes are not powered down
Placement Strategies is given as the following procedurescontinuously[12]. That is, the maximal powered off nodes
(@)Primary block Pb; ) placement From the above (maxoff)is:
mentioned, file i requested by requestj can be _
partitioned intop; blocks. The primary blocksPp; ) are max.of f = {p'/Ri +1J "R+ pi%(Ri +1) 17)
placed amongp; nodes through the data broker in Cloud o
Storage. We organize the nodes as a ring, in which node is  1herefore, our task is finding how many nodes can be
identified withNL;(j € (0,p;)). And the primary blocks ~Powered off (not exceeding maxff) to save energy
are placed according to the following mapping: the consumption while satisfying the time requirement of_ the
primary blocks are placed to the nodes in the ascendin equest through the response time estimator. According to

order. That is expressed as Eq.(10): he vyorkload of the Cloud System and_the response time
requirement of the request r, oufARS will gear-shifting
Pb; — NL;(j € [1,pi]) (10)  among the related cloud nodes refer to literatGie [
@© 2013 NSP
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4 Analysis Evaluation From formula (22), we can sé@ueueand Tpartition are
constant as to a certain request from the client. When
In this section, we describe the response time estimator imploy BC or DC to power off the nodes to conserve
detail. Then give the performance analysis accordingly.energy, the load can be balanced or nearly balanced
The simulation experiments will be done to verify the among the remaining nodes [25]. Therefore, it can be
effectiveness of our present&RS in the next section. derived that when power off s nodes, the response time
According to Eq.(16), the time spent by the request iscan be approximately computed as:

determined mainly by the third term%x{Tgroc(r, p)}
i

. = T(r,p,s) =T Tpartiti
(Tqueue @nd Tpartition are relative constant). The system (1 P,S) = Toueue Tpartiion

processing delay experienced by the ith stripe unit of the

request isTy,,c, Which can be expressed as: + malx{Trietwork(r, p,s) + P
=

FSTéisk(ra p,s)} (23)

Throc(ls P) = Thetwork™ P) + Tdisk(T, P) (18) Where s is the number of nodes powered off when the
system served the request r, and s should be meet:

Toetwork @nd Tiig are the delays at the network ¢ off_ |p ‘R 4 0%(R -+ 1). Eurthermore
subsys\{vem and pa{rallel disk subsystem respectively. We _ { /R‘ +1J Ri+P%(R +1). '
assume that when the ith stripe unit of a request arrives arccording to Eq.(2) , the conserved energy can be

the network queue, there are k stripe units waiting to bec@lculated as:

delivered to the parallel disk subsystef.,,ox can be m m m
written as: E=YE= Eij = ej.T(ri,pi) (24)
‘ le leri;j Jeri;J
d/p+ -Zldj Where 6 is the processing time of the requeast

Thetworl> P) = 871 (19)  Therefore, our strategies aim to save the maximum energy
network consumption while satisfying the Qos and guaranteeing
Whered; is the data size of the jth stripe unit in the the availability. Based on the above analysis, all the nodes
network queue anBnewwork IS the effective network active, the energy consumption in the fixed period of time
bandwidth, and d is the data size of the request ris deduced as:
Similarly, it is assumed that the ith stripe unit of the m
request arrives at disk j, there are k disk requests must bk = Z Zw €j.(Tqueuet Tpartition
processed by disk j before handling the stripe unit. Thus, J=1rieN;

Ti . (r, p) is given by the following formula: pi
disd"P) 1 9 y g + rp:alx{Trletwrok(ri» pi) +Td|isk(ri» pi)}) (25)
k . . .
T, P) = Taisk i (d/P) + S Taisk i (G 20 According to our gear-shifting mechanism, when the
dis{f- P) = Tais; (4/P) i; disk (&) (20) workload is light or the Qos level is low, assume s nodes

] ] . ) can be powered down to save energy based on the response
Where Tgisij(d) is the disk processing time of a time estimator. The energy consumption in the fixed period

request containing d bytes of datdgiskj(d) can be  can be deduced in the following formula:

quantified as follows: m

E(s) = Z Z‘ €j-(Tqueuet Tpartition
j=1rieN;j

Taisk j (d) = Tseekt Trot + (21)

Baisk .
We assume when all of the stripe nodes active. The * TZ%X{TAHWVO“(”’ P, S)

estimated response time exppressed as below: " pL_isTc;isk(riv 0.} (26)

T(1P) = Taueuer Toartiion + rirlalx{T‘;rOC(r’ P)} Therelfore, the mathematical analysis show that when
= Tqueuet Tpartition the average number s nodes are powered down, the energy
" rirqu{.memmk(r’ ) +T(;i3k(r’ o)} consumption savrend (Es) is deduced as:
= TqueueT Tpartition Es=E—-E(s) = glrieZVj €j.(Tqueuet Tpartition
TR X Tl P9 @

=1 Bnewwork According to the Eq.(27), we can see that fads a

k - 1
i d
i positive number and increased by the number (s.) of
+ Td'Sk(d/p)+i;(Tsee‘ Trot + Bdisk)} (22) " hodes powered down. Then based on our gear-shifting
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mechanism: the lower is the workload or the Qos level,
the bigger is the number s, and the conserved energ
consumption is much. Therefore, according to the above
mathematical analysis, our2ERS will save energy
definitely in certain condition.

Nodes active number between the two compared system
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5 Experimental Evaluation
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100 200 300 400 S00 600 TOO
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To evaluate the performance of oufARS scheme in an
efficient way, we building our simulation experiments
over GridSim toolkits by augmenting the energy related
parameters. And four parts of oufERS scheme are also
implemented in the GridSim. The application requests are
submitted to the Gridlets, and the time-optimizing
scheduler is employed to distribute the requests to certair
set of the cloud storage nodes. Table 1 summarizeg
important parameters used to resume real world cloud
storage system. In addition, the data-partitioning
algorithm is implemented in the GridSim to optimize the
parallelism degrees of the request, and to get the value o
Tpartition - We compare the performance of a cloud storage
system with BARS against that of another system
without employing EARS. In this study, a system that
does not apply BARS is an ordinary cloud storage
system with all nodes active all the time. We then evaluate
effects of varying arrival rates, the desired response time
and the number of the replicas of the data blocks on the_
performance of the two cloud storage system. Finally the™'9- 3= Impact
performance impacts of parallelism degrees on the cloudonsumption.
storage system will be analyzed too.

Fig. 2. Impact of arrival rate on the number of nodes active.

Normalized Energy Consumption between the two compared system

1
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0.7
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0.2

Normalized Energy Consumption

o1
o

100 200 300 a0o S00 GO0

Arrival rate (No./s)

700 aoo 00 1000

of arrival rate on the normalized energy

5.1 Impact of arrival rates
Table 1. Nodes parameters of the simulated Cloud Storage

System . . .
Number of nodes 556 In _thls experiment, we evaluate the impacts of request
Block size 64MB arrival rate on th_e active nodes nu_mber, _the normalized
Average seek time of the disks of the node 6ms energy consumption and conservation ratio. We compare
Capacity 128TB an EARS-enabled storage cloud system with a
Spindle speed 7200RPM non-E2ARS-enbaled one. And vary the arrival rate from
Energy consumption rate 100w/h 100 to 1900 No./s with an increment of 100N9./s, while
Average bandwidth among nodes 4AMB/S the desired response time and the data sizes of the

requests are constants. Fig.2-Fig.4 demonstrates the
simulation experiment results.

. . . . Fig.2 verifies our anticipation when the workload is
In our simulation experiments, we mainly evaluate the

; ; light some of the nodes can be powered down to save
following three performance metrics to demonstrate theenerg consumption
effectiveness of the#ARS scheme. y '

. Fig.3 shows that energy consumed by the
.(1) Averag_e num_berpfnodes powered down (OraCt'Ve)EZARS-enable cloud storage system is lower than the
during a certain period time.

o non- EARS-enable one. Furthermore, the lighter of the
(2) Energy consumption is the total energy consumedyorkload, the more energy consumption is saved by

by the cloud storage systems;
(3) Energy conservation ratio.

Furthermore, the overhead induced by oWARS
scheme will be discussed in the last subsection.

E?ARS-enable system due to the nodes powered down.

Fig.4 demonstrates the energy conservation ratio of
the PARS-enable cloud storage system as the arrival rate
increase.
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08 E"ergv conservation ratio b\" the E2ARS Mormalized energy consumption between the two compared systems
0.7 & = \With E2ARS
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06 | ‘g | Without E2ZARS
0s ! 2 084
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Fig. 4: Impact of arrival rate on the energy conservation ratio. Fig. 6 Impact of desired response time on the normalized energy

consumption.
Modes active number between the two compared system
Energy conservation ratio by the EZARS
300
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Fig. 5: Impact of desired response time on the number of node

active. ﬁzlg. 7: Impact of desired response time on the energy

conservation ratio.

Modes active number between the two compared system

5.2 Impact of the desired response time

250 B = A e i e e e e e e e e e i
In this subsection, we evaluate the impacts of desired % 200 | *““#——%ﬁﬁﬁ_
response time on the active nodes number, the normalizef 5 **° _ TR TR
energy consumption and energy conservation ratio. Wg 3 0 i et
compare an BARS-enabled storage cloud system with a| £ so |
non-E2ARS-enbaled one. And varying the desired| = o . . . . . . P
response time from 1000 to 10000ms with an incremen 2 3 & B = O 5§ 3

Average replicas number

of 1000ms, where the arrival rate is set to 500No./s, an
the data sizes of the requests is average to 1024MB. ) )
Fig.5-Fig.7 demonstrates the simulation experimentF'g' 8: Impact of average replicas numbers on the active nodes
results. number.

Fig.5 verifies our anticipation when the desired
response time is loose (that is the Qos level is low) nodes
can be powered down to save energy consumption too5.3 Impact of average replica numbers
Fig.6 shows that energy consumed by tHAES-enable
cloud storage system is lower than the non-In this subsection, we evaluate the impacts of average
E°ARS-enable one. Furthermore, the looser of the desiredeplicas number on the number of active nodes, the
response time, the more energy consumption is saved bgormalized energy consumption and Energy conservation
E°ARS-enable system due to the nodes powered off. And-atio.
the Fig.7 demonstrates the energy conservation ratio of We compare an #ARS-enabled storage cloud system
the EARS-enable cloud storage system as the desireavith a non-EARS-enbaled one. And varying the replica
response time increase. numbers from 2 to 10 with an increment of 1, when the
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Fig. 9: Impact of average replicas numbers on normalized energyFig- 11: Impact of the average parallelism degrees on active
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Fig. 12: Impact of the average parallelism degrees on normalized

. ) energy consumption.
Fig. 10: Impact of average replicas numbers on energy

conservation ratio.

Energy Conservation ratio vary with the average parallelism degree

arrival rate is set to 500No./s, and the desired respons os |

time is set to 2000ms. Fig.8-Fig.10 demonstrates thg £ E? '

simulation experiment results. Fig.8 verifies our| ¢ .. — % - Energy conservation ratio

anticipation when the average replicas number is % os

increased the nodes can be powered down increased, bl 2 ol

when replicas number increased to a certain number, th % o,

active nodes number is fixed. Fig.9 shows that when the 2 o S S

average replicas number varied, energy consumed by th I T S e
E2ARS-enable cloud storage system is lower than the Average parallelism degrees
non-EARS-enable one. Furthermore, the more is the
replicas number, the more energy consumption is savegiy 13 |mpact of the average parallelism degrees on the energy
by E?ARS-enable system due to the nodes powered.onservation ratio.

down, and the energy consumption saved became

constant when the replicas number reach a certain value.

Fig.10 demonstrates the energy conservation ratio of the

2 .
E“ARS-enable cloud storage system as average replicagnergy consumption, Energy conservation ratio, and the

number increase. normalized response time. We vary the parallelism from 2
to 10 with an increment of 1, where the arrival rate is set
to 500No./s, and the desired response time is set to

5.4 Impact of the parallelism degrees 2000ms, and the average replicas number is set to 3.
Fig.11-Fig.14 demonstrates the simulation experiment

In this subsection, we evaluate the impacts of parallelisnresults Fig.11 shows that with the average parallelism

degrees on the number of active nodes, the normalizedegrees increased the number of nodes powered down
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_ R _ scheme energy consumption can be saved with Qos
Average response time vary with the average parallelism degree .. . . .
2000 satisfied and data availability guaranteed when varying
i the arrival rate, desired response, replicas number and
S et S, parallelism degrees. However, ol#ARS scheme obtains
- ST the effective energy performance by inducing some
& 2000 storage capacity overhead. Our further work will be
g":mo =¥~ Average response time focused on minimizing the overhead while maximizing
g 1000 the energy consumption conservation.
3 50;
2 3 a L) (5] 7 a 2 10
Average parallellsm degrees ACk noWl ajgern ent

Fig. 14: Impact of the average parallelism degrees on the averagd his work is supported by Natural Science Foundation of

response time. Zhejiang Province (LY13F020045, LY13F020047,
LQ12F02002), Natural Science Foundation of China
(Grant No0.61202094,6110004, 61003077,61100193),
Important Science & Technology Specific Projects of

decreased due to the related nodes of the requeghejiang Province of China (2010C13022) and National

increased. The remaining figures (Fig.12-Fig.14) showKey Technology Research and Development Program of

that as the average parallelism degrees increase, energiye Ministry of Science and Technology of China

consumption saved by ourBRS scheme is neglectful, (2012BAH24B04).

but the average response time is shorten due to the

parallel processing.
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