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Abstract: This paper investigates the application of widely used K-Medoids based clustering algorithm on data collected through
CoMon facility for the PlanetLab testbed. The averaged values of variousmetrics in passively collected slice-centric data has been
considered for clustering purposes. Various groups of slices, depicting similar resource usage patterns have been identified in original
data set. These clusters have been represented in reduced dimensional space formed by first two principal components of original data
set. In order to capture variations in pattern of resource usage by various slices at a PlanetLab node, clustering of standard deviations
of various metrics have also been carried out. Further, combining averaged and standard deviation, clustering has also been performed
on index of dispersion computed from the original data set. It has been found that K-medoid based clustering can effectively split
the original data space into various sub-spaces of different resource usage behaviour of slices. Thus, it can lead to better resource
management and control in publicly available testbeds.

Keywords: PlanetLab, Slice-Centric CoMon data, Resource management, PrincipalComponent Analysis (PCA), K-medoids based
clustering & Cluster validation.

1 Introduction

PlanetLab, an overlay on the Internet, provides
experimental testbed services to world wide community
of researchers. Since its launching in mid 2002, it has
been extensively used to evaluate a diverse set of network
services, including content distribution, anycast,
Distributed Hash Tables (DHTs), robust DNS,
Peer-to-peer, measurement and analysis, anomaly and
fault diagnosis, [1,2].

Recently, some issues relating to conflicts arising in
PlanetLab usage have been pointed in [3]. These include
high frequency measurement probes, illegal content
distribution and excessive usage of resources such as
bandwidth. In order to address these issues and thus to
avoid the abusage of PlanetLab resources, log files have
been extensively used by administration. All of the
conflicts and security issues are currently being handled
by PlanetLab Central (PLC), that acts as a trusted
intermediary between node hosting sites and researchers.
Basically, the operation of PLC is dependent upon three
key mechanisms: isolation provided by VServer, an
auditing mechanism provided by PlanetFlow and secure
remote boot mechanism that allows to inspect a node even

if its kernel has been compromised, [3]. However, PLC
does not attempt to prevent the occurence of problems but
is responsive when complaint is reported. It records only
per-flow byte and packet counts for auditing purposes,
indicating that a given packet belongs to which slice.

CoMon is a monitoring system that has been designed
for providing necessary information about operation of all
of the PlanetLab nodes. It has been inspired by the
CoDeeN Content Distribution Network. Since its launch
in August 2004, with its freely available data, it has
provided sufficient monitoring, community aided problem
identification, login trouble shooting and as an aid to node
selection for conducting experiments, [4]. It runs two
daemons, i.e. node and slice-centric, on each node of the
PlanetLab. The slice centric daemon is simple and reports
an aggregated consumption of resources within each
slice, [5]. Whereas the node-centric daemon reports a
larger number metrics which can be classified as: (i)
OS-provided, such as CPU utilization and Memory
consumption etc (ii) passively measured, such as number
of slices in memory and resources hogs and (iii) actively
measured quantities such as amount of memory pressure
and TCP/UDP failure rates for local DNS servers. Thus,

∗ Corresponding author e-mail:aun@acm.org

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070630


2374 A. Haider: K-Medoids based Clustering of PlanetLab’s...

the data collected through CoMoN has wealth of
information which can be used to understand the state of
affairs at nodes or slices across the PlanetLab.

It is important to notice that with an increase in
number of PlanetLab nodes as well as the users, the
amount of raw monitoring data generated by CoMon has
also been significantly increased. Hence, making the
manual use of monitoring data a quite challenging task
and thus requiring to use efficient data processing
techniques for intelligent decision making. For instance,it
can lead us to better resource usage control as well as
detecting the irresponsible users. A first step in this
direction can be an efficient clustering of the data
collected. Generally, clustering refers to a process of
organizing data into homogeneous groups or clusters,
where an attempt is made to maximize similarity between
objects included in the same group and also maximize
dissimilarity between objects included in different groups.
It can also be regarded as an unsupervised classification
of patterns in the data. Despite of its hardness, due to
combinatorial nature, it has been widely employed in
various disciplines [6].

Clustering can be classified as crisp or fuzzy in
nature. In crisp clustering each data object is included in
exactly one cluster, whereas in fuzzy clustering each data
object can have varying degree of membership to several
or all if the clusters. Clustering can also be carried out on
the basis of mixture models where data is assumed to be
generated by several parameterized distributions, [7].
Further, one can find a huge body of literature related to
clustering; as according to [8] there exists more than three
digit number of clustering algorithms. A basic purpose of
most of the clustering techniques is to minimze the
inter-cluster distance and maximize the intra-cluster
distance. Whereas, one can find several definitions of
distance in [9].

This paper presents K-Medoids based crisp clustering
of resource usage monitoring data captured by CoMon
facility of PlanetLab. It does not attempt to present a
comparison between a large number of clustering
algorithms available in litrature. For representation of
clusters, the dimensions of data has been reduced by
Principal Component Analysis (PCA). Euclidean distance
has been employed as a metric to measure distance
between various data points, while forming the clusters.
Major contributions of this paper include: development of
an analytical model for resource usage by various slices,
clustering and identification of resource usage pattern
among various slices at a PlanetLab node1.

The rest of this paper is organized as follows. An
overview of Principal Component Analysis technique for
data analysis and K-Medoids based clustering has been
presented in Section1. Services provided by PlanetLab to
manage and monitor the resource usage by various slices
have been discussed in Section2. The analysis of

1 This manuscript is an extended version of paper published in
15th IEEE International Multitopic Conference 2012.

slice-centric CoMon’s data has been presented in the
Section3. Finally, some conclusions have been drawn in
Section5.

1.1 Principal Component Analysis

The basic idea in Principal Component Analysis, [10], is
to transform the higher dimensional space data, consisting
of many interrelated variables, into a lower dimensional
space data; while attempting to retain maximum possible
variation in the original data set. It performs coordiante
transformation by mapping the input data onto set of axes
spanned by eigenvectors.

Mathematically, computation of princiapl components
can be summarized as follows. Assume thatX ∈ Rn×m is
the original data matrix containingm rows andn number
of columns, that is normalized to zero mean and unit
variance matrixY ∈ Rn×m. Next step is to compute the
covariance matrix ofY, i.e.R = 1/(n−1)YTY. Then find
the Singular Value Decomposition (SVD) ofR, which can
be expressed asR = VΛV T . Whereas,Λ is a diagonal
matrix containing eigen values ofR in decsending order
and columns of V are eigen vectors ofR. A
transformation matrixP ∈ Rm×p can be constructed by
selectingp number of eigen values. This selection ofp
defines the number of principal components that will
employed in the analysis of data in reduced dimensions
space. One popular method to select the number of
principal components is to ensure that cummulative
variance should be≥ 90%. Multiplication of P with Y
will give us a reduced dimension data matrixZ; where
columns ofP are called loadings and elements ofZ are
termed as scores. These scores can be transformed back
into the original data space asY = ZPT . The difference
between original data and the reconstructed data will
form the residual error.

The first principal component indicates the maximum
amount of variation or energy present in original data in
the direction of first eigenvector. The remaining variations
in data are orderly captured by subsequent principal
components. Hence, principal components are in
descending fashion according to capturing of amount of
variations in the original data. In this paper we have
employed first two principal components of data to
represent clusters.

1.2 k-medoid based Clustering

In order to findk clusters inn number of data points,
using medoids, Partitioning Around Medoids (PAM)
algorithm has been developed in [11]. It is one of the
earliest implementations of medoids based partition
algorithms. Whereas, a medoid can be defined as a
representative object of a data set, or a cluster within a
data set, which is most centrally located within that group
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of data. Although, similar to concept of means or
centroids, a medoid is always a member of data set.

The clustering algorithms based on medoids possess
some very useful properties, [12]: such as robustness to
outliers, independence to order in which data is
examined, invariance to translations and orthogonal
transformations of data points and handling of large data
sets. The operation of PAM can be summarized in the
following steps [12]:

–Select k representative objects, i.e. medoids,
arbitrarily.

–Compute the total cost of replacement for all pairs of
data objectsOm andOp, Cmp; whereOm is currently
selected as medoid andOp is not selected.

–Select the pair Om,Op which corresponds to
minOm,Op Cmp. If minimum Cmp is negative, replace
Om with Op and go to step 2.

–Otherwise for each non-selected object, find the most
similar medoid.

However, PAM does not work satisfactorily for large data
sets as its complexity for single iteration isO(k(n− k)2).
For dealing with larger data sets, Clustering Large
Applications (CLARA) algorithm has been proposed
in [11]. It draws multiple samples of data and apply PAM
on each sample to generate best clustering as its output.
Its complexity, for a sample size ofs, can given as
O(ks2+ k(n− k)). A weakness of CLARA is that there is
no systematic way to select the sample sizes. However, a
simple heuristic used is to select 5 samples of size
(40+ k), [11]. The performance of CLARA has been
improved by Clustering Large Applications upon
Randomized Search (CLARANS) algorithm, [12]. It
arbitrarily picks one of thek medoids and attempts to
replace it by another data object that has been randomly
chosen among(n− k) data objects. In this paper, due to
smaller size of data, we have only employed the basic
K-medoids based clustering as performed by PAM
implementation in R statistical package:
http://www.r-project.org/.

2 Resource Management in PlanetLab

For resource management purposes, PlanetLab provides
three basic services to users: Slice Creation Service,
Brokerage Service, Monitoring Service, and Auditing
service, [2]. The slice creation service is provided by
plconf and require no special privileges, wherein the node
owner creates a resource pool and assign it to plconf at
the time of bootup. The brokerage service is mostly
provided by Sirius, [13]. It performs function of
admission control to resource pool available at PlanetLab
node. The plconf set aside a part of resources to be used
by Sirius. Other market based resource brokerage
services, such as Bellagio and Tycoon, [2], may also be
available at some of the PlanetLab nodes. For monitoring
of a node, CoStat has been used. It is a low-level

instrumentation that has access to /proc files. Services
such as CoMon, collects and process the data
collected, [4]. A simplified relationship among various
PlanetLab services has been depicted in Fig.1. Among
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Fig. 1: An overview of services offered by PlanetLab.

these services, this paper concentrates only on data
collected through the monitoring services provided by the
CoMon facility. It is important to note that from CoMon
data, one cannot guess the underlying brokerage services
being provided by a PlanetLab node.

The CPU usage at a PlanetLab node is controlled by
fair share scheduling and work conserving reservations
provided by overlaying a token bucket filter on the top of
the standard Linux Scheduler. For further details, see [2]
and its references. On local scale, Planetlab monitors
resources consumed by plmom watchdog daemon. It
resets a slice consuming most of the physical memory
when swap has almost filled. Similarly the sustained
traffic rate, bandwidth, is also limited by plmom. It
allows each slice to send a quota of bytes per day at a
node’s maximum cap rate, and imposes much smaller
limit if slice exceeds its quota. However two weaknesses
exists in this approach: (i) some sites for PlanetLab nodes
pay on the basis of total amount of traffic generated per
month, they need to control the sustained rate of traffic
rather than the peak rate; plmom operates on per slice
basis and cannot be controlled by sites (ii) PlanetLab
nodes do not cap the incoming bandwidth, thus giving a
possibility to saturate the bottle neck by downloading a
large amount of data. Thus, overall resource allocation to
various slices at a PlanetLab node is a complicated
process involving resource brokerage, CPU scheduling
and plmom daemon.

The combined effect of all these mechanisms, as
indicated in Fig.1, is reflected in the slice-centric data
provided by CoMon. Wherein, it is not trivial to filter out
the effect of each mechanism for resource control and
allocation. Thus, it is reasonable to treat the resource
management mechanisms as a block box and resort to
identify the slices consuming most of the allocated
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resources. One method to achieve this goal is to employ
clustering algorithms on the collected data to form groups
of slices with similar resource usage characteristics. It
will help to identify the slices consuming too high
resources. After forming clusters, it would be easier to
take corrective actions on various slices to maintain
fairness in resource usage.

3 CoMon’s Data Analysis

Currently, PlanetLab consists of more than 1100 active
nodes which are being constantly monitored after every 5
minutes. Hence, data is collected from each node for 288
times every day. This data has been made avilable
publicly. Generally each PlanetLab node has a different
number of slices. It stems from the fact that each user
selects its own set of nodes for creating slices to conduct
experiments. Although, some services, e.g. SWORD [14],
are available to users for aid in node selection process.
However the role of these services is advisory only.

In this setup, there can be two possible ways to carry
data analysis: (i) consider resource usage of various slices
at a particular node in one day or for longer periods of
time (ii) consider set of all slices in Planetlab and
determine that how much resource are being consumed by
each of them at each node. The first approach will tell us
which slice is consuming most of the resources at a
particular node, whereas the second approach will
indicate an overall resource usage pattern of a particular
slice over the entire PlanetLab. But it will require a
centralized entity for global advertisement of this
resource usage information by a particular slice. Then
each node can have its own policy to deal with slices
consuming too much resources.

3.1 Arrangement of Data

For our analytical studies, we have employed the
following eight parameters available in slice centric
CoMon’s data: transmit bandwidth (Kb/s) over last 1 and
15 minutes, receive bandwidth (Kb/s) over last 1 and 15
minutes, physical and vsirtual memory used (MBytes), %
CPU and % Memory usage by each slice. Raw data from
CoMon is parsed to filter out these metrics. This fileterd
data can be arranged in a matrix that can have the
following two forms.

–Columns of data matrix represents various slices
running at a node. The rows will represent samples of
a single metric taken at an interval of 5 minutes. For a
node runningm number of slices, the dimension of
data matrix will be 288× m. In this arrangement of
data, each slice will be acting as a variable whose
samples are represented by rows. It has been
represented in Fig.2. Each column of data matrix will
be representing a time series of a particular metric in

the data for that slice. Thus, we will be requiring a
different matrix for each of the each eight metrics
under analysis.

–One can take time average of several metrics and
arrange them in columns for various slices of the node
as rows of matrix. However, temporal characteristics
of each metric will be lost due to averaging process.
One solution to this loss of information would be to
compute the standard deviation of the averaged data
and use it in clustering as well.

Slices 

m
11

m

m
1j

m
1m

m
21 2m22

m

n1
m

n2
m

nm
m

S
lices 

m

m

m m

m m

m m

11

21

m1
m

m2 mp

12 1p

21 2p

Avgd value of  Metrics

S
am

pl
es

 o
f s

in
gl

e 
m

et
ric

Fig. 2: Two arrangements of fileterd data in matrix form.

In this paper we have adopted the second approach and
collected one week’s CoMon data. Then we computed
arithmetic mean over each day, for each of the eight
metrics under study. We have focussed on resource usage
pattern of 60 slices, giving a data matrix of 60x8, in one
of the PlanetLab’s node. The clustering has been
performed by using K-medoids algorithm.

3.2 Cluster Validation

The next step after clustering is to determine the quality
or vaildatation the clusters. For this purpose, a large
number of cluster validation techniques exist in
literature, [6]. In this paper we have employed the widely
used Silhouette Index for cluster validation. It can be
defined as follows: For a given clusterZ j with
j ∈ (1,2, ...,c) the Silhouette method assigns thei−th
sample of ofZ j a quality measure known as Silhouette
width which has been defined as follows:

s(i) =
b(i)−a(i)

max{a(i),b(i)}
, (1)

wherea(i) is the average distance betweeni−th sample
and all samples inZ j and b(i) is the minimum average
distance between thei−th sample and all samples inZk
for k ∈ (1,2, ...,c) with k 6= j. It indicates that value of
silhouette width varies between -1 and 1. The value of 1
indicates that sample has been included in appropriate
cluster, whereas -1 indicates the misclassification, [15].
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3.3 Clustering Results

3.3.1 Principal Components of Data

In order to observe variability in data matrix, we have
computed Principal Components for both averaged and
standard deviation of the fileterd data. The standard
deviation of various components has been plotted in Fig.
3. We have performed K-Medoids based clustering on
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Fig. 3: Standard deviation of various principal components
computed for averaged data(a) and its standard deviation
(b).

complete data matrix. However, these clusters cannot be
visualized due to higher dimensions of data. Hence we
will represent clusters using first two principal
components of data.

3.3.2 Clustering based on Averaged Data

The clustering results for three days averaged data are
presented in Fig.6. Each column represents results for
one day of CoMon’s data. The clusters have been
represented in the plane formed by first and second
principal components of the data. The five clusters
formed from the first day of observation are shown in Fig.
6. (a). The Sillhouette index was computed and has been
plotted in the Fig. 6.(d). Also, it indicates that cluster
membership for each slice under study. From this figure,
it can be observed that cluster # 2 contains a largest
number of slices, whereas cluster 5 contains only one
slice (# 33). Also, cluster 2 has largest value of average
Silhouette index.

By selecting two or three metrics of ineterest, one can
represent the results of K-Medoids clustering in a plane or
in 3-dimensions. For instance, we have considered %
CPU usage, % Memory usage and data transmission rates
as three most crucial resources in PlanetLab and are
represented along each axis. Thus, we have represented
the clusters in Figs. 6.(g) and 6.(j), for transmitted and
received bandwidth respectively. These two
representations are almost similar except for one slice (#

39). Next we draw similar plots for the data of next two
days. It can be observed that the membership of clusters
does not change drastically with each day. The average
sillhouette index slightly improved from 0.41 to 0.45 for
data collected on second day and onward. Again the
Cluster # 2 has largest number of slices with an average
Sillhouette index close to 0.74. The cluster # 5 has only
only slice (# 33).

Correlating the cluster diagrams with 3-D
representations, it can be observed that slice # 33 is
consuming most of the bandwidth resources. Whereas the
slice # 54 and 25 are consuming the most of the CPU and
memory resources. Its important to note that PlanetLab
node act as a substrate of resources and allocate a fixed
amount of CPU and Memory to each slice. Hence % CPU
and % Memory usage are reflecting the consumption in
the allotcated quota for each slice. However, the transmit
and receive bandiwdth are can partially controlled by
PlanetLab through plmom, [2]. It is important to note
that desipte large resource consumption by individual
slices (within their quotas), the PlanetLab Node might be
underloaded.

3.4 Clustering based on Standard Deviation of
Data

The averaging of time series data of CoMon’s measured
metrics will conceal its time variations. Thus clustering of
averaged data will be representative of the groups of
slices having same mean resources consumed in a single
day. However, it might be important to identify slices
having most variations in the resource usage at a
PlanetLab node. Therefore, in order to cluster data on the
basis of its variations, we have computed standard
deviations of all of the eight metrics and new clustering
was performed.

The results for clustering of the standard deviation of
CoMon’s data for three days have been shown in Fig.7.
The clusters formed on plane formed by first and second
principal components have been shown in Figs. 7(a), 7 (b)
and 7(c). Whereas the corresponding Sillhouette plots are
given in Figs. 7(d), (e) and(f) respectively. From these it
can be observed that, as in the case of the averaged data,
almost half of the slices lie in the cluster # 2. These slices
have similar variations in resource requirements.

The 3-D represenations of clusters formed on the
basis of standard deviation of measured metrics are
shown in Figs. 7(g), 7 (h) and 7 (i) for received
bandwidth and in Figs. 7(j), 7 (k) and 7(l) for transmit
bandwidth, repectively. Looking at these diagrams it can
be found that resource requirements of slices included in
cluster # 2 do not change much. Thus, indicating that
many slices do not change their resource requirements
dramatically during their life time. The slices having
highest variations can also be easily identified. It is
interesting to observe that the slices whose average values
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are highest also have highest highest value of standard
deviation for the same metric.

3.5 Variations in Cluster membership

In order to quantify changes in cluster membership of
various slices for each day of data measurement, Jaccard
index has been employed, [16]. It measures the similarity
between two sample sets (clusters) and is defined as a
ratio between sizes of intersection and union between
them; i.e. for a data setD with two subsets A and B,
Jaccard index is defined asJ = A∩B

A∪B . The Jaccard index
for averaged and standard deviation of data has been
plotted in Figs.4 and5, respectively. It can be seen that
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Fig. 4: Jaccard index plot for k-medoids clustering
performed on the averaged data.

except for day 1, the clusters 1, 2 and 5 for averaged data,
Fig. 4, have high values of Jaccard index. It indicates that
not many slices in these clusters change their
membership. However, for the cluster 3 and 4 the index
drops to low values after passage of day 3. The same
pattern can be see from Sillhouette index plots. Similar
trend in the change in cluster membership has been
maintained in Fig.5.

4 Some Related Work

In [17] an extensive study to understand and characterize
the resource usage by PlanetLab, has been presented. It
has analyzed the six years (2005 to 2010) of data
collected from CoMon facility of PlanetLab. It has been
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Fig. 5: Jaccard index plot for k-medoids clustering
performed on standard deviation of the averaged data.

reported that only 3% of all slices can account for more
than 80% of all CPU usage in PlanetLab. Similarly, only
around 4% of all slices consume more than 80% of all
memory resources. It has also been found that unlike the
compute clusters, where users consume resources
greedily, the PlanetLab users are not agressive in resource
consumption. Thus, resource consumption depicts the
bimodal distribution along various axes. Two major
resource allocation systems, i.e. pair-wise bartering and
central banking, have also been investigated. Also, it has
been reported that both resource allocation systems would
handle only a small proportion of total usage of resources
in PlanetLab.

In Sharp [18] various users can trade their resources
using tickets which can be issued, delegated and
redeemed in a cryptographically secure manner. Several
mechanisms for trading resources in an econmomical way
have been proposed in literature, such as: Millenium [19],
Mirage [20] and Tycoon [21]. In general, these systems
attempts to maximize the benefit delivered to users by
providing a method to express the value of their
resources.

A resource discovery system, SWORD [22], has also
been deployed in PlanetLab [1]. In this system the users
specifies the desired resources in XML and submit queries
to a service which attempts to first locate and then allocate
the resources to users.
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Fig. 6: (a), (b) and(c) show K-Medoids clustering for data collected (60x8); corresponding silhouette are also shown;
number of slices considered are 60, for which nummber of clusters selected are 5.
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Fig. 7: (a), (b), (c), (g), (h) and (i) show K-Medoids clustering for standard deviation of data collected (60x8);
corresponding silhouette shown in(d), (e), (f), (j), (k) and(l); number of slices considered are 60, for which nummber of
clusters selected are 5.
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Fig. 8: (a), (b), (c), (g), (h) and(i) show K-Medoids clustering for Index of Dispersion (variance/mean) corresponding
silhouette shown in(d), (e), (f), (j), (k) and(l); number of slices considered are 60, for which nummber of clusters selected
are 5.
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Fig. 9: (a), (b), (c), (g), (h) and(i) show K-Medoids clustering for Index of Dispersion (Variance/Mean) corresponding
silhouette shown in(d), (e), (f), (j), (k) and(l); number of slices considered are 60, for which number of clusters are
selected automatically by pamk.
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5 Conclusions

K-medoid based clustering has been performed on slice
centric CoMon data, generated by one of the PlanetLab
node, to identify the slices consuming the most of the
resources. After performing clustering on complete data
matrix, they have been represented by the first two
principal components of data. Sillhouette index has been
used to validate clusters and indicate slices belonging to
various clusters. Further, in order to capture time
behaviour of slices, the standard deviation of the averaged
data has been also clustered. In each case clusters have
been represented by 3-D space formed by %CPU,
%Memory and Received/Transmitted data rates. During
our period of observation, it has been found that most of
the slices do not show much changes in resource usage
pattern and almost half of them belong to one big cluster.
The average sillhouette index of this cluster is also quite
high. The technique presented in this paper is fairly
general has a relevance to virtual network providers and
cloud computing. It can be used to understand the nature
resource usage pattern of various users, which can lead to
better resource provisioning and revenue computation.
For future work, it is worth to investiagte the state
transition of various slices and find underlying Markov
Chain Models for predictability of resource usage.
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