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Abstract: In this paper, we consider the symmetric cone linear programming(5®yRusing the Jordan-algebraic technique, we
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1 Introduction Al) o :V — R™Mis a surjective linear operator;

Let A = (V,0,(-,-)) be a Euclidean Jordan algebra(see ~ A2) Z°(P)# @ and.7°(D) # @.
Section 2 for the definition), wher€V,(-,-)) is a finite
dimensional inner product space over the real fieldnd
"o" denotes the Jordan product which will be defined in
the next section. Let#” be the symmetric cone i and
denotex = 0 for x € 27", we consider the symmetric
cone linear programming (SCLP) with the primal form:

Assumption Al is convenient to ensure that the dual
variables s and y are in one-to-one correspondence.
Assumption A2 ensures that both (P) and (D) have
optimal solutions, the optimal values are equals and its
solutions sets are bounded.

Nesterov and Todd] first proposed this optimization
(P) minc™x, st. @/x=Db,x> 4 0, problem under the name of convex programming for

. N " . self-scaled cones, and established polynomial complexity
where the data consist afe R", b e R™ and a linear  of primal-dual interior-point method applied to this

operatore/ : V — R™, the primal variable isx € V. The  proplem using the so-called NT direction. It is well
associated dual problem to (P) is known that symmetric cone programming (SCP) includes
T * _ linear programming (LP), semidefinite programming
(D) maxbly, st. o/"y+s=csz 0, (SDP) and second order cone programming (SOCP) as
where .&* : R™ — V denotes the adjoint application special cases. Thus, some efficient methods in LP and
associated tow/ and (s;y) € V x R™ are the dual SDP have been extended to the programming problems
variables. We denote the primal and dual feasible sets asver symmetric cones. Faybusovich] [first extended
FMP) = {x € V: &x = bx =, 0 and primal-dual IPMs to SCP through Euclidean Jordan
F(D) ={(sy) € VxR": #*y+s=c¢s =y 0}, algebraic tools. Schmieta and Alizadel3] [proved
respectively. The interior of primal and dual feasible setspolynomial iteration complexities for variants of the
are denoted by7°(P) = {xe V: &/x=b,x > 0} and  short-, semi-long-, and long-step path-following
F°(D)={(s5y) e VxR": &*y+s=c,s>, 0}, and  algorithms over symmetric cones. Viei§[[5] proposed
the primal and dual optimal sets are denoted.%By(P) primal-dual IPMs for SCP based on the kernel functions.

and.#*(D). Recently, Wang and Bai 6] generalized Darvays
Throughout this paper, we assume that the followingfull-Newton step primal-dual path-following IPM for LP
two conditions hold in the statements of our results. in [7] and presented a new full NT step primal-dual
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path-following IPM for SCP. Liu et al.g] and Zhang and (i) Xoy=YyoX,
Zhang PB] proposed IPMs with the second-order corrector
step for SCP and showed the polynomial convergence.
In this paper, we consider extending the well known In a Jordan algebrdV,o), xoy is said to be the
interior point method-generalized proximal point method Jordan product of x andy. Note that a Jordan algebra is
in LP (Linear Programming) and SDP (Semidefinite not associative, i.exo (yoz) = (xoy)ozmay not hold in
Programming) to the SCLP. This idea has, at first,general. If for some elemepte V, xoe = eox = x for all
appeared in lusem et all(], they have proved this x e V,theneis called aunit element of the Jordan algebra
connection among central path and generalized proxima{y o). Forx € V, let {(x) be the degree of the minimal
point sequence in some special cases, including lineapolynomial of x, which can be equivalently defined as
programming. On the other hand, Doljansky and Teboule
[11] introduced a generalized proximal method for Z(x) :=min{k: {e,x,x27--~ 7Xk} arelinearly dependent }.
unconstrained convex SDP problems and established its
convergence properties. Recently, the method wasThen therank of (V,0), with a unit elemené ¢ V, defined
extended to SDP by Ferreira, Oliveira and Silt@][and  over the real fiel®R is called aEuclidean Jordan algebra
Several works dealing with this issue include Aulenderor formally real Jordan algebra, if there exists a positive
and Teboulle 13] and Mosheyev and Zibulevskilf].  definite symmetric bilinear form o which is associative;
More recently, Chen and Panlq considered an in other words, there exists dfhan inner product denoted
entropy-like proximal algorithm for convex symmetric by (...)y such that for alk, y, z€ V:
cone programming in the form:

(i) xo (X% 0y) = X2 o (xoy), wherex? := xoX.

(iii) (xoy,2)v = (y,X02)y.
minf(x), st. x>=# 0, In a Euclidean Jordan algebta= (V,o, (-,-)y), we

where f : V — (—w,+w] is a closed proper convex J€fine the setof squares as
function.
The main motivation of this paper is to develop the

convergence of primal central paths associated to theBy [17], /¢ is a symmetric cone. This means thet is a

symmetric cone distance functions for symmetric cone elf-dual closed convex cone with nonempty interior and
programming. Furthermore, we consider the generalize . pty 1Nt
or any two elements, y € int(.%"), there exists an

gg?gg;?sa:] &2T0m/2trgz(:]cvg'$ Szﬁq;lzfgfgnzinctlon and invertible linear transformation : V — V such that

o : : T (X )= andT (x) =Y.
The organization of this paper is as follows. In Sec.2, . : .
we review some basic concepts and materials on, CFzze_caII tf%at aljdelemeru:teVls sgud o bedepc;npotmé
Euclidean Jordan algebra which are needed in thd =C WO empotentsizcgn qka(e said to be
analysis of the generalized proximal point methods. Ino'thogonal if cog = 0. So {c".c--c‘} is a complete
Sec.3, we list some good properties of the distance-like®YSttM of orthogonal idempotents if
function in the symmetric cone#’. Furthermore, the
detailed introduction and convergence analysis of the

generalized proximal methods are given in Sec.4

A ={x%:xeV}

ct=cj, cjog=0if j#iforali, j=12...k

and

N =~

Cj=¢
1

2 Preliminaries on Euclidean Jordan algebra K

An idempotent is said to bgrimitive if it is nonzero and
This section recalls some concepts and results ortannot be written as the sum of two other nonzero
Euclidean Jordan algebras that will be used in theidempotents. We call a complete system of orthogonal
subsequent sections. More detailed expositions ofprimitive idempotents dordan frame. Then we have the
Euclidean Jordan algebras can be found in Koecher'dollowing spectral decomposition theorem.

lect t d Faraut and Kémnyi’ h
ecture notes 16] and Faraut and Kanyr's monograph | [[11, Theorem 1. 1.2] Suppose that

[17]. . .
i : 1A = (V,o,(-,-)v) is aEuclidean Jordan algebra and the
Let V be an n-dimensional vector space over the fleldrank of Ais 1. Then for anyx € V. there exists dordan

of real numbers endowed with a bilinear mappirgy) —
PPiRgy) frame {c1,C2,...,Cr } and real numbers

E;gréXrXOX; dF;ﬁrnzdgg/;nx € V. let Z(x) be the linear A(X),A2(%),...,Ar(x), arranged in the decreasing order
A1(X) > A2(X) > ... > Ar(x), such thax = 3§_; Aj(X)cj.
Z(X)y :=xoyfor everyy € V. The numbersAj(x) (counting multiplicities), which are
uniquely determined by, are called the eigenvalues;
The paifV, o) is calleda Jordan algebra if, forall x, ye  Yj_1Aj(X)cj the spectral decomposition ok, and
V, it holds that: tr(x) = yj_1Aj(x) the trace ok.
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From [[11],Theorem III,1.2], a Jordan algel§id, o)
with a unit elemene € V is Euclidean if and only if the
symmetric bilinear formtr(xoy) is positive definite.
Therefore, we may define another inner productaoy

(x,y) :=tr(xoy) forallx, yeV.

By the associativity ofr(-) [[11], Proposition 11.4.3], the
inner product(-,-) is associative,i.e., for alt, y, z€ V,
there holds thatx, yoz) = (y, Xxo2z). Thus, the operator
Z(x) for eachx € V is symmetric with respect to the inner
product< -,- > in the sense that

(Z(X)yY, 2=y, Z(X)2) Vy, z€ V.

Let || - || be the norm orV induced by the inner product
(,), e,

I = /) = <2Af<x>>l/2 Vxev,
=

and denote byAmin(-) and Amax(+) the smallest and the
largest eigenvalue of, respectively.

3 Properties of Distance-like Function

To design the algorithm, we introduce the distance-like
function as follows (seelp)):

H(Xx,y) : =tr(xolnx—xolny+y—x), @
vxeint(Z2), yeint(x)

Adding H(x,x°) in the objective function of (P), we
obtain its penalized version

(Py) minc™x+ uH(x,x%) st. @/x=b, x>0, u>0.
®)
wherex =, 0 means that € int(.#"), x° -, 0is a given
point.
So the primal central path to the problem(P), with
respect to the functiorH(x,x°) is the set of points
{x(p) : u > 0}. wherex() is defined as

(X(u)) = argxgjir(l){chJr pH (x,x%) : &/x=b}, u > 0.

For the discussion of next section, we propose the
favorable properties of the distance measure H, and the
following two technical lemmas will be used, the first

Letg: R — R be a scalar-valued function. Then, itis |emma is given by M.Bae<p.
natural to define a vector-valued function associated with

the Euclidean Jordan algehd, o, (-,-)y) by

g% :=g(M(x))er+9(A20)cz2+ - +9(A (X)er, (1)

where x € V has the spectral decomposition

X = ¥j_1Aj(X)cj. This function is called the @wner

operator [15] and was shown to have the following 0

important property.

Lemma2.1. [[18],Theorem13] For anyx = zjzl)\j(x)cj,
let g be defined by 1). Then g& is (continuously)
differentiable atx if and only if g is (continuously)
differentiable at allAj(x). Furthermore, the derivative of
g% atx, for anyh € V, is given by

Vi, =212, . rand j#I.
In particular, we introduce the inverse function

X =AM 0c+ A5 e+ -+ A (X)e,

for all Aj(x) # 0. ®)

Lemma3l For any x, y € V, we have
tr(xoy) < 35_1A;(x)Aj(y) = A(X)TA(y), whereA (x) and
A(y) are the spectral vectors pfandy, respectively.

Lemma3.2[[15], Lemma 3.2] For anyx € int(.¢), let
®(x) :=tr(xolnx). Then, we have the following results.
®(x) is the spectral function generated by the
symmetric entropy function

;
@(u)= 3 ujlnu; VueR]. (7)
=1

(i) @(x) is continuously differentiable on int") with
O0d(x) =Inx+e
(iii) The function @(x) is strictly convex overz .

In lemma 3.2, we can know that the vector-valued
function x o Inx is the Lowner function g=(x),
i.e.g* = xolnx. Clearly, g is well-defined for any
X € 2 and

r
g¥(x) = xolnx = ZLAj(X) In(A;j(x))c;.
=
Therefore,

®(x) =tr(xolnx) =tr(g*(x)) = i Aj(x¥)In(A;(x)) = @(A (x)).
=1

Next we introduce the properties of the distance-like
function H. These properties play a crucial role in the
convergence analysis of the central path in the following
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section, the proof can be found in [12]. which implies 0< (OW,(z),X— z), so from Lemma3.1,
we get
Lemma3.3 Let H(x,y) be defined by (4). Then the B
following results hold. 0< (O%u(z),X—z)
(i) H(x,y) is continuous on¥” x int(-#") andH(-,y) is = (c+ puIn(ze) — uIn(x), % — z)
strictly convex for any € int(.7). . T
(i) For any fixedy € int(.%"), H(x,y) is continuously = Hir(Xoln(z) — ¢z — ptr(zs oIn(z))
differentiable orint(.#") with — ptr (XoIn(x%)) + ptr (z¢) o In(x°)) +c'%
r
OxH(xy) = Inx—Iny. <u Z/\i (R)Ai(In(ze)) — Wy (ze) + €%
i=

(i) H(x,y) >0 for anyx € # andy € int(-%¥"), and

~ To
H(x,y) = 0 if and only ifx = y. — Htr (ze =X+ %o (X)) +¢'%

(v)  For fixed y € int(), the level sets Under the hypothesis(u) € 3.7 (P), using the fact
Lu(xy) == {x € A[H(xy) <y} are bounded for all thatz goes tox(y) ase goes to 0X* » 0 and as the
y=0. function ¥, is continuous, the right side of the above

inequality goes te-. Therefore, we get an absurd which
implies the desired result.
4 Generalized Proximal Point M ethod Lemma 4.1 guarantees that the primal central path to
the Problem (P), with respect to the functibii-,x°), is
From(6), we know thatx(u) is the solution of the well defined and is in FO(P). So, for gll > 0, we have
problem (P,). For the convergence analysis of the from Eq.(6) that
generalized proximal methods, we first introduce the

following theorem. c+u(In(x(p)) —In(xP)) = o y(u), (8)

Lemma4.1 The primal central path defined bg)(is well

defined and is inZ°(P). for somey(p) € R™ , ,
The dual central path associated to the problem(P) is

Proof. For anyp > 0 we define, : int(.#) — R by the set of pointgs(u) : u > 0}, wheres() satisfies

s() = —H(n(x(K)) =IN(x°)), u>0, (9

) . ) or equivalently,(s(u),y(u)) is the unique solution of the
From Lemma3.3(i), we know that the functidk,(x) is  optimization problem

strictly convex and extends continuously %4 with the

convention that @ In0 = 0. Its gradjent is given p_y max{bTy—utre*S/““”(Xo) c*'y+s=c}, u>0.

OW,(X) = ¢+ pin(x) — pIn(x%) by using Lemma3.3(ii)

and the unique minimizer ¢/ H+INO0) Thus the set{(x(u),y(u),s(u)_) CH > 0}. denotes lthe
Take X'c .Z0(P), from Lemma3.3(iv) we know that primal-dual central path and it is the unique solution of

£ = {x€ H|Wi(x) < Wu(%)} is bounded and nonempty. the following system

Wy (x) = c"x 4 ptr (xo Inx — xo Inx% 40 — x).

Since Y,(x) is continuous in.Z", we get that.¥ is _ )
compacltl(and nonempty, since” (P) is closed and di(_ b, X0,
nonempty, we have tha# N.7(P) is also compact and A7Yy+s=¢, (10)
nonempty. Therefore, the strictly convexity &F,(X) s+ uIn(x) —H|n(X0) =0, u>0.
implies that it has a uniqgue minimizer. Thus the primal
central path is well defined. This completes the proof.
Next it remains to show that(u) € #°(P). Assume | emmad.2 The primal-dual central path is an analytic
by contradiction thak(u) € 0.7 (P) = {Xx = 0,#/x = curve contained imt(.#) x R x .
b,x & bd(.¥)}. Define Proof. First we introduce the mays: int(.#) x R™x 7" x

Ze = (1—&)x(u) + £X Ryt = RMx . x % given by

IxX—Db
wheree € (0,1). Then, asxe .ZO(P), x(u) € 0.7 (P), Y(XY,S 1) = AYts—c
€ € (0,1) and Z°(P) is convex, we conclude that e LIn(x) — (O +s '
ze € ZO(P) for all € € (0,1). Now combining definitions

of x(u) and z. with convexity of 4(-) after some Note thatY(x,y,s, u) = 0 is equivalent to the system
algebraic manipulation we obtain Eq.(10). Since the central path is the unique solution of
the system Eq.(10) we have that

0 < Wy(ze) — Wu(x(u)) < (O%u(ze),2e —x(1))
=¢&/(1—&)(0%W(z),X—z). Y(x(u),y(u),s(p),u) =0, forall u > 0.
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So, asY'is an analytic function the statement follows from for all 0 < py < p. From item (i) we have that
the implicit function theorem by showing that its Jacobian 0 < H(x(u),x%) — H(x(),x°) for all 0 < u < p. Then
with respect tdx, y, s) is nonsingular everywhere. To show above equation implies that'x(u) < c"x(u), for all
that the Jacobian df is nonsingular it is sufficientto prove 0< u < U. So

that its null-space is the trivial one. Assume that

D(X,y,s) Y(Xa Y, S, IJ) (U, v, W) = 07

equivalently,
Fu=0,
*V+w=0, (12)
ux tou+w=0.

Last equation of Eq.(11) implies that = —pux~tou.

Substituting in the second equation of Eq.(11) we get

Uu = xo &*v and in view of the first equation
o/ (xo o/*v) = 0. Finally asx = 0 and.«/ is surjective
we have thate/.Z(x)«/* is nonsingular, thus latter
equality implies thav = 0 and consequently = u = 0.
Therefore, the Jacobian of" is nonsingular and the
statement follows]

Lemmad.1 The following statements hold

(i) the function O< p +— H(x(u),x°) is non-increasing,

(ii) the set{x(u) : 0 < u < u} is bounded, for each,

(ii) all cluster points of the primal central path are
solutions of the problem (P).

Proof. (i) For allpy > 0, we know that the equation of (8)
is equivalent to

HOH (x(1), X))

for somey(u) € R™

Take uy, g2 > 0 with py < o, sinceH is convex and
X(H1) — X(H2) € Nullez we have from the previous
equality that

—C+y(H).

pa (H (x(11),5%) = H(X(112),X°))
< pa(OxH (X(p2), X)), (1) — X(Ht2))
= —c" (X(11) — X(H2))

and
H2(H (x(H2),x°) = H (X(p11),X°))
< w2 OxH (X(p ) %)), X(k2) —X(pa))
= —c (X(H2) = X(141))-

Now combining the latter two equations we obtain that
(1 — H2)(H(x(k1).X%) — H(X(p), x°>> <0 and as
H1 < pz we have that (x(1),X°) > H(x(2),x°). So the
statement (i) is established.

(i) Now fixed u > 0. Similar argument used to prove
item (i) implies that

H(H(X(H), %) —H(X(11),%%)) < —cT (x(1) —X(H))

{X(u):0<pu<p}c{xeZ(P):c'x<cx(u)}.

Since .#*(P) is bounded we have that the sublevel
{xe Z(P):c"x < c"x(u)} is also bounded. Therefore
the statement (ii) follows from the last inclusion.

(iii) Let x be a cluster point ofx(u) : u > 0}. First
note thateZX = b, andx = 0,i.e.x€ .7 (P). Let { ik} be
a sequence of positive numbers such thag lim, p = 0,
and lim, 1. X(x) = X. Takex* a solution of (P) anc €
ZO(P). Fore > 0, define

y(&) = (1— &)X +&x

Due the fact thax* € 9.7°(P), x € .#°(P), for € € (0,1],
from (6), we have

"X (k) + picH (X(H), X°) < cTy(e) + pcH (y(€),%0),

Hic(H (x(k),X0) = H(y(£),X0)) < €T (y(€) =X (k).
Now sinceH (-,x°) is convex ang/(¢) € .ZO(P), itis easy

to conclude from above inequality that

Hic(OxH (y(£),X%), X(Hie) —Y()) < cT (y(&) —X(k))

Thus taking limits in the latter inequality &s— +o. we
obtain 0< c' (y(&) —X), in this inequality, ife — 0, it gives
0<cl(x*—x) orc"x< c'x*. The statement (jii) is proved.
O

Theorem4.1 Let X € ¢ be the analytic center of *(P),
i.e.,there exists the unique point satisfying

£ =argmin{H (x,X°) : xe .Z*(P)}

then limy_ox(u) =X.

Proof. From Lemma3.3(iv), it is easy to see thg-,x°)
is continuous i, with the convention 0In0 = 0. Take
x a cluster point of the primal central path afyd} be a
sequence of positive numbers such thatlim, px = 0,
and lim, oX(k) = X. Now from Eq.(6), we have
HOxH (X(pk ), X0) = —C+ .7 *y( k), for somey(pi) € R™.
So,

Hie{ CheH (), X°), X= X)) = (—C+ 7y (bk), X— X))

for all x € .#*(P), using the convexity oH and the fact
thatx — x(p) € Null.«Z, the latter equation becomes

Hie(H (), X0) = H(x, X)) < €"x— cTx( ).

Sincex € .Z*(P) and p > 0, it follows from the latter
inequality thatH (x(uk),x°) < H(x,x°). Now as H is
continuous we can take limits, als — 4o in this
inequality to conclude thaH (x,x%) < H(x,x%) for all

x € .Z*(P). Thus any cluster point of the primal central
path satisfies Eq.(12). Therefore, sincds“the unique
point satisfying Eq.(12), the primal central path converge
to it and the theorem is provedl

(12)
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