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Abstract: In this paper, we suggest a jump diffusion model in markets during financial crisis. Using risk-neutral pricing, we derive a
partial differential equation (P.D.E.) for the prices of European options. We find a closed form solution of the P.D.E. in the particular
case where the stock price is too large. Then, we use such a solution as a boundary condition in the numerical treatment of the P.D.E.
for any range of stock price. The numerical method adopted is the unconditionally stable Crank-Nicolson method. Illustrative examples
are presented.
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1 Introduction

Most of the works on modeling financial derivatives
assume the continuity of the trajectories of the underlying
asset prices. For instance, in the pioneer work of Black
and Scholes [2] financial asset prices are modeled by the
Brownian motion. One of the shortcomings of this model
is that it doesn’t consider the jumps which can occur in
the prices randomly at any time. Indeed, many researchers
studied models with jumps, see for example the model
in [19] or more recently [6]. However, to the authors
knowledge, there are no studies that investigate this issue
during financial crises where the volatility is naturally
higher than in normal situations.

Options pricing models coming from empirical
studies of the dynamics of financial markets after the
occurrence of a financial crash do not match with the
stochastic models used in the literature. For instance, the
work of [23] empirically shows that the post-crash
dynamics follow a converging oscillatory motion. On the
other hand, the paper of [17] shows that financial markets
follow power-law relaxation decay. Several ideas have
been suggested to overcome this shortcoming of the
Black-Scholes model. In fact, new option pricing models
have been developed based on empirical observations (see
for instance [5], [21], [24], [7] and [18]). For example,
in [9], the authors investigate the calibration properties of
several multi-factor stochastic volatility models using a

data set of vanilla options. In [8], the authors suggest a
newer model which extends the Black-Scholes model.
The extension takes into accounts the post-crash
dynamics as proposed by [23]. The authors derive the
following stochastic differential equation that couples the
post-crash market index to individual stock prices,

dSt

St
=

(
µ +

µ1g(t)
St

)
dt+

(
σ +

γg(t)
St

)
dWt , (1)

wheret ∈ [0,T] and S0 = x > 0. The stochastic process
(Wt)t∈[0,T] denotes a standard Brownian motion andg(t) =
A+Beνt sin(ωt), with µ , µ1, σ , γ, A, B, ν , andω are real
constants. The volatility of the original asset is denoted by
σ . The authors obtained the following partial differential
equation (P.D.E.) for the option price

∂C
∂ t

+ rS
∂C
∂S

− rC+
1
2
(σS+ γg(t))2 ∂ 2C

∂S2 = 0,

with the terminal conditionC(S,T) = (S−K)+, whereC
is the call option’s price,r is the risk free rate, andK is
the strike price. They solved the P.D.E. using finite
differences method. Also, the price sensitivities for model
(1) have been calculated in [11].

In this this paper we extend the work of [8] to jump
diffusion models. To the authors’ best knowledge, this
paper is the first attempt to suggest a model with jumps
during financial crisis. In this work, we assume that the

∗ Corresponding author e-mail:YoussefElkhatib@uaeu.ac.ae

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070623


2320 Y. El-Khatib et al: Options Pricing in Jump Diffusion Markets...

dynamic of the underlying asset price is given by the
stochastic differential equation

dSt = (µSt +µ1gt)dt+(σSt + γgt)dWt +bσStdMt , (2)

wheret ∈ [0,T] andS0 = x> 0. The processes(Wt)t∈[0,T]
and (Mt)t∈[0,T] denote respectively a standard Brownian
motion and a compensated Poisson process.µ , µ1, b, σ , γ
are constants, with 1+ bσ > 0 andg is a deterministic
function. The contributions of this work are twofold. The
first is the derivation of a P.D.E. for the price of European
options. The second is the design of an unconditionally
stable numerical scheme based on finite differences for
the numerical solution of the problem. It is worth
mentioning that for model (2) with no crisis (γgt = 0) a
closed form solution has been obtained in [10] and the
price sensitivities have been calculated using the
Malliavin calculus in [12].

The rest of the paper is organized as follows. In
Section 2, we introduce the jump diffusion model during
financial crisis and we derive a P.D.E for European
options price. In Section 3 we derive a closed form
solution for the P.D.E. when the strike price is large. In
Section 4, we use the solution obtained in Section 3 as a
boundary solution to solve numerically the P.D.E. over
the whole range of strike price, using an unconditionally
stable numerical scheme based on Crank Nicolson
dicretization. Illustrative example is presented. Section 5
concludes the paper with some remarks.

2 Pricing European options in jump diffusion
markets during financial crisis

In this section, we introduce jump diffusion model during
financial crisis and derive a governing P.D.E. for
European options price. We need the following notations
and terminologies. Let(Nt)t∈[0,T] be a Poisson process
with deterministic intensityλ . Let Mt = Nt − λ t be its
associated compensated process and(Bt)t∈[0,T] be a
Brownian motion. We assume that we work on a
probability space (Ω ,F ,P) with (Mt)t∈[0,T] and
(Bt)t∈[0,T] independent. We denote by(Ft)t∈[0,T] the
filtration generated by(Nt)t∈[0,T] and(Bt)t∈[0,T].

2.1 The model

We consider a market with two assets: a risky asset related
to a European call option and a riskless one. The maturity
is T, the strike isK and the payoff ish(ST) = (ST −K)+ ≡
max{ST −K,0}. The price of the riskless asset is given by

dAt = rAtdt, t ∈ [0,T], A0 = 1,

wherer > 0 denotes the interest rate. The risky asset has
a price(St)t∈[0,T] described by the stochastic differential
equation

dSt = (µSt +µ1gt)dt+(σSt + γgt)dWt +bσStdMt ,

where t ∈ [0,T] and S0 = x > 0 and µ , µ1, b, σ , γ are
constants, with 1+ bσ > 0 and g is a deterministic
function. (Wt)t∈[0,T] and (Mt)t∈[0,T] are respectively the
Brownian motion and the compensated Poisson process.

Remark.The parameterb in the previous equation will
determine the direction of the jumps1. In fact:

–If b < 0 the jumps are pushing the stock down, the
stock price is then decreasing at each jump.

–If b= 0, there are no jumps.
–If b> 0, the jumps are pushing the stock up, the stock
price is then increasing at each jump.

2.2 Change of probability

As in the original work of [2], we assume that there is no
place to arbitrage opportunity (in other words, no riskless
profit). It is well known that there is no arbitrage if and
only if there exists at least one Equivalent Martingale
Measure (E.M.M.) (see theFirst Fundamental Theorem
of Asset Pricing, [13] and [14]). Notice thata contingent
claim is a random variable H that represents the payoff at
time T from a seller to a buyer. For example, in our model
with European call option, the payoff is
H = h(ST) = (ST −K)+.

By definition, a market is said to be complete if every
contingent claim in the market is attainable, i.e., we can
find a self-financing strategy whose value at maturity is
equal to the claim’s value. Recall that an arbitrage-free
market is complete if and only if there is a unique E.M.M.
(Second Fundamental Theorem of Asset Pricing, [13]
and [14]). The market in our model is incomplete since
there are infinitely many E.M.M. To see this, we first
characterize the set of E.M.M. By definition a probability
Q is said to be aP−E.M.M. if it is equivalent to the
historical probabilityP and it satisfies the fact that the
discounted prices areQ-martingales.

It is known that a probabilityQ equivalent toP is
specified by its Radon-Nikodym density with respect toP
which can be expressed as

ρT = exp

(∫ T

0
θ1sdWs−

1
2

∫ T

0
θ1

2
sds

)
exp

(∫ T

0
ln (1

+θ2s)dMs+
∫ T

0
λs[ln(1+θ2s)−θ2s]ds

)
, (3)

where (θ1t)t∈[0,T] and (θ2t)t∈[0,T] are two R-valued
predictable processes withθ2 > −1. Recall thatQ is a

P−E.M.M. if the discounted prices
(

St
At

)
t∈[0,T]

and
(

At
At

)
t∈[0,T]

are Q-martingales which leads to a relation

betweenθ1 and θ2 as formally stated in the following
proposition.

1 b affects also the jumps sizes.
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Proposition 1.Let Q be a P−E.M.M. defined by its
Radon-Nikodym density with respect to P given in (3).
Then(θ1t)t∈[0,T] and(θ2t)t∈[0,T] satisfy

µSt +µ1gt − rSt +(σSt + γgt)θ1t +λbσStθ2t = 0. (4)

Proof.Q is a P−E.M.M. if the discounted prices are

Q-martingales, which means that
(

St
At

)
t∈[0,T]

is a

Q-martingale which in turn means that
(

St
At

ρt

)
t∈[0,T]

is a

P-martingale. The integration by parts formula (see [20])
gives

d

(
St

At
ρt

)
= d(e−rt Stρt)

= ρtd(e
−rt St)+e−rt Stdρt +d[e−rt St ,ρt ]

= ρtd(e
−rt St)+e−rt Stdρt +e−rt d[St ,ρt ]

= ρte
−rt (dSt − rStdt)+e−rt Stρt (θ1tdWt

+θ2tdMt)+e−rt d[St ,ρt ]

with

d[St ,ρt ] = [(µSt +µ1gt)dt+(σSt + γgt)dWt +bσStdMt ,

ρt(θ1tdWt +θ2tdMt)]

= [(σSt + γgt)dWt ,θ1tρtdWt ]

+[bσStdMt ,θ2tρtdMt ]

= (σSt + γgt)θ1tρtdt+[bσStdNt ,θ2tρtdNt ]

= (σSt + γgt)θ1tρtdt+bσStθ2tρtdNt

= ((σSt + γgt)θ1tρt +λbσStθ2tρt)dt

+bσStθ2tρtdMt .

Therefore

d

(
St

At
ρt

)
= {((µ − r)St +µ1gt)dt+(σSt + γgt)dWt

+(b+βt)σStdMt +St(θ1tdWt +θ2tdMt)

+ ((σSt + γgt)θ1t +λbσStθ2t)dt}ρte
−rt

= {(µ − r)St +µ1gt +(σSt + γgt)θ1t

+λbσStθ2t)dt+[σSt + γgt +Stαt ]dWt

+ [bσSt +Stθ2t +bσStθ2t ]dMt}ρte
−rt .

Since St
At

ρt is aP-E.M.M., it follows that

µSt +µ1gt − rSt +(σSt + γgt)θ1t +λbσStθ2t = 0.

�

Equation (4) has infinitely many solutions in the set
of predictable processes(θ1,θ2) with θ2 >−1. Moreover,
each solution gives aP−E.M.M. Qθ1,θ2. Consider the two
processesWθ1,θ2 andMθ1,θ2 where

Wt
θ1,θ2 =Wt −

∫ t

0
θ1sds, t ∈ [0,T], (5)

Mt
θ1,θ2 = Mt −

∫ t

0
λsθ2sds, t ∈ [0,T]. (6)

By Girsanov Theorem [15], Wθ1,θ2 is a
Qθ1,θ2-Brownian motion and Mθ1,θ2 is a
Qθ1,θ2-compensated Poisson process. From now on we
work with the P−E.M.M. Q̂ := Qθ̂1,0 where we take
θ2t = 02 and

ˆθ1t =
(r −µ)St −µ1gt

σSt + γgt
. (7)

Using equations (5)–(7), the underlying asset price can be
written underQ̂ as

dSt = (µSt +µ1gt)dt+(σSt + γgt)dWt +bσStdMt

= (µSt +µ1gt)dt+(σSt + γgt)[dŴt + θ̂1tdt]

+bσStdMt

= (µSt +µ1gt)dt++bσStdMt +(σSt + γgt)
[
dŴt

+
(r −µ)St −µ1gt

σSt + γgt
dt

]

= (µSt +µ1gt +(r −µ)St −µ1gt)dt

+(σSt + γgt)dŴt +bσStdMt

= rStdt+(σSt + γgt)dŴt +bσStdMt . (8)

Figures1 and2 display two trajectories for the stock
price at terminal timeT = 1 with a time step of 0.001, for
two different values of the volatilityσ = 0.2 andσ = 0.7.
The other parameter values used are: the initial stock price
S0 = 7, the jump intensity of the Poisson processλ = 3,
the interest rater = 0.04, the jump parameterb=−1, the
crisis parameterγ = 0.02, and the crisis functiong(t) =
e2t sin(πt).
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Fig. 1: A trajectory for the stock price whenσ = 0.2.

2 Q̂ is exactly theP−E.M.M. that minimizes the entropy.
The reader can found other types of risk measures such as the
Coherent Risk Measure (C.R.M.) in [1] or more recently in [4].
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Fig. 2: A trajectory for the stock price whenσ = 0.7.

2.3 P.D.E. of the option price

Consider a European call option with underlying asset
(St)t∈[0,T] given by equation (8) and a strike priceK. By
risk-neutral pricing, we can express the price of a
European call option as a function̂C(St , t). In order to
derive the P.D.E. for the European option price, we need
Itô formula which is given by the following lemma
(see [20]).

Lemma 1.Let f , l, and k be three adapted processes such
that
∫ t

0
| fs|ds< ∞,

∫ t

0
|ls|

2ds< ∞, and
∫ t

0
λs|ks|ds< ∞.

Let X= (Xt)t∈[0,T] be the process defined by

dXt = ftdt+ ltdŴt +ktdMt .

For any function F∈ C 1,2([0,T]×R), we have

F(Xt , t) = F(X0,0)+
∫ t

0

(
∂sF(Xs,s)+

1
2

l2
s∂ 2

xxF(Xs− ,s)

+( fs−ksλs)∂xF(Xs− ,s))ds

+
∫ t

0
ls∂xF(Xs− ,s)dŴs

+∑
s≤t

(F(Xs,s)−F(Xs− ,s)) . (9)

Equation (9) can be written in the following form

F(Xt , t) = F(X0,0)+
∫ t

0

[
∂sF(Xs,s)+

1
2

l2
s∂ 2

xxF(Xs− ,s)

+( fs−ksλs)∂xF(Xs− ,s)+λs(F(Xs− +ks,s)

−F(Xs− ,s))]ds+
∫ t

0
ls∂xF(Xs− ,s)dŴs

+
∫ t

0
[F(Xs− +ks,s)−F(Xs− ,s)]dMs. (10)

The following proposition gives the governing P.D.E.
for European call option prices.

Proposition 2.The P.D.E. of the price of the European
option in the jump diffusion model (8) is given by

∂tĈ(s, t)+(rs−bσsλ )∂xĈ(s, t)+
1
2
(σs+ γgt)

2∂ 2
xxĈ(s, t)

+λ (Ĉ(s+bσs, t)−Ĉ(s, t)) = rĈ(s, t), (11)

Ĉ(s,T) = (s−K)+. (12)

Proof.Let V̂t denote the value of the portfolio. Suppose
that we are required to find a portfolio(ζ̂t , η̂t)t∈[0,T] which
leads to the payoff valuêVT = h(ST) = Ĉ(ST ,T). We have
for t ∈ [0,T], V̂t = ζ̂tAt + η̂tSt . Since the strategy is
assumed to be self-financing, we have, fort ∈ [0,T],

dV̂t = ζ̂tdAt + η̂tdSt

= (V̂t − η̂tSt)A
−1
t (rAtdt)+ η̂t

(
rStdt+(σSt + γgt)dŴt

+bσStdMt)

= rV̂tdt+ η̂t(σSt + γgt)dŴt + η̂tbσStdMt . (13)

By applying It̂o formula (10) to Ĉ(St , t), we obtain, for any
t ∈ [0,T],

dĈ(St , t) =
[
∂tĈ(St , t)+(rSt −bσStλ )∂xĈ(St− , t)

+λ (Ĉ(St− +bσSt− , t)−Ĉ(St− , t))

+
1
2
(σSt + γgt)

2∂ 2
xxĈ(St− , t)

]
dt

+(σSt + γgt)∂xĈ(St− , t)dŴt

+[Ĉ(St− +bσSt− , t)−Ĉ(St− , t)]dMt . (14)

If we seek a wealtĥVt = Ĉ(St , t), equating (13) and (14)
yields

rtĈ(St , t) = ∂tĈ(St , t)+(rSt −bσStλ )∂xĈ(St− , t)

+
1
2
(σSt + γgt)

2∂ 2
xxĈ(St− , t)

+λ (Ĉ(St− +bσSt− , t)−Ĉ(St− , t))

Ĉ(ST ,T) = (ST −K)+.

which is the desired P.D.E. and condition, equations (11)
and (12). �

3 A particular solution for the option price

In this section we derive a boundary solution of the P.D.E.
(11) subject to (12) for s> K. Precisely, we consider the
P.D.E.

Ct(s, t)+(r −λσb)sCs(s, t)+
1
2
(σs+ γg(t))2Css(s, t)

+λC(s(1+σb), t)− (λ + r)C(s, t) = 0, (15)

for s> K and 0≤ t ≤ T, subject to the condition

C(s,T) = s−K ≡ h(s), s> K. (16)
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Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 6, 2319-2326 (2013) /www.naturalspublishing.com/Journals.asp 2323

We should mention that this solution is very important
as it will serve as a boundary solution for the numerical
scheme (described next section) to solve (15) for 0≤ s≤
s∞ for some bounds∞.

For ease of notation, let
α1 = (r − λσb),α2(s, t) = 1

2(σs+ γg(t))2, α3 = λ ,
α4 = (λ + r), andβ = 1+σb. Then, integrating (15) with
respect tot from t to T and using (16),we obtain

C(s, t) = h(s)+
∫ T

t
(α1sCs(s,τ)+α2(s,τ)Css(s,τ)

+α3C(βs,τ)dτ −α4C(s,τ))dτ .
Expand the solution formally as an infinite sumC(s, t) =

∞
∑

n=0
Cn(s, t). Substituting this expansion into the above, we

obtain
∞

∑
n=0

Cn(s, t) = h(s)+
∞

∑
k=0

∫ T

t
(α1s∂sCn(s,τ)+α3Cn(βs,τ)

+α2(s,τ)∂ 2
s Cn(s,τ)−α4Cn(s,τ)

)
dτ , (17)

One way to balance (17) is to letC0(s, t) = h(s) and
obtain the following recursion relation forCn(s, t):

Cn+1(s, t) =
∫ T

t

(
α1s∂sCn(s,τ)+α2(s,τ)∂ 2

s Cn(s,τ)

+α3Cn(βs,τ)−α4Cn(s,τ))dτ . (18)

Since ∂ 2
s C0(s, t) = 0, the above recursion relation

reduces to

Cn+1(s, t) =
∫ T

t
(α1s∂sCn(s,τ)+α3Cn(βs,τ)

−α4Cn(s,τ))dτ , n≥ 0. (19)

The following Lemma gives the solution of the recursion
relation (19).

Lemma 2.The solution components Cn(s, t), n ≥ 1,
satisfying (19) are given by

Cn(s, t) =−K(−r)n (T − t)n

n!
(20)

Proof.The proof is by induction. Fork = 1, from (19), we
have

C1(s, t)=
∫ T

t
[α1s∂sC0(s,τ)+α3C0(βs,τ)−α4C0(s,τ)]dτ .

(21)
With C0(s, t) = s−K, using the definitions ofα1,α3,α4,
andβ , the integrand in (21) becomes

α1s∂sC0(s,τ)+α3C0(βs,τ)−α4C0(s,τ) = rK .

Thus,c1(s, t) = r(T − t)K which proves (20) for n= 1.
Next, assume that (20) is true forn= k. From (19) and

using the induction hypothesis (20), we obtain

Ck+1(s, t) =
∫ T

t
−(α3−α4)K(−r)k (T − τ)k

k!
dτ

= −K(−r)k+1 (T − τ)k+1

(k+1)!
,

which proves (20) for n= k+1. Hence (20) is true for all
n≥ 1. �

Based on Lemma2, the solution of the P.D.E. (15) with
(16) for s> K is given in the following theorem.

Theorem 1.The solution of (15)–(16) for s> K is given by

C(s, t) = s−Ke−r(T−t). (22)

Proof.By Lemma 2, we have

Cn(s, t) =−K(−r)n (T − t)n

n!
, n≥ 1. Then

C(s, t) =
∞

∑
n=0

Cn(s, t) =C0(s, t)+
∞

∑
n=1

Cn(s, t)

= (s−K)+
∞

∑
n=1

(
−K(−r)n (T − t)n

n!

)

= (s−K)−K(e−r(T−t)−1) = s−Ke−r(T−t),

which proves (22). �

4 Numerical computing of options prices

In this section, we develop and implement a stable
numerical scheme for the solution of (15) for 0 ≤ s≤ s∞
and 0≤ t ≤ T. Similar treatments for different options
price P.D.Es. or financial problems have been done
in [3], [16] and [22]. We consider the following linear
P.D.E.

∂C
∂ t

+α1s
∂C
∂s

+α2(s, t)
∂ 2C
∂s2 +α3C(βs, t)−α4C= 0

(23)
with the initial and boundary conditions

C(0, t) = 0, C(T,s) = H(s) = max{s−K,0}, (24)

C(s, t) = R(s, t), ∀ s≥ s∞, (25)

whereR(s, t) = s−Ke−r(T−t), as derived in the previous
section. The constantsα0,α1,α3,α4,β , andα2(s, t) are as
defined in the previous section, namely,

α1 = (r −λσb), α2(s, t) =
1
2
(σs+ γg(t))2, α3 = λ ,

and
α4 = (λ + r), β = 1+σb.

First, the problem is transformed into a“forward” initial-
value problem. Letτ = T − t andC̃(s,τ) ≡ C(s, t). Then
equation (23) becomes

−
∂C̃
∂τ

+α1s
∂C̃
∂s

+ α̃2(s,τ)
∂ 2C̃
∂s2 +α3C̃(βs,τ)−α4C̃= 0

(26)
with the new conditions

C̃(0,τ) = 0, C̃(s,0) = H(s), (27)

C̃(s,τ) = R̃(s,τ) = R(s,T − τ), ∀ s≥ s∞, (28)
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and
α̃2(s,τ) = α2(s,T − τ).

Next, discretize the intervals[0,T] and [0,s∞] into
equally spaced nodes:

τi = ik, 0≤ i ≤ Nt , k=
T
Nt

,

sj = jh, 0≤ j ≤ Ns, h=
s∞

Ns
,

wherek andh are the step sizes. Let̃Ci
j ≈ C̃(sj ,τi). Then

using Crank Nicolson discetization, Equation (26)
becomes

C̃i+1
j −C̃i

j

k
=

1
2
(F i+1

j +F i
j ), (29)

where

F i
j = α1sj

C̃i
j+1−C̃i

j−1

2h
+ α̃2(sj ,τi)

C̃i
j+1−2C̃i

j +C̃i
j−1

h2

+α3C̃(βsj ,τi)−α4C̃
i
j .

Equation (29) simplifies to

ai+1
j C̃i+1

j−1+(1+bi+1
j )C̃i+1

j +ci+1
j C̃i+1

j+1

−
1
2

kα3C̃(βsj ,τi+1) =−ai
jC̃

i
j−1+(1−bi

j)C̃
i
j −ci

jC̃
i
j+1

+
1
2

kα3C̃(βsj ,τi), (30)

where

ai
j =

k
4

jα1−
k

2h2 α̃ i
j , bi

j =
k
h2 α̃ i

j +
k
2

α4,

ci
j = −

k
4

jα1−
k

2h2 α̃ i
j and α̃ i

j = α̃2( jh, ik).

Note that from (27) and (28), we have

C̃i
0 = 0, ∀ i ≥ 1, C̃0

j = H( jh), ∀ j ≥ 1,

C̃i
j = R̃i

j ≡ R̃(sj ,τi), ∀ j ≥ Nx.

In equation (30), the value ofβsj in C̃(βsj ,τm) for m=
i, i+1, may be (i) outside the computational interval[0,s∞]
or (ii) inside the computational interval but not one of the
mesh pointssj . To overcome this setback we suggest the
following.

1.If βsj ≥ s∞, that is for j ≥ j∗ = ⌈Nx/β⌉, then we let

C̃(βsj ,τm) = R̃(βsj ,τm) = R(βsj ,T − τm).

2.If βsj < s∞, i.e., for j < j∗, let n j , 0≤ n j ≤ Nx−1, be
the integer such thatsn j ≤ βsj ≤ sn j+1, i.e.,
n j = ⌊β j⌋. Then C̃(βsj ,τm) is approximated by the
weighted average of̃Cm

n j
andC̃m

n j+1:

C̃(βsj ,τm)≈w jC̃
m
n j
+(1−w j)C̃

m
n j+1,w j =(n j −β j+1).

Note that in the case ofn j = Nx−1, we havesNx−1 ≤
βsj ≤ s∞. In this case we let

C̃(βsj ,τm)≈ w jC̃
m
Nx−1+(1−w j)R̃(s∞,τm).

In summary, we have

C̃(βsj ,τi)≈





w jC̃i
n j
+(1−w j)C̃i

n j+1, if j ≤ j∗−1
n j ≤ Nx−2,

w jC̃i
Nx−1+(1−w j)R̃(s∞,τi), if j ≤ j∗−1

n j = Nx−1,

R̃(βsj ,τi), if j ≥ j∗.
(31)

Now, letCi = [C̃i
1 C̃i

2 . . .C̃i
Nx−1]

t . Using (31), equation
(30) can be written in matrix form as

(I +A i+1)Ci+1−BCi+1−F i+1 = (I −A i)Ci +BCi +F i ,
(32)

whereA is an(Nx−1)× (Nx−1) tridiagonal matrix and
F i is a column vector, given by

A i =




bi
1 ci

1 0 . . . 0
ai

2 bi
2 ci

2 . . . 0
...

...
.. .

.. .
...

...
. . . ai

Nx−2 bi
Nx−2 ci

Nx−2
0 . . . . . . ai

Nx−1 bi
Nx−1



,

F i
j =





1
2kα3R̃(βsj ,τi), j∗ ≤ j ≤ Nx−2,

1
2kα3R̃(βsj ,τi)−ci

Nx−1R̃(s∞,τi), j = Nx−1,

1
2kα3(1−w j)R̃(s∞,τi), j ≤ j∗−1

n j = Nx−1,

0, otherwise,

andB is a sparse(Nx−1)× (Nx−1) matrix given by




B j,i = 0, if j ≥ j∗,
B j,n j =

1
2kα3w j , if j ≤ j∗−1 & n j ≤ Nx−1

B j,n j+1 =
1
2kα3(1−w j) if j ≤ j∗−1 & n j ≤ Nx−2,

The above outlined scheme has been implemented to
obtain a numerical solution to system (32). Figures3 and
4 depict the option prices forλ = 3, r = 0.04,K = 8,b= 1,
s∞ = 20,T = 1, k = 0.01; h= 0.1, g(t) = e2t sin(πt), and
σ = 0.2 (figure. 3) for σ = 0.7 (figure.4).

5 Conclusion

In this paper, we have considered a jump diffusion model
during financial crisis. This new model takes into account
two shortcomings of the standard Black-Scholes model,
the jump and the increase in volatility during a financial
crisis. The pricing option problem for the suggested model
has been analyzed and a new partial differential equation
for the option price has been derived. The derived P.D.E.
reduces to the well-known Black-Scholes P.D.E. when the
jump and the crisis parameters are not considered.
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Fig. 3: An option price trajectory whenσ = 0.2.
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Fig. 4: An option price trajectory whenσ = 0.7.

For large values of the underlying asset price, we have
derived a closed form solution of the new partial
differential equation. This solution has been used as a
boundary condition for the numerical treatment of the
problem. A Crank-Nicolson based numerical scheme has
been developed and implemented to obtain a numerical
solution. The numerical results conform with the
expected behavior of the option price.
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