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Abstract: In this paper, we suggest a jump diffusion model in markets duringdiabarisis. Using risk-neutral pricing, we derive a
partial differential equation (P.D.E.) for the prices of European ogtidVe find a closed form solution of the P.D.E. in the particular
case where the stock price is too large. Then, we use such a solutioroeadaby condition in the numerical treatment of the P.D.E.
for any range of stock price. The numerical method adopted is thenditmmally stable Crank-Nicolson method. lllustrative examples
are presented.
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1 Introduction data set of vanilla options. Ir8], the authors suggest a
newer model which extends the Black-Scholes model.

Most of the works on modeling financial derivatives ghe EXIEnSion takesd tl)nto _?_?]countti thed post;tc]rash
assume the continuity of the trajectories of the underlyingf y””a”.“cs ?S hproﬁozgﬁ Q?J'I € atl.u Ct)kr18t envelh te
asset prices. For instance, in the pioneer work of Black ©'°W!Ng stochastic difierentia’ équation that coupiag

and Scholes7] financial asset prices are modeled by the POSt-crash market index to individual stock prices,
Brownian motion. One of the shortcomings of this model ds pag(t) vo(t)

is that it doesn't consider the jumps which can occur in - = (u + > dt+ (0+ ) dw, (1)
the prices randomly at any time. Indeed, many researchers S S

studied models with jumps, see for example the modelyperet ¢ [0,T] andS = x > 0. The stochastic process
in [19] or more recently §]. However, to the authors W ):e(o.7) denotes a standard Brownian motion ayid) =
knowledge, there are no studies that investigate this issu +Be"‘t sin(wt), with g, py, 0, y, A, B, v, andw are real
during financial crises where the volatility is naturally .,qtants. The volatility of the original asset is denotgd b

higher t_han n n_o_rmal situations. . . 0. The authors obtained the following partial differential
Options pricing models coming from empirical equation (P.D.E.) for the option price
studies of the dynamics of financial markets after the

occurrence of a financial crash do not match with the oC oC 1 ,9%C

stochastic models used in the literature. For instance, the 5 —HS(TS —1C+ > (0S+yg(t)) P 0,

work of [23] empirically shows that the post-crash

dynamics follow a converging oscillatory motion. On the with the terminal conditiol©(ST) = (S—K)™, whereC
other hand, the paper of7] shows that financial markets is the call option’s pricer is the risk free rate, anH is
follow power-law relaxation decay. Several ideas havethe strike price. They solved the P.D.E. using finite
been suggested to overcome this shortcoming of thealifferences method. Also, the price sensitivities for mode
Black-Scholes model. In fact, new option pricing models (1) have been calculated id]].

have been developed based on empirical observations (see In this this paper we extend the work @][to jump

for instance §], [21], [24], [7] and [L8]). For example, diffusion models. To the authors’ best knowledge, this
in [9], the authors investigate the calibration properties ofpaper is the first attempt to suggest a model with jumps
several multi-factor stochastic volatility models using a during financial crisis. In this work, we assume that the
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dynamic of the underlying asset price is given by thewheret € [0,T] andS = x> 0 andpy, L, b, o, y are
stochastic differential equation constants, with % bo > 0 and g is a deterministic

function. (W)ejo,1) and (Mi)icjo,1) are respectively the
dS = (US + ) dt+ (05 +yg)dW +boSdM, (2)  grownian motion and the compensated Poisson process.
wheret € [0,T] andS = x > 0. The processedM )ic(oT|

and (Mi)icjo,1) denote respectively a standard Brownian
motion and a compensated Poisson progesgs, b, 0, y
are constants, with £ bo > 0 andg is a deterministic —f b < 0 the jumps are pushing the stock down, the
function. The contributions of this work are twofold. The stock price is then decreasing at each jump.

firstis the derivation of a P.D.E. for the price of European _j; b — 0, there are no jumps.

options. The second is the design of an unconditionally _if - 0, the jumps are pushing the stock up, the stock
stable numerical scheme based on finite differences for  price is then increasing at each jump.

the numerical solution of the problem. It is worth

mentioning that for model2) with no crisis fg; = 0) a

closed form solution has been obtained if][and the -

price sensitivities have been calculated using the2-2 Change of probability

Malliavin calculus in L2].

The rest of the paper is organized as follows. In As in the original work of 2], we assume that there is no
Section 2, we introduce the jump diffusion model during place to arbitrage opportunity (in other words, no riskless
financial crisis and we derive a P.D.E for European profit). It is well known that there is no arbitrage if and
options price. In Section 3 we derive a closed formonly if there exists at least one Equivalent Martingale
solution for the P.D.E. when the strike price is large. In Measure (E.M.M.) (see thEirst Fundamental Theorem
Section 4, we use the solution obtained in Section 3 as af Asset Pricing[13] and [14]). Notice thata contingent
boundary solution to solve numerically the P.D.E. overclaim is a random variable H that represents the payoff at
the whole range of strike price, using an unconditionally time T from a seller to a buyeFor example, in our model
stable numerical scheme based on Crank Nicolsorwith European call option, the payoff s
dicretization. lllustrative example is presented. SecBbo H =h(Sr) = (St —K)™.
concludes the paper with some remarks. By definition, a market is said to be complete if every

contingent claim in the market is attainable, i.e., we can

) o ) ) find a self-financing strategy whose value at maturity is

2 Pricing European options in jump diffusion  equal to the claim’s value. Recall that an arbitrage-free
markets during financial crisis market is complete if and only if there is a unique E.M.M.

(Second Fundamental Theorem of Asset Pricifif]
In this section, we introduce jump diffusion model during and [14]). The market in our model is incomplete since
financial crisis and derive a governing P.D.E. for there are infinitely many E.M.M. To see this, we first
European options price. We need the following notationscharacterize the set of E.M.M. By definition a probability
and terminologies. Le{N:)ico1) be a Poisson process Q is said to be aP—E.M.M. if it is equivalent to the
with deterministic intensityA. Let M; = N; — At be its historical probabilityP and it satisfies the fact that the
associated compensated process &Bg)cor) be a  discounted prices a@-martingales.
Brownian motion. We assume that we work on a It is known that a probabilityQ equivalent toP is
probability space (Q,.7,P) with (Mi)cor] and  specified by its Radon-Nikodym density with respecPto
(Bt)icjo] independent. We denote by )icor) the  which can be expressed as

filtration generated byNi)ic(o,1) and (Bt )e(o.7)- T 1T T
or = exp(/ BrdWg — E/ 91§ds> exp</ In (1
0 0 0

)
+oaMs [ Ain(Ls ezs>—6231ds>, @3)

RemarkThe parameteb in the previous equation will
determine the direction of the jumipsn fact:

2.1 The model

We consider a market with two assets: a risky asset related
to a European call option and a riskless one. The maturityvhere (6y)icjo7] and (6a)icjor) are two R-valued

is T, the strike iK and the payoffi$|(Sr) = (St —K)* = predictable processes witfh > —1. Recall thatQ is a
max{ St — K,0}. The price of the riskless asset is given by P_EMM. if the discounted prices(%)
te[0,T]
dA =rAdt, te[0,T], Ag=1, . . _
A t . 0.T]. Ao ) (%) are Q-martingales which leads to a relation
wherer > 0 denotes the interest rate. The risky asset ha% te[0,T] ) )
a price (S)iepo.1] described by the stochastic differential etweend; and 6, as formally stated in the following
equation proposition.
dS = (US + o )dt+ (0S + yor ) dW + boSd M, 1 b affects also the jumps sizes.
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Proposition 1Let Q be a P-E.M.M. defined by its
Radon-Nikodym density with respect to P given 3 (

Then(6x)icjo,1) and (82t )ie(o.1) Satisfy

HS + a8 — 1S+ (0S4 yat) 61 + Ab0S B2 = 0. (4)

Proof.Q is a P—E.M.M. if the discounted prices are

Q-martingales, which means tha(%)t o] is a
€lo,

Q-martingale which in turn means thét%pt)t 0] is a
€lo,

P-martingale. The integration by parts formula (s2])
gives

S it
d (A[pt) =d(e"Sm)
= pd(e ") +e "Sdp +dle S, o]
= pd(e"'S) +e "sdp + e "d[S, p]
= pe " (dS —rSdt) +e S p (61, dW
+6,dM) +e "d[S, ]
with
d[S, o = [(HS + pag)dt+ (0S + ygr ) dW + boSdM,
Pt (61t dW + B, dMy)]
= [(0S + yg)dW, 61 ot d W]
+[boSdM, B2 prd V]
= (0S + yg) O prdt + [bOS AN, B2 o d N
= (0§ +y9) O prdt 4 bo S O prd N
= ((0S + ygt) 61t +AbaS Bz o) dlt
+baS 65 o d M.
Therefore

d (Spt) = {((H—=r)S + p18)dt+ (0§ + yor ) dW

A
+(b+ B)0SdM + S (61 dW + B2, d M)
+ ((0S + yg) 6y +AboS 6y dt} pre ™
={(H—")S + 110 + (05 + y8t) Ot
+Ab0S 0 dt+ [0S + yor + S ar]dW
+ [00S + S 62 +baS Oy ]dM } pre™.

Since pt is aP-E.M.M., it follows that

US + G — 1S+ (0S + yor )61 + AboS 62 = 0.
O

Equation &) has infinitely many solutions in the set

of predictable processés;, 6>) with 8, > —1. Moreover,

each solution gives B—E.M.M. Q%:%2_ Consider the two

processe®V®-%2 andM -2 where
t
W —w— [ ods te[0.T) (5)

t
M 88 — M, — /0 Aebosds te[0,T]. ©6)

By Girsanov Theorem 1B, W%% s a
Q% %.Brownian motion and M%® s a
QP%:%_-compensated Poisson process. From now on we

work with the P—E.M.M. Q := Q%0 where we take
6, = 02 and

- (T—H)S—I»llgt.

61t = oS+ 5 (7

Using equationsH)—(7), the underlying asset price can be
written underQ as

dS = (US + Hg)dt+ (0S + yg)dW + bo SdM
= (HS + pg)dt+ (05 + ygr) [dW + 6y dt]
+boSdM
— (S + 1) dt + +boSAM + (0S + yar) [dWik
0S + Yo
= (HS + @ + (= H)S — pagy)dt
+(0S + yor)dW +boSdM
= rS§dt+ (oS + yor) W + boSdM;. (8)
Figuresl and?2 display two trajectories for the stock
price at terminal tim& = 1 with a time step of @01, for
two different values of the volatility = 0.2 ando = 0.7.
The other parameter values used are: the initial stock price
S =7, the jump intensity of the Poisson process- 3,
the interest rate = 0.04, the jump parametér= —1, the

crisis parametey = 0.02, and the crisis functiog(t) =
e?sin(mt).

+

12

"rStock” ——

11+

M |
Nyl Mm‘ﬂ
10 - 4/
v r\/

3

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Fig. 1: A trajectory for the stock price whem = 0.2.

2 § is exactly theP—E.M.M. that minimizes the entropy.
The reader can found other types of risk measures such as the
Coherent Risk Measure (C.R.M.) itt][or more recently in4].
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18 — g The following proposition gives the governing P.D.E.

ﬁ for European call option prices.

16F \

Proposition 2.The P.D.E. of the price of the European

1} MVW 1 option in the jump diffusion modeB)is given by
[

| i | N . R R
Ty /W / AC(s.t)+ (rs—bosA)aC(st) + %(as+ va)202C (s 1)
1 a A (E(s+bost) —E(st) =ré(s), 1)
ot/ | o G(sT)=(s—K 12

U/ rlM ‘V‘V\WJ’ m‘/r,( V ( Y ) A( ) N ( )
o " Iy 1 ProoflLet Vi denote the value of the portfolio. Suppose
of J M“W/ ] that we are required to find a portfoli@, f}t );[o.7) Which

et leads to the payoff valuér = h(Sr) = C(Sr,T). We have

20 10 20 0 40 500 60 70 @0 90 1000 for t € [0,T], \7t = (A + tS. Since the strategy is

assumed to be self-financing, we have,tfer[0, T],

V= GdA -+ AdS
= (Vi — M)A (rAd) + e (rSidt+ (oS + yor) dVik
+boSsdM)
2.3 P.D.E. of the option price = r\dt+ i (0S + yo) dW + AboSdM. (13)
Consider a European call option with underlying assetBy applying |6 formula (L0) toé(s,t),we obtain, for any
(S)tejo,1] given by equation8) and a strike pric&k. By  t € [0, T],

risk-neutral pricing, we can express the price of a A A
European call option as a functi@(S,t). In order o dC(S,t) = [AC(S,1) + (1S —baSA)aC(S - 1)

Fig. 2: A trajectory for the stock price wheo = 0.7.

derive the P.D.E. for the European option price, we need +A (é(s_ +boS-,t) 76(3_;))
[td formula which is given by the following lemma 1 )

(see p0)). +5(0S +y8)?5C(S ) | dt
i_hear?ma llet f, I, and k be three adapted processes such +(0S + Vgt)ﬁxé(S—,t)dW

+[C(S- +boS-,t) —C(S-,1)]dM.  (14)

t t t
2 SN
/0 |fs|ds< oo, /0 [ls|“ds< e, and /o Aslks|ds < co. If vxllg seek a wealth; = C(S,t), equating 13) and (14)
yields

nC(S.t) = AC(S,1) + (1S —boSA)AC(S- 1)
dX = frdt+ l,dVW + ked V. 1 242 A
. JFE(O-S(JFygt) aXXC(S’7t>

For any function Fe 12([0,T] x R), we have

Let X= (Xt)ic[o,1] be the process defined by

+A(CE(S- +bos-,t) —C(S-,1))

FOGD = Fxo0)+ [ (aF 069+ E0EF0G 9 SR =S -K)"
0 which is the desired P.D.E. and condition, equatlciht) (

+(fs—ksAs)kF (Xs-,9)) ds and (12).
+ / 1Ok (Xs- , )G
+Y (F(Xs,8) —F(Xs-,9)). (9) 3 A particular solution for the option price

$<
In this section we derive a boundary solution of the P.D.E.

Equation @) can be written in the following form (112) subject to 12) for s> K. Precisely, we consider the

FOG = FO.0)+ | [asF 69+ 205F 065 PPE .
2
+(fsf ks/\s)dxF(xs—,S) +/\S( (X57 + ks, S) C[(S,t) + (r —A Gb)SCS(S,t) + E(O-S_F yg(t)) CSS(S7t)
t - +AC(s(1+ agb),t) — (A +r)C(s,t) =0, (15)
—Ft(XS,s))] ds+/0 IsOF (X, SV fors> K and 0<t < T, subject to the condition
+/O [F(Xs +ks,5) —F(X-,9)]dMs.  (10) C(s,T)=s—K=h(s), s>K. (16)
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We should mention that this solution is very important which proves 20) for n = k+ 1. Hence 20) is true for all
as it will serve as a boundary solution for the numericaln> 1. O
scheme (described next section) to soli/8) for 0 < s <
S» for some bounds,.

For ease of notation, let
a1 = (r — Aob),ax(st) = 3(os+ yg(t)?, az = A,
o4 = (A +r),andf = 1+ ob. Then, integrating5) with

Based on Lemma, the solution of the P.D.E16) with
(16) for s> K is given in the following theorem.

Theorem 1The solution of15)—(16) for s> K is given by

respect td fromt to T and using {6),we obtain C(st) =s—Ke TV, (22)
T
C(s,t) = h(s)+ /t (a18G(S,T) + a2(sS, T)Css(S, T) ProofBy Lemma 2, we have
. T —t n
+03C(Bs, 1)dT — a4C(s, 7)) dT. Ca(st) = —K(—r)“%, n> 1. Then
Expand the solution formally as an infinite s@xs;t) = o P
Y Ca(s t). Substituting this expansion into the above, we Clst) = nZJC”(S’t) =Co(st) +nzlcf‘(s’t)
n=0 = =
obtain @ T 1)
> Clst) =h(s)+ y / (0150Cn(S,T) + a3Cn(BS,T) = !
ri= k=0t = (s—K)—K(e TV _1)=s—Ke TV,
2 _
+02(S,T)95Cn(S, T) — 04Cr(s, 7)) dT, (17) which proves 22). 0

One way to balancely) is to letCy(s,t) = h(s) and
obtain the following recursion relation f@,(s,t):

T
Chra(st) = /t (0153sCn(s, T) + a2(S, T)9ZCn(s, T)
' In this section, we develop and implement a stable

_ 2+G3C“(ﬁs’ 1)~ aCr(s T))dT. . (18)_ numerical scheme for the solution dff) for 0 < s < s,
Since d5Co(s,t) = 0, the above recursion relation and 0<t < T. Similar treatments for different options
reduces to price P.D.Es. or financial problems have been done

4 Numerical computing of options prices

]
Cosa(St) = /t (Q180Cn (S, T) + a3Ca(BS,T)

—0a4Cn(s,7))dt, n>0. (19)

The following Lemma gives the solution of the recursion

relation (L9).

Lemma 2The solution components ,&,t), n > 1,

satisfying (9) are given by

n (T — t)n
n!

Calst) = —K(-1) (20)

ProofThe proof is by induction. Fok = 1, from (19), we
have

T
Ci(st) = /t [0150sCo(S, T) + a3Co(BS, T) — daCo(s, T)|dT.

(21)
With Cy(s,t) = s— K, using the definitions ofr1, a3, as,
andp, the integrand inZ1) becomes

0150Co(s, T) + a3Co(Bs, 7) — 04Co(s, T) = rK.

Thus,ci(s,t) = r(T —t)K which proves 20) for n= 1.
Next, assume tha®() is true forn = k. From L9) and
using the induction hypothesi&(), we obtain

: 1k
Gentst) = [ (a5 ank(-n T Par

K1 (T _ T)k+l

= K

in [3], [16] and [22]. We consider the following linear
P.D.E.

aC ac 9°C
I + als% + az(s,t)ﬁ +a3C(Bst)—asC=0
(23)
with the initial and boundary conditions
C(0,t) =0, C(T,s)=H(s)=max{s—K,0}, (24)
C(sit) =R(st), Vs> s, (25)

whereR(s,t) = s— Ke "(T-U as derived in the previous
section. The constants, a1, 03, 04, 3, anda;(s,t) are as
defined in the previous section, namely,

a1 = (r—Aacb), ax(s,t) = %(os+ yo()?, az=A,
and

ag=(A+r), B=1+0h.

First, the problem is transformed intdfarward” initial-
value problem. Let =T —t andC(s,T) = C(s,t). Then
equation 23) becomes

aC aC 02C x
~a7 + a1s o + ax(s, T)ﬁ +a3C(Bs, 1) —a,C=0
(26)
with the new conditions
C(0,1)=0, C(s.0)=H(9), 27)
C(sT)=R(s,T)=R(ST—T), VS> 5, (28)
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and
02(s,T) = az(s, T —1).

Next, discretize the intervalf0, T] and [0,.] into
equally spaced nodes:

. . T
Ti:|k7 OSISNU k:E7
s =ih, 0<j<Ng h="2,

Ns
wherek andh are the step sizes. L& ~ C(s}, 7). Then
using Crank Nicolson discetization, Equatior26)
becomes

CHi_¢ 1 .
] " J — E(Fjl+1+|:jl)7 (29)
where
T N - W c
FJ-' = 018 % + az(SjJi) I+1 hZJ -1

+asC(Bs;, 1) — asCl.
Equation R9) simplifies to

i+1Ri+1 i+1\R~i+1 i+1~i+1
a 1GHL 1 (14-b ) E Ty G

1 ~ . o
—ékag,C(BSj,TiJrl) = _a'jC'171+ (1- blj)cﬁ o CIjC}ﬂLl

1 =

+5kasC(Bs;, Ti), (30)
where

i _ k. k b ki Kk
aj:ZJal_ﬁaJ‘a jzﬁaj-i-éam

; k. kK i

Cj = —glo- Wa} and aj = az(jh,ik).

Note that from 27) and £8), we have

Ci=0,vi>1, C?=H(jh),Vj=>1,

C~IJ = ﬁj = ﬁ(Sj,Ti), YV j> Ny

In equation 80), the value of3s; in C(st ,Tm) form=
i,i4+1, may be (i) outside the computational interjiak.]

or (ii) inside the computational interval but not one of the

In summary, we have

wiCh + (1 —wj)C 1, if j<j*—1
r]JSNxfz7
C(Bsj, i)~ { WGl +(1—w))R(s,T), if j<j*—1
r]j:Nxfl7
R(Bsj, Ti), it >
(31)

Now, letC' = [C] &) ...Cl, .. Using @1), equation
(30) can be written in matrix form as

(I +Al+l)cl+l _ BcH-l _ FH—l _ (I —AI)CI + Bcl + I:I7

(32)
whereA is an(Nyx — 1) x (Nx — 1) tridiagonal matrix and
F'is a column vector, given by

byt 0 ... 0
ab, ¢ ... 0
A
S b:Nxfz CiiNxfz
[0 .o oAy by
skasR(Bs;, 1), i< N2,
3kasR(Bsj, ) — Gy 1 R(Sw, Ti), | =Nx— 1,
Fl = . o
J $kaz(1—wj)R(Sw, Ti), j<ir-1
nJ = Nx_l,
0, otherwise

andB is a sparséNy — 1) x (Ny— 1) matrix given by

Bji=0, it =g,
Bjn, = skaaw;, ifj<j*—1&nj<N¢—1
Bjn11=zkas(1—w;j) if j<j*—1&n; <Nx—2,

The above outlined scheme has been implemented to

mesh pointss;. To overcome this setback we suggest the gptain a numerical solution to syste2]. Figures3 and

following.
1.If Bsj > s, thatis forj > j* = [Nx/B], then we let
C(st7rm) = ﬁ([331'7.l-|'71) = R(BSMT - Tm)'

2.If Bsj < Sy, i.e., forj < j* letnj, 0<n; <Ny—1, be
the integer such thats, < Bsj < sy41, i€,
nj = |Bjl. Thené([}sj,rm) s approximated by the
weighted average <§I,’1‘T andcm+l:
C(Bsj, Tm) ~WiCh +(1—wj)C, 1, W) = (= Bj+1).

Note that in the case ofj = Ny — 1, we havesy,_1 <
Bsj < Sw. In this case we let

C(Bsj, tm) = WiCR_1 + (1 — W))R(Sw, Tm).-

4 depict the option prices for =3,r =0.04,K =8,b=1,
S» =20,T=1,k=0.01;h=0.1, g(t) = e* sin(rt), and
o = 0.2 (figure. 3) for 0 = 0.7 (figure.4).

5 Conclusion

In this paper, we have considered a jump diffusion model
during financial crisis. This new model takes into account
two shortcomings of the standard Black-Scholes model,
the jump and the increase in volatility during a financial
crisis. The pricing option problem for the suggested model
has been analyzed and a new partial differential equation
for the option price has been derived. The derived P.D.E.
reduces to the well-known Black-Scholes P.D.E. when the
jump and the crisis parameters are not considered.
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