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Abstract: Z2Z4-additive codes, as a special class of abelian codes, have found a very welcoming place in the recent studies of algebraic
coding theory. This family in one hand is similar to binary codes on the other hand is similar to quaternary codes. The structure ofZ2Z4-
additive codes and their duals has been determined lately. In this study we investigate the algebraic structure ofZ2Z2s -additive codes
which are a natural generalization ofZ2Z4-additive codes. We present the standard form of the generator and parity-check matrices of
theZ2Z2s -additive codes. Also, we give two bounds on the minimum distance ofZ2Z2s -additive codes and compare them.
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1 Introduction

Let Z2 andZ4 be the ring of integers modulo 2 and 4,
respectively. We denote the set of all binary vectors of
length n by Zn

2 and the set of alln−tuples over the ring
Z4 by Zn

4. Any nonempty subsetC of Zn
2 is a binary code

and a subgroup ofZn
2 is called abinary linear code or a

Z2− linear code. Equivalently, any nonempty subsetC of
Zn

4 is a quaternary code and a subgroup ofZn
4 is called a

quaternary linear code.
We can view binary codes as quaternary codes under

the Gray map defined in [8] as φ1(0) = (0,0) φ1(1) =
(0,1), φ1(2) = (1,1), φ1(3) = (1,0). If C is a quaternary
linear code then the binary codeC = φ1(C ) is said to be a
Z4− linear code.

Additive codes were first defined by Delsarte in 1973
in terms of association schemes [5, 6]. In a translation
association scheme, an additive code is generally defined
as a subgroup of the underlying abelian group. On the
other hand, translation invariant propelinear codes were
first defined in 1997 and it was proved that all these
binary codes are isomorphic to subgroups of
Zα

2 × Z
β
4 ×Qσ

8 whereQ8 is the nonabelian quaternion
group with eight elements [9]. If the association scheme
is the binary Hamming scheme, that is, when the
underlying abelian group is of order 2n, the additive codes
coincide with the abelian translation invariant propelinear

codes. Therefore, the only structures for the abelian group
are those of the formZα

2 ×Z
β
4 , whereα + 2β = n [9].

Hence, the subgroupsC of Zα
2 ×Z

β
4 are the only additive

codes in the binary Hamming scheme.
Most of the concepts onZ2Z4−additive codes have

been described in [2]. In this paper, we study
Z2Z2s−additive codes fors > 1, whereZ2Z4−additive
codes are a special case. First, we give the definition of
Z2Z2s−additive codes and find some fundamental
parameters. Next, we give the standard form of generator
and parity-check matrices forZ2Z2s−additive codes and
we show some examples of these codes. Finally, we
investigate two bounds on the minimum distance of
Z2Z2s−additive codes, compare them and deduce some
results.

2 Preliminaries

An extended Gray map forZ2Z4 additive codes is defined
by Borges et al. in [2] as follows:Φ1 : Zα

2 ×Z
β
4 −→ Zn

2,

where n = α + 2β , given by for all x ∈ Zα
2 and

y = (y1,y2, ...,yβ ) ∈ Z
β
4

Φ1(x,y) = (x,φ1(y1), ...,φ1(yβ ))
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whereφ1 : Z4 −→ Z2
2 is the usual Gray map that is;

φ1(0)= (0,0), φ1(1)= (0,1), φ1(2)= (1,1), φ1(3)= (1,0).

This Gray map is an isometry which transforms Lee
distances defined in aZ2Z4−additive code overZα

2 ×Z
β
4

to Hamming distances defined in the binary code
C = Φ1(C ). Hence, the length of the binary codeC is
n = α +2β .

We know that ifC is aZ2Z4−additive code then it is
a subgroup ofZα

2 × Z
β
4 so, it is also isomorphic to an

abelian structureZγ
2×Zδ

4 . Therefore,C is of type 2γ4δ as
a group and it has|C | = 2γ+2δ codewords. LetX
(respectively Y ) be the set ofZ2 (respectively Z4)
coordinate positions, so|X | = α and |Y | = β . Call CX
(respectivelyCY ) the punctured code ofC by deleting the
coordinates outsideX (respectively Y ). Let Cb the
subcode ofC which contains all order two codewords and
let κ be the dimension of(Cb)X , which is a binary linear
code. Considering all these parameters,C is called a
Z2Z4−additive code of type (α,β ;γ ,δ ;κ). We say that
the binary imageC = φ1(C ) is a Z2Z4−linear code of
lengthn = α +2β [2].

It is shown in [2] that the generator and parity-check
matrices for a Z2Z4−additive code C of type
(α,β ;γ ,δ ;κ) can be written in the following standard
forms;

G1 =





Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ



 (1)

H1 =





T t
b Iα−κ 0 0 2St

b
0 0 0 2Iγ−κ 2Rt

T t
2 0 Iβ+κ−γ−δ T t

1 −(Sq +RT1)
t



 (2)

whereT1,T2,Tb,Sb andR are matrices overZ2 andSq
is a matrix overZ4.

We defineZ2Z2s−additive codes which are a natural
generalization ofZ2Z4-additive codes as follows.

Definition 2.1. For a positive integers > 1, the code C

is called aZ2Z2s -additive code if it is a subgroup ofZα
2 ×

Z
β
2s . We say the binary imageΦ(C ) =C is aZ2Z2s−linear

code of lengthn = α +2s−1β whereΦ is Gray map from
Zα

2 ×Z
β
2s toZn

2 defined by

Φ(x,y) = (x1, ...,xα ,φ(y1), ...,φ(yβ )) (3)

for all x = (x1,x2, ...,xα) ∈ Zα
2 , y = (y1,y2, ...,yβ ) ∈ Z

β
2s

andφ : Z2s −→ Z2s−1

2 is generalization of the usual Gray
map defined in [4].

In view of the definition, we can say that a
Z2Z2s−additive code is isomorphic to an abelian

structure Z
k0+ks
2 × Z

k1
2s × ... × Z

ks−1
4 . Here, the firstα

coordinates of codewords ofC are elements fromZ2 and
the remainingβ coordinates are fromZ2s . Under these
parameters we say that C is of type
(α,β ;k0,k1,k2, ...,ks).

3 Generator matrices ofZ2Z2s−additive
codes

Theorem 3.1.Let C be aZ2Z2s−additive code of type
(α,β ;k0,k1,k2, ...,ks). ThenC is permutation equivalent
to aZ2Z2s−additive code with the standard form matrix,

Gs =

[

Ā T
S A

]

(4)

where

Ā =
[

Ik0 Ā01
]

, T =
[

0 0 0 0· · · 0 0 2s−1T0,s
]

, S =













0 S1
0 S2
...

...
0 Ss−1
0 0













,

and

A=















Ik1 A01 A02 · · · A0,s−2 A0,s−1 A0,s
0 2Ik2 2A12 · · · 2A1,s−2 2A1,s−1 2A1,s
...

...
...

...
...

...
...

0 0 0 · · · 2s−2Iks−1 2s−2As−2,s−1 2s−2As−2,s

0 0 0 · · · 0 2s−1Iks 2s−1As−1,s















.

Here,Ā01 is a matrix overZ2 andAkl are matrices over
Z2s for 0≤ k < l ≤ s. And Ikm are identity matrices of order
km for 1≤ m ∈ Z.

For 1≤ i ≤ s−1, Si are matrices overZ2 andT0,s is a
matrix overZ2s .Note thatC has|C |= 2k02sk12(s−1)k2...2ks

codewords.

Proof. We prove the theorem in four steps for the
Z2Z2s−additive codeC :

Step 1: LetC1 consist of the elements ofC of order 2
where at least one entry in the firstα coordinates is
nonzero. And letC0 = C \ C1. Then it is clear that
C = C0∪C1 andC0∩C1 = ∅. Let C1 be a subgroup of
orderk0 then, after necessary permutations, we have the
generator matrix ofC in the form:








Ik0 Ā01 2s−1D
...

...
...

...
...

...









, whereĀ01 is a matrix overZ2 and

D is a matrix overZ2s .
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Step 2: We assume that the firstk0 elements that
generate C0 are zero then by applying necessary
operations, that is;








Ik0 Ā01 2s−1D

0
...

...

0
...

...









.

Step 3: LetC R
0 be a subgroup ofZ2s obtained by

taking the lastβ coordinates of the elements inC0, i.e., a
restriction ofC0 in the lastβ positions. SinceC R

0 is a
subgroup ofZ2s , we know from [3] that C R

0 is generated
by a matrix of the form;

A=















Ik1 A01 A02 · · · A0,s−2 A0,s−1 A0,s
0 2Ik2 2A12 · · · 2A1,s−2 2A1,s−1 2A1,s
...

...
...

...
...

...
...

0 0 0 · · · 2s−2Iks−1 2s−2As−2,s−1 2s−2As−2,s

0 0 0 · · · 0 2s−1Iks 2s−1As−1,s















.

So, the generator matrix ofC has the form













Ik0 Ā01 2s−1D1 · · · 2s−1Ds
0 S1

0
... A

0 Ss−1
0 0













.

Step 4: Let us denote
[

2s−1D1 · · · 2s−1Ds
]

by G0. By
applying necessary row operations, we can make the first
k1 entries ofG0, which is the submatrix 2s−1D1 to be
zero. Similarly, 2s−1D2, ...,2s−1Ds−1 can be made zero. It
is clear thatS1, ...,Ss−1 are matrices overZ2. Hence, we
have the result.

Now, we state a special case of Theorem 3.1 which
gives the results in [2] by just applying permutations.
Corollary 3.2. If C1 is a Z2Z4−additive code of type
(α,β ;k0,k1,k2) then the generator matrix ofC1 is in the
form of;

G =





Ik0 Ā01 0 0 2T02
0 S1 Ik1 A01 A02
0 0 0 2Ik2 2A12



 . (5)

Note that this matrix is permutation equivalent to matrix
of the form (1). Next, we present examples that illustrate
Theorem 3.1.

Example 3.3.Let C2 be aZ2Z8−additive code of type
(α,β ;k0,k1,k2,k3) with s = 3. Applying Theorem 3.1,C2
is permutation equivalent to aZ2Z8−additive code with
generator matrix of the form,

G2 =







Ik0 Ā01 0 0 0 4T03
0 S1 Ik1 A01 A02 A03
0 S2 0 2Ik2 2A12 2A13
0 0 0 0 4Ik3 4A23






. (6)

Example 3.4.Let C3 be aZ2Z8−additive code of type
(3,3;1,3,0,0) with generator matrix







1 1 0 2 4 6
0 1 1 0 4 5
0 0 1 1 3 7
1 0 1 0 5 4






,

then, the standard form of this generator matrix is as
follows:







1 1 0 0 0 0
0 0 1 1 0 0
0 1 1 0 1 0
0 1 1 0 0 1






.

4 Duality of Z2Z2s−additive codes

For linear codes over finite fields and finite rings, the
well-known standard concept of orthogonality is used.
However, in the case ofZ2Z4 the concept of
orthogonality is given differently [2]. Here, we generalize
this orthogonality and study the duality concept
accordingly. Specifically, in this section, we study the
duality forZ2Z2s−additive codes.

We introduce an inner product for two vectorsu,v ∈

Zα
2 ×Z

β
2s to be defined as;

〈u,v〉= 2s−1

(

α

∑
i=1

uivi

)

+
α+β

∑
j=α+1

u jv j ∈ Z2s .

Please note that the cases = 2 coincides with the
definition in [2].

Let C be aZ2Z2s−additive code. The additive dual
code ofC , denoted byC⊥, is defined as

C
⊥ =

{

v ∈ Zα
2 ×Z

β
2s | 〈u,v〉= 0 for all u ∈ C

}

.

It is easy to check thatC⊥ is a subgroup ofZα
2 ×Z

β
2s ,

soC⊥ is also aZ2Z2s -additive code.
Now, we define the following maps for constructing

an additive dual code of aZ2Z2s -additive code. Letψ :
Z2s −→ Z2 be the usual modulo 2 map, that is,

ψ(x) =

{

0, if x = 2k,
1, if x = 2k+1

for all x ∈ Z2s and 0≤ k ∈ Z. Let ι : Z2 −→ Z2s be the
identity map that is defined asι(0) = 0, ι(1) = 1. Finally
we defineχ :Z2 −→Z2s , which is the usual inclusion from
the additive structure inZ2 to Z2s , that is,χ(0) = 0 and
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χ(1) = 2s−1. We use the same notations for extensions of

these functions. Hence we have,(ψ, Id) : Zα
2s ×Z

β
2s −→

Zα
2 ×Z

β
2s , (ι , Id) : Zα

2 ×Z
β
2s −→ Zα

2s ×Z
β
2s , and (χ , Id) :

Zα
2 ×Z

β
2s −→ Zα

2s ×Z
β
2s .

Lemma 4.1. Let u ∈ Zα
2 × Z

β
2s and v ∈ Z

α+β
2s then

〈χ(u),v〉2s = 〈u,ψ(v)〉 , where〈 , 〉2s denotes the standard
inner product of vectors inZ2s .

Proof. For u ∈ Zα
2 ×Z

β
2s andv ∈ Z

α+β
2s ,

〈χ(u),v〉2s =
α

∑
i=1

(2s−1ui)vi +
α+β

∑
j=α+1

u jv j

=
α

∑
i=1

(2s−1ui)(vi mod 2)+
α+β

∑
j=α+1

u jv j

= 〈u,ψ(v)〉 .

Corollary 4.2. If u,v ∈ Zα
2 × Z

β
2s then

〈χ(u), ι(v)〉2s = 〈u,v〉 .

Proof. By Lemma 4.1,

〈χ(u), ι(v)〉2s = 〈u,ψ(ι(v))〉= 〈u,v〉 .

Proposition 4.3.Let C be aZ2Z2s -additive code of type
(α,β ;k0,k1, ...,ks). Then,C⊥ = ψ(χ(C )⊥).

Proof. Let v ∈ C⊥. So, for allu ∈ C , we have〈u,v〉 = 0.
By Corollary 4.2 〈u,v〉 = 〈χ(u), ι(v)〉2s . Hence,
ψ(ι(v)) = v ∈ ψ(χ(C )⊥), andC⊥ ⊆ ψ(χ(C )⊥). On the
other hand, ifv ∈ χ(C )⊥, then 〈χ(u),v〉2s = 0, for all
u ∈ C . By Lemma 4.1,〈χ(u),v〉2s = 〈u,ψ(v)〉= 0. Thus,
ψ(χ(C )⊥)⊆ C⊥.

5 Parity-check matrices ofZ2Z2s−additive
codes

In this section we present the standard form of
parity-check matrices ofZ2Z2s -additive codes.

Let k(A) be the number of rows of a matrixA. For i =
1, ...,s we denote byki(A) the number of rows ofA that
are divisible by 2i−1 but not 2i. Hencek(A) = ∑s

i=1 ki(A).

Theorem 5.1.Let C be aZ2Z2s−additive code of type
(α,β ;k0,k1,k2, ...,ks) with standard form matrix (4).
Then, the generator matrix ofC⊥ is given by

Hs =

[

A1 U
T1 B

]

, (7)

where

A1 =
[

−Āt
01 Iα−k0

]

,U =
[

Us−1 Us−2 · · · U1 0 0
]

,

T1 =











−T t
0,s 0

0 0
...

...
0 0











,

B =











B0,s B0,s−1 · · · B0,2 B0,1 Iβ−k(A)
2B1,s 2B1,s−1 · · · 2B1,2 2Iks(A) 0

...
...

...
...

...
...

2s−1Bs−1,s 2s−1Ik2(A) · · · 0 0 0











,

and

Bi, j =−
j−1
∑

k=i+1
Bi,kAt

s− j,s−k−At
s− j,s−i, for 0≤ i< j ≤ s,

andU j =−
j−1
∑

k=1
UkAt

s− j−1,s−k−1−2jSt
s− j, for 1≤ j ≤ s−1.

Proof. It is straightforward to check thatHsGt
s = 0. Let C

be aZ2Z2s -additive code with standard form matrix (4).
Thenχ(C ) has the generator matrix of the form;

G̃s =

[

2s−1Ā T
2s−1S A

]

. (8)

Sinceχ(C ) is a code overZ2s we know from [3] that the
matrix in (8) is permutation equivalent to the matrixG̃, by
moving the firstk0 rows to the last row and next moving
the firstα columns between the lasts−1 ands blocks;

G̃ =















Ik1 Ã01 Ã02 Ã03 · · · Ã0,s−2 Ã0,s−1 Ã0,s

0 2Ik2 2Ã12 2Ã13 · · · 2Ã1,s−2 2Ã1,s−1 2Ã1,s
...

...
...

...
...

...
...

...
0 0 0 0 · · · 2s−2Iks−1 2s−2Ãs−2,s−1 2s−2Ãs−2,s

0 0 0 0 · · · 0 2s−1Ĩks 2s−1Ãs−1,s















where, for 0≤ i ≤ s−3,1≤ j ≤ s−2, Ãi, j = Ai, j and

Ĩks =

[

Iks 0
0 Ik0

]

, Ãs−1,s =

[

0 As−1,s
Ā01 T0,s

]

and for 0≤ i ≤ s−2,

Ãi,s−1 =
[

Ai,s−1 0
]

, Ãi,s =
[

2s−i−1Si+1 Ai,s
]

.

Again from [3] the generator matrix of the dual code
χ(C )⊥ is permutation equivalent to the matrix of the
form;

H̃ =











B̃0,s B̃0,s−1 · · · B̃0,2 B̃0,1 Iα+β−k(G̃)

2B̃1,s 2B̃1,s−1 · · · 2B̃1,2 2Ĩks(G̃) 0
...

...
...

...
...

...
2s−1B̃s−1,s 2s−1Ik2(G̃) · · · 0 0 0











c© 2013 NSP
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where

B̃i, j =−
j−1

∑
k=i+1

B̃i,kÃt
s− j,s−k − Ãt

s− j,s−i f or 0≤ i < j ≤ s.

We can also write this matrix in the form;

H̃ =











B̃0,s B̃0,s−1 · · · B̃0,2 B̃0,1 Iα−k0 0
2B̃1,s 2B̃1,s−1 · · · 2B̃1,2 2Ĩks(G̃) 0 Iβ−k(A)

...
...

...
...

...
...

...
2s−1B̃s−1,s 2s−1Ik2(G̃) · · · 0 0 0 0











.

Therefore, by reversing only the column permutation
applied before, we can write the generator matrix of the
dual codeχ(C )⊥ as follows:

H̃s =





−Āt
01 Iα−k0 U

T̃ 0 B
2Ik0 0 0



 ,

where

B =











B0,s B0,s−1 · · · B0,2 B0,1 Iβ−k(A)
2B1,s 2B1,s−1 · · · 2B1,2 2Iks(A) 0

...
...

...
...

...
...

2s−1Bs−1,s 2s−1Ik2(A) · · · 0 0 0











,

U =
[

Us−1 Us−2 · · · U1 0 0
]

, T̃ =











−T t
0,s

0
...
0











where

Bi, j =−
j−1

∑
k=i+1

Bi,kAt
s− j,s−k −At

s− j,s−i, f or 0≤ i < j ≤ s,

and

U j =−
j−1

∑
k=1

UkAt
s− j−1,s−k−1−2jSt

s− j, f or 1≤ j ≤ s−1.

Finally, by Proposition 4.3,ψ(H̃s) = Hs is the generator
matrix ofC⊥.

Next, we give a corollary that gives the results obtained
in [2] and also helps illustrating Theorem 5.1.

Corollary 5.2. Let C1 be aZ2Z4−additive code of type
(α,β ;k0,k1,k2) with standard form matrix (5). Then the
parity-check matrix ofC1 is permutation equivalent to a
matrix of the form;





−Āt
01 Iα−k0 −2St

1 0 0
−T t

02 0 −At
02+At

12At
01 −At

12 Iβ−k1−k2
0 0 −2At

01 2Ik2 0



 .

Proof. Let C1 be a Z2Z4−additive code of type
(α,β ;k0,k1,k2). Then the generator matrix ofχ(C1) is
permutation equivalent to a matrix of the form;





Ik1 A01 0 2S1 A02
0 2Ik2 0 0 2A12
0 0 2Ik0 2Ā01 2T02



 .

Therefore, we have the generator matrix ofχ(C1)
⊥ as;







−2St
1 0 −Āt

01 Iα−k0 0
−At

02+At
12At

01 −At
12 −T t

02 0 Iβ−k1−k2
−2At

01 2Ik2 0 0 0
0 0 2Ik0 0 0






.

After reversing only the column permutation, we can write
this matrix in the form of;

H̃s =







−Āt
01 Iα−k0 −2St

1 0 0
−T t

02 0 −At
02+At

12At
01 −At

12 Iβ−k1−k2
0 0 −2At

01 2Ik2 0
2Ik0 0 0 0 0






.

Finally, applyingψ to H̃s we have the generator matrix of
C⊥

1 as follows:

Hs =ψ(H̃s)=





−Āt
01 Iα−k0 −2St

1 0 0
−T t

02 0 −At
02+At

12At
01 −At

12 Iβ−k1−k2
0 0 −2At

01 2Ik2 0



 .

Again, note that this matrix is permutation equivalent
to the matrix of the form (2). In the sequel, we present two
examples that further illustrates Theorem 5.1.

Example 5.3.Let C2 be aZ2Z8−additive code of type
(α,β ;k0,k1,k2,k3) with standard form matrix (6). We can
write the parity-check matrix ofC2 as follows:







−Āt
01 Iα−k0 −2St

2 0 0
−T t

03 0 P −At
13+At

23At
12 −At

23 Iβ−k1−k2−k3
0 0 −2At

12 2Ik3 0
0 0 4Ik2 0 0






,

where

P =







−4St
1+2St

2At
01

−At
03+At

13At
01+At

23At
02−At

23At
12At

01
−2At

02+2At
12At

01
−4At

01






.

Example 5.4.Let C3 be aZ2Z8−additive code of type
(3,3;1,3,0,0) with standard form matrix,







1 1 0 0 0 0
0 0 1 1 0 0
0 1 1 0 1 0
0 1 1 0 0 1






.
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Then the additive dual codeC⊥
3 has generator matrix

of the form;
[

1 1 0 0 4 4
0 0 1 4 4 4

]

.

6 Bounds on the minimum distance of
Z2Z2s−additive codes

In this section we give two bounds forZ2Z2s−additive
codes and compare them.

Since the Gray map defined in [4] is an isometry, the
mapΦ defined in (3) transforms Lee distances inZα

2 ×Z
β
2s

to Hamming distances inZn
2, wheren = α +2s−1β . In [1],

the weight of any vector inZα
2 ×Z

β
4 was defined. Now,

denote the Hamming weight ofv1 ∈ Zα
2 by wtH(v1) and

denote the Lee weight ofv2 ∈ Z
β
2s by wtL(v2). We define

the weight ofv= (v1,v2)∈Zα
2 ×Z

β
2s aswt(v) =wtH(v1)+

wtL(v2). We can also define the distance between any two

vectorsu,v ∈ Zα
2 ×Z

β
2s as d(u,v) = wt(u− v). Now, we

denote the minimum distance between codewords inC by
d(C ).

The usual Singleton bound for codes over an alphabet
of sizeq is given in [10] by d(C )≤ n− logq |C |+1.

This bound is a combinatorial bound and does not rely
on the algebraic structure of the code. In [7] the following
Singleton bound for the Lee weight of a quaternary linear
code is given. By using this bound we have

⌊

d(C )−1
2

⌋

≤ n−δ −
γ
2

for a codeC of type 2γ4δ .

Theorem 6.1.Let C be aZ2Z2s−additive code of type
(α,β ;k0,k1,k2...,ks). Then,

d(C )−1
2s−1 ≤

α
2s−1 +β −

[k0+ sk1+(s−1)k2+ ...+ ks]

2s−1 ,

(9)
and

⌊

d(C )−1
2s−1

⌋

≤ α +β − (k0+ k1+ k2+ ...+ ks) . (10)

Proof. We can obtain the bound in (9) by simply applying
the Singleton bound given in [10] to Φ(C ) = C whereΦ
is defined in (3). Since

d(C ) ≤ n− logq |C |+1 we get

d(C ) ≤ α +2s−1β − [k0+ sk1+(s−1)k2+ ...+ ks]+1.

Therefore, we have

d(C )−1
2s−1 ≤

α
2s−1 +β −

[k0+ sk1+(s−1)k2+ ...+ ks]

2s−1 .

Let (χ , Id) : Zα
2 ×Z

β
2s −→ Z

α+β
2s be the usual inclusion

fromZ2 toZ2s that we defined before. Then, it is clear that
d(C )≤ d(χ(C )).

The bound in (10) can be obtained by using this result
and Theorem 4.3 in [7] that is;

⌊

d(C )−1
2s−1

⌋

≤ n− rank(C ).

Hence we have

⌊

d(C )−1
2s−1

⌋

≤ α +β − (k0+ k1+ k2+ ...+ ks) .

Lemma 6.2. Let C be aZ2Z2s−additive code of type
(α,β ;k0,k1,k2, ...,ks), then the bound in (9) is strictly
stronger than the bound in (10) if and only if;

i) d(C ) = 2s−1a+1 and

k0+ ks +
2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

2s−1−1
< α.

ii) d(C ) = 2s−1a and

k0+ ks +
2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

2s−1−1
≤ α.

iii) d(C ) = 2s−1a+b and

k0+ ks +
2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

2s−1−1
< α + b−1

2s−1−1

where 1< a ∈ Z and 1< b < 2s−1,b ∈ Z.

Proof. i) If d(C ) = 2s−1a + 1 then the bound in (9) is
strictly stronger than the bound in (10) if and only if;

α +2s−1β − [k0+ sk1+ ...+ ks]+1

< 2s−1α +2s−1β −2s−1 (k0+ ...+ ks)+1

(k0+ ks)(2
s−1−1)+2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

< (2s−1−1)α

k0+ ks +
2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

2s−1−1
< α.

ii) If d(C )= 2s−1a then bound in (9) is strictly stronger
than bound in (10) if and only if;

α +2s−1β − [k0+ sk1+ ...+ ks]+1

< 2s−1 [α +β − (k0+ ...+ ks)+1]

(k0+ ks)(2
s−1−1)+2s−1 (k1+ ...+ ks−1)

− [sk1+ ...+2ks−1]< (2s−1−1)(α +1)
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k0+ks+
2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

2s−1−1
<α+1,

k0+ ks +
2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

2s−1−1
≤ α.

iii) If d(C ) = 2s−1a+ b then bound in (9) is strictly
stronger than bound in (10) if and only if;

α +2s−1β − [k0+ sk1+ ...+ ks]+1

< 2s−1 [α +β − (k0+ ...+ ks)]+b,

k0+ ks +
2s−1 (k1+ ...+ ks−1)− [sk1+ ...+2ks−1]

2s−1−1

< α +
b−1

2s−1−1
.

Now, we give two examples such that, the first one
attains the bound in (9) and the second one attains the
bound in (10). This shows that these bounds are the best
possible ones.

Example 6.3.Let C4 be aZ2Z16−additive code of type
(1,1;1,0,0,0,0) with generator matrixG4 =

[

1 8
]

.

Therefore,s = 4, d(C ) = 9. Applying the bound in (9) we
have;

d(C )−1
8

≤
α
8
+β −

k0+4k1+3k2+2k3+ k4

8

⇒
9−1

8
≤

1
8
+1−

1
8

1 ≤ 1.

Example 6.4. Consider a Z2Z8−additive code C5
generated by the following generator matrix

G5 =





1 0 0 4
0 4 0 4
0 0 4 4



 .

So,C5 is of type(1,3;1,0,0,2) and

C ={(0000),(1004),(0404),(0044),(1400),

(1040),(0440),(1444)} .

Thend(C ) = 5. If we apply bound in (10) we get;

⌊

d(C )−1
4

⌋

≤ α +β − (k0+ k1+ k2+ k3)

⌊

5−1
4

⌋

≤ 1+3− (1+0+0+2)

1 ≤ 1.

7 Conclusion

This paper presents a generalization ofZ2Z4 additive
codes which has been introduced lately. The paper studies
the structure ofZ2Z2s additive codes. An inner product is
introduced and by introducing the dual concept of an
additive code, the structure of the duals of additive codes
are studied. Some bounds that are attained by this family
of codes are introduced. Since this a new topic and a new
direction, the classical questions and problems that are
solved for linear codes await the research community for
this particular family.
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Mateḿatica Discreta y Algoŕıtmica Castro Urdiales, 7-9 de
julio de (2010).
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