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Abstract: Z,Z4-additive codes, as a special class of abelian codes, have foungwealeoming place in the recent studies of algebraic
coding theory. This family in one hand is similar to binary codes on the otirat s similar to quaternary codes. The structuré #,-
additive codes and their duals has been determined lately. In this studyegtigate the algebraic structureZiZs-additive codes
which are a natural generalization®3Z4-additive codes. We present the standard form of the generatoraaitgtgheck matrices of
theZ,Zs-additive codes. Also, we give two bounds on the minimum distan@Bs-additive codes and compare them.
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1 Introduction codes. Therefore, the only structures for the abelian group
are those of the fornZ§ x Zf, wherea + 28 = n [9].

Hence, the subgroups of ZJ x Zf are the only additive
codes in the binary Hamming scheme.

Most of the concepts off,Z4—additive codes have
been described in 2. In this paper, we study
ZyZys—additive codes fois > 1, where Z,Z4—additive
codes are a special case. First, we give the definition of
quaternary linear code. ZoZs—additive codes. and find some fundamental

We can view binary codes as quaternary codes undeparameters. Next, we ge the standaro! form of generator
the Gray map defined ing] as ¢1(0) = (0,0) (1) = and parity-check matrices fdf,Z,s—additive codgs and
0,1), @(2) = (L,1), @(3) = (1,0). If ¢ is a quaternary we show some examples of these codes. Finally, we

linear code then the binary co@e= @ (%) is said to be a investigate two bounds on the minimum distance of
74— linear code ZoZs—additive codes, compare them and deduce some

results.

Let Z, and Z4 be the ring of integers modulo 2 and 4,
respectively. We denote the set of all binary vectors of
lengthn by Z% and the set of alh—tuples over the ring
Z4 by ZY. Any nonempty subset of Z3 is a binary code
and a subgroup df} is called abinary linear code or a
Z2—linear code. Equivalently, any nonempty subsétof

Zj is a quaternary code and a subgrouZffis called a

Additive codes were first defined by Delsarte in 1973
in terms of association schemées, §]. In a translation
association scheme, an additive code is generally defineg Preliminaries
as a subgroup of the underlying abelian group. On the
other hand, translation invariant propelinear codes were
first defined in 1997 and it was proved that all these An extended Gray map f&,Z,4 additive codes is defined
binary codes are isomorphic to subgroups of by Borges et al. ing] as follows: ®; : Zg x ZE 70
Z§ x Zf x Qf where Qg is the nonabelian quaternion where n = a + 28, given by for all x € Z§ and
group with eight element9]. If the association scheme Y= (Y1,Y2,0,Y5) € 7B
is the binary Hamming scheme, that is, when the Y2 IB 4
underlying abelian group is of ordef,2he additive codes
coincide with the abelian translation invariant propedine D1(X,Y) = (X, @u(y1), -, @u(Yp))
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where@, : Zs — 73 is the usual Gray map that is; structure ZZOH(S X ZS%, X X Z'ff*l. Here, the firsta
coordinates of codewords &f are elements frond, and
@(0)=(0,0), @(1)=(0,1), @(2)=(1,1), @(3)=(1,0). the remainingB coordinates are fronZs. Under these

. . . . parameters we say that¥ is of type
This Gray map is an isometry which transforms Lee (a. B; Ko, ki, Ko, ..., ke)

distances defined in &,Z4—additive code oveZ§ x Zf

to Hamming distances defined in the binary code
€= (Dl(;?' Hence, the length of the binary co@®is 3 Generator matrices 0fZ,Zs—additive
n=a+2B.

We know that if is aZ,Z4—additive code then itis COdES
a subgroup ofZ§ x Zf so, it is also isomorphic to an
abelian structuré x Z2. Therefore is of type 24% as ~ Theorem 3.1.Let ¢ be aZ,Zy—additive code of type
a group and it hag®| = 2*2% codewords. LetX (a,B:ko.ky, ke, ... ks). Then¢' is permutation equivalent
(respectively Y) be the set ofZ, (respectively Zs) to aZyZ,s—additive code with the standard form matrix,
coordinate positions, spX| = a and |Y| = 8. Call éx AT
(respectivelys) the punctured code &f by deleting the Gs = {S A]
coordinates outsideX (respectivelyY). Let %, the
subcode of¢” which contains all order two codewords and
let k be the dimension ofé;,)x, which is a binary linear
code. Considering all these parametess,is called a
Z»Z4—additive code of type (a,B;y,d; k). We say that 0 S
the binary imageC = @ (%) is a ZpZ4—linear code of 0%
lengthn=a + 20 [2]. A A _ —1 | -

It is shown in P] that the generator and parity-check A=lhofor], T=[0000-- 002 o], S=1: : |
matrices for a Z,Zs4—additive code ¢ of type
(a,B;y,0;K) can be written in the following standard
forms;

(4)

where

and

lk Tv2T, 0 O |k1 Aor Agz -+ Aogs2 AO,s—l AO,s
G1=|002112l, « 0 1) 0 2y, 2A10 -+ 2A15 2 2MA151 2A1 s
0% R s PO TP . . .

0 0 0 252 2527 5o 1 25°2A¢ 5
00

Té |g,K 0 0 % o --- 0 25—l| 25—1A
Hi=|0 0 0 2,, 2 ) ke M

t t t _
T, 0 lpikys Ty (Sy+RT) Here,Ap1 is a matrix ovetZ, andAq are matrices over

Zps for 0 <k < <s. Andly,, are identity matrices of order

. fori<meZ.
whereT;, T2, Ty, S andR are matrices oveZ, andS; ki = ) )
is a matrix ovetZ,. For 1<i <s—1, S are matrices ovef, andTos is a

We defineZ,7Zs—additive codes which are a natural Matrix overZss. Note that¢” has|¢'| = Qogsaplsiie ks
generalization o%,Z4-additive codes as follows. codewords.
Proof. We prove the theorem in four steps for the
Definition 2.1. For a positive integes > 1, the code ¥ Z2Zzs—additive codes”:
is called aZ,Zos-additive code if it is a subgroup @3 x Step 1: Let#; consist of the elements 6f of order 2
ng.We say the binary imag®(¢’) =Cis aZyZx»—linear  where at least one entry in the first coordinates is
code of lengtm = a + 251 where® is Gray map from  nonzero. And letép = ¢ \ 41. Then it is clear that

78 x ng to 7)) defined by € =%oU%1 and6pN 61 = @. Let ¢1 be a subgroup of
orderkg then, after necessary permutations, we have the
D(X,Y) = (Xt -.es Xt P(Y1), -, (p(yg)) ©) generator matrix o¥” in the form:
A o9s—1
for aIIX:(Xl,Xz,‘,,,Xa) € Za Yy:(ylayZa"'vyﬁ) ngs Iko A012 D

and@: Zys — 72 ' is generalization of the usual Gray : ¢t |, whereAp is a matrix overZ; and
map defined in4]. Do :

In view of the definition, we can say that a
ZoZs—additive code is isomorphic to an abelian D is a matrix ovetZys.
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Step 2: We assume that the firk§ elements that Example 3.4.Let 43 be aZ,Zg—additive code of type
generate 4o are zero then by applying necessary (3,3;1,3,0,0) with generator matrix
operations, that is;

- 11024
—1
lky A01 2D 01104
0 : : . 001137
10105

0 . o
then, the standard form of this generator matrix is as
Step 3: LetéR be a subgroup ofZ,s obtained by  follows:

taking the las{3 coordinates of the elements#b, i.e., a

restriction of ¢y in the lastf positions. Sincesf} is a 11000
subgroup ofZys, we know from [B] that 4§ is generated 00110
by a matrix of the form; 01101

01100

|k1 AOl AOZ AO,S—Z AO,s—l AO,s
0 2y, 2712 -+ 2A15 0 2MA15 1 2A1 5

A= = = : : : .
0 0 6,;?4%4?@¥$4?4&%5 4 Duality of Z,Zos—additive codes
—1 s—1

co 0.0 2 27Asas For linear codes over finite fields and finite rings, the
So, the generator matrix & has the form well-known standard concept of orthogonality is used.

_ However, in the case ofZ,Z4 the concept of

i, Aor 257Dy -+ 257!Dg orthogonality is given differently]. Here, we generalize
0 S this orthogonality and study the duality concept
0 A accordingly. Specifically, in this section, we study the

0s duality for Z,Z,s—additive codes.

0 61 We introduce an inner product for two vectarss €
7§ x ng to be defined as;

Step 4: Let us denotS!D; --- 251D| by Go. By
applying necessary row operations, we can make the first

k; entries of Gy, which is the submatrix 21D; to be a a+B

zero. Similarly, 21Dy, ...,25*1Ds_,1 can be made zero. It (uv) =251 ZUM + Y U EZss
is clear thatS,,...,S;_1 are matrices over,. Hence, we = j=a+1

have the result.

Now, we state a special case of Theorem 3.1 which

gives the results in] by just applying permutations. Please note that the case= 2 coincides with the

. o definition in [2].
Corollary 3.2. If 3 is a ZpZ4—additive code of type Let ¥ be[Z]aZzZzs—additive code. The additive dual

lggr,n[?;ol?,kl,kz) then the generator matrix &f1 is in the code of%, denoted byg™, is defined as

lyAor 0 O 2oy L_ a., 7B _
G=|0 S Iy Aoz Aoz |. (5) ¢ _{VGZZszs|<u,v)_OforaIIue(€}.
0 0 0 2 2An ) .

I 1 a
Note that this matrix is permutation equivalent to matrix 't IS €asy to check that™ is a subgroup o3 x Zzs,

of the form (1). Next, we present examples that iilustrateSO¢ " is also all.pZs-additive code. _
Theorem 3.1. Now, we define the following maps for constructing

an additive dual code of #,Z,s-additive code. Let) :
Example 3.3.Let %> be aZ,Zg—additive code of type Zz — Z2 be the usual modulo 2 map, that is,
(a,B;ko, ki, ko, k3) with s= 3. Applying Theorem 3.1%>

is permutation equivalent to A,Zg—additive code with Wx) = {O, if x=2k,
generator matrix of the form, 1 ifx=2k+1
lkyAox O O 0 4l for all x € Zys and 0< k € Z. Let 1 : Zy —s Zys be the
0 S Iy Aoz Aoz Aos identity map that is defined a$0) = 0,1(1) = 1. Finally
Gz = 0 S 0 2, 2A12 2A13| " (6) we definex : Z, — Zys, which is the usual inclusion from
0 0 0 0 4 470 the additive structure iZ; to Zs, that is, x(0) = 0 and
@© 2013 NSP
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Xx(1) = 25-1. We use the same notations for extensions of ~ where
these functions. Hence we hawv@y, lq) : Z% x Zﬁ
78 x 7B, (1,\q) 1 78 x 7B — 7% x 75, and (x, 14) : — [<A); la k) U = [Us-1Us 2 - U1 00,
B B
7§ X Liys — Ls X Lcys _T&So
T 0 O
Lemma 4.1. Let u € 79 x 75 and v € Z&™P then SR I
(X(U),V)ps = (U, P(V)), where< >25 denotes the standard 0 0
inner product of vectors ifys.
Bos Bos-1 - Bo2 Boa lg-
+ﬁ , \ , 1 1B—k(A)
Proof. Foru e Zg X Z andv € Za 281,3 2817571 25172 Zlks(A) 0
< (551 ath B= : : D : S
KWV = 3 (@t 5 Uy, 1 P S
# T L@ g 2 'Bs 152 gy - 0O 00
@) mod2+ Y uy e
i; j=a+1 Bi,j:_kZ+1Bi,kAts_j7s_k—Ats_j)s_i,fOI’OSI<]§S7
=i
= (U Y(v)). -1 . _
andU;=—§ UkAtsfjilsikileJ%_j,forlg j<s—1
k=1 ’
Corollar 4.2. If 78 ZB then . .
(X (u) l(y)> =(u\V). wv & %2 x Proof. It is straightforward to check th#tsG} = 0. Let ¢
’ be aZ,Z,s-additive code with standard form matrix (4).
Thenx (¥) has the generator matrix of the form;
Proof. By Lemma 4.1, B
x  [27IAT 8
W, (V) = (U @(1(V))) = (U ). == |15 A ®)

Proposition 4.3.Let ¥ be aZ,Zs-additive code of type
(a,B;ko.ka, ... ks). Then, & = y(x(€)").

Proof. Letv € ¢*. So, for allu € ¢, we have(u,v) = 0.
By Corollary 4.2 (u,v) = (x(u),1(v)),s. Hence,
Y (v) =ve P(x(®)"), andg* C Y(x(€)*). On the
other hand, ifv € x(%)*, then (x(u),v),s = 0, for all
ue %.ByLemma4.1{x(u),v),s = (u,(v)) = 0. Thus,

w(x(@)H) cet.

)
)

5 Parity-check matrices ofZ,Z,s—additive
codes

In this section we present the standard form of
parity-check matrices df,Zs-additive codes.

Letk(A) be the number of rows of a matrix Fori =
1,...,s we denote by (A) the number of rows oA that
are divisible by 2-1 but not 2. Hencek(A) = 35, ki(A).

Theorem 5.1.Let ¥ be aZ,Zys—additive code of type

(a,B; ko, ki, ko, ....ks) with standard form matrix (4).
Then, the generator matrix @f- is given by
AU

Smcex( ) is a code oveZ.s we know from ] that the
matrix in (8) is permutation equivalent to the mattixby
moving the firstkg rows to the last row and next moving
the firsta columns between the last- 1 ands blocks;

lky Aor Aoz Ags -+ Ags 2 Ags 1 Ags
0 2y, 2A12 2A13 --- 2A1,s—2 2A1,s—1 2A1,s
el E
00 0 O 2H|kH 252, 25125 2A, 2s
00 0 0-- 0 v ) N
where, for 0<i<s-3,1< j<s—2 A=A jand
r Ik 0 A 0 As—ls
I S
{0 |k0] Aot [Am Tos

and for 0<i <s—2,
As1=[As10], As=[2"15,1 A4

Again from [3] the generator matrix of the dual code
X(%)*+ is permutation equivalent to the matrix of the
form;

Bos  Bosr - Boz Box laypi
H~ ZBl,S 2817571 ce 28172 2|ks(é) O
25_1&571,5 Zs_llkz(é> e 0 0 O

© 2013 NSP
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where Proof. Let 41 be a ZpZs—additive code of type
(a,B;ko,k1,k2). Then the generator matrix of(%1) is

It permutation equivalent to a matrix of the form;

Bij=— > BiuAL s k—AS s for 0<i<j<s
k=111
" b Aor 0 25 Ao
We can also write this matrix in the form; 02, 0 0 2Ap.
0 0 2y 2A01 2Tz
Bos Bos1 - Bo2 Box laky, O
q— 815 Brsa - ZB122'k< 6 0 lpwn Therefore, we have the generator matrix@f? )+
- .. g . . I Z . . _2 0 At | 0
2B 162U - 0O 0 0 0 1lako
T e(©) *A62+'$12A51 A Tz 0 gk
Therefore, by reversing only the column permutation —2Ay 2 0 0
applied before, we can write the generator matrix of the 0 0 2 O 0

1 .
dual codex (%)~ as follows: After reversing only the column permutation, we can write

this matrix in the form of;

. —:6_61 lgk U
ko bo—| T2 O A02+A12A01 AT
S 0 O —2AOl 2y, 0
where 2o 0 0 0
Bos Bos-1 -+ Boz Bo1 lg i FiTaIIy, applyingy to Hs we have the generator matrix of
. 2B1s  2Bis1 - 2B122la O ¢i- as follows:
K Pt pon ey I - S P 0 0
25 Bs-152% Ty - O 0 0 Hs=¢(Hs)= | -Tp, O AonF'°‘12A01 Ao gk,

0 0 2l
_T&s 2AO ©
N ' Again, note that this matrix is permutation equivalent
U=[Us1Us2---U100,T=| . to the matrix of the form (2). In the sequel, we present two
examples that further illustrates Theorem 5.1.

where Example 5.3.Let ¢, be aZ,Zg—additive code of type
(a, B;ko, ki1, ko, ks) with standard form matrix (6). We can
Bij=— Z BikAs js k—AL s for 0<i<j<s, write the parity-check matrix o#» as follows:
k=1+1
and *A}gl la—k . -2 0 0
i1 _803 g P—Ais ‘5:23A12 2'?23 k1 —ko—kg
t ' ; —<M2 k3
_ kzlukAsijil’sikil — ZJS{S,J', for 1 S J S s—1. 0 0 4|k2 0 0
Finally, by Proposition 4.3w(ﬁs) = Hs is the generator where
matrix of €+. _4§l 42
~ Next,we give a co_rollary _that gives the results obtained —As+ At13A°]t+ A23A02 At23A12A01
in [2] and also helps illustrating Theorem 5.1. —2A,+ 12AOl :

o1
Corollary 5.2. Let 61 be aZ,7Z4—additive code of type
(a,B;ko, ki, ko) with standard form matrix (5). Then the
parity-check matrix ofs; is permutation equivalent to a Example 5.4.Let 43 be aZ,Zg—additive code of type

matrix of the form; (3,3;1,3,0,0) with standard form matrix,
— 11000
A latg -2 o 0 00110
—Tpz O A02+’/'\12A01 At12 |Bfk17k2 . 01101
0 0 2A01 2ly, 0 01100
© 2013 NSP
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Then the additive dual cod€;" has generator matrix
of the form; d(%)—1< a VB [ko+ ski+ (s—1)ka+ ... + kg
|:1 1 0 O 43 23—1 - 25—1 28—1 :

00144 8 aip T
Let (X,lq) : Z§ x Z5s — Zys' © be the usual inclusion

from Z, to Zos that we defined before. Then, itis clear that
d(?) <d(x(%)).

6 Bounds on the minimum distance of The bound in (10) can be obtained by using this result

ZLyZs—additive codes and Theorem 4.3 ir7] that is;
In this section we give two bounds fd&,Z,s—additive d(#)—-1
codes and compare them. o1 | SN- rank(¢’).

Since the Gray map defined id][is an isometry, the Hence we have
map @ defined in (3) transforms Lee distance&Z# x ng
to Hamming distances A}, wheren = o +2571B.In[1],

the weight of any vector ifZ§ x fo was defined. Now,
denote the Hamming weight of € ZJ by wty (v1) and
denote the Lee weight ab € ng by wt (v2). We define
the weight ofv = (vq,v2) € Z§ x ng aswt(v) = wty (v1) +

wt (v2). We can also define the distance between any tw

r(?‘;lJ <a+B—(ko+ky+kot...+k).

Lemma 6.2. Let ¥ be aZ,Zys—additive code of type
O(a,B;ko,kl,kz,...,kS), then the bound in (9) is strictly

o B stronger than the bound in (10) if and only if;

Vectorsu,v € Z3 x Zas asd(u,v) = wt(u—v). Now, we i) d(%) =25 la+1and
denote the minimum distance between codewords by
d(%) k 2571(k1+...—|-|(5_1)—[Sl(1+...+2ks_1]

The usual Singleton bound for codes over an alphabetko+ sT 2s-1_1 <a.
of sizeq s given in [LO] by d(¢") < n—log,|%| + 1. - <1

This bound is a combinatorial bound and does notrely i) d(¢) =2°*aand
on the algebraic structure of the code. Ththe following
Singleton bound for the Lee weight of a quaternary linear 25 L (ki 4 .. 4+ Ko 1) — [skq + ...+ ke
code is given. By using this bound we have ko +Ks+ e ;S,li — [1 ! = <a

d@) -1 _ 5V iii) d(%¢) = 25 'a+band
2 - 2
5 Skt ks 1) — ot 2k

for a code?” of type 2/4° . ot ket h +k;;i_[18kl+ el cay 71

Theorem 6.1.Let ¢ be aZyZys—additive code of type where 1<ac Zand 1<b< 251 be Z.

(a,B; ko, ki, ko...,ks). Then,
Proof. i) If d(%) = 25"ta+ 1 then the bound in (9) is
strictly stronger than the bound in (10) if and only if;

d(%)—1< a [ko+ sk + (s—1)ko+ ... + kg
2s—1 —2571+'87 2s—1 ’
Q) a+25B —[ko+ski+ ... + ko] +1
and <25 lg 4 2B 25 L (Kot 4 ke) 1
(ko+ks) (251 —1) 4+ 25 (kg + ... 4 ks 1) — [SKg + ... + 2Ks 1]
d(©)—1 .
{%JSG+B(%+k1+k2+~--+ks)~ (10) <(2'=1a
25 Lk 4 ...+ ks 1) — o 2Ks
=

Proof. We can obtain the bound in (9) by simply applying i) If d(%) = 25tathen bound in (9) is strictly stronger
the Singleton bound given inf] to (%) = C where® than bound in (10) if and only if;

is defined in (3). Since a+25 B~ ko+sky+...+ ke +1

d(¢) < n—log,|%|+ 1 we get <2 Ha+B—(ko+...+ks)+1]

d(%) < a+2516—[ko+ski+ (s— ko + ... + ke + 1. (ko+ke) (251 —1)+25 (kg + ... + ks 1)
Therefore, we have —[ski+ ... +2ks 1] < (2 T-1)(a+1)

© 2013 NSP
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Zsfl(kl—‘r —I—ks_l) - [Skl—l— ...—|—2ks_1] -

Ko+ ks+ ]

a+1,

25 L (ky+ .. 4+ Kso1) — [SKg + ... + 2ks_1] -
2511

i) If d(¥¢) = 25 la+ b then bound in (9) is strictly
stronger than bound in (10) if and only if;

Ko+ ks+

a+251B—[ko+skp+...+ kg +1
<2 Ya+B—(ko+...+ks)]+b,

25 L (ky+ ...+ Ks1) — [SKg + ... + 2ks 1]

Ko+ Ks+ -

b—1

<a+ﬁ.

Now, we give two examples such that, the first one

7 Conclusion

This paper presents a generalization fZ, additive
codes which has been introduced lately. The paper studies
the structure of,Z»s additive codes. An inner product is
introduced and by introducing the dual concept of an
additive code, the structure of the duals of additive codes
are studied. Some bounds that are attained by this family
of codes are introduced. Since this a new topic and a hew
direction, the classical questions and problems that are
solved for linear codes await the research community for
this particular family.
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