
Appl. Math. Inf. Sci.7, No. 6, 2233-2240 (2013) 2233

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070613

Optimizing DNS Server Selection

Zheng Wang1,2,∗ and Rui Wang2

1Computer Network Information Center, Chinese Academy of Sciences,Beijing 100190, China
2China Organizational Name Administration Center, Beijing 100028, China

Received: 4 Mar. 2013, Revised: 7 Jul. 2013, Accepted: 8 Jul. 2013
Published online: 1 Nov. 2013

Abstract: In DNS zone delegation, the NS resource records of the delegated domain appear in both the parent and child zones, which
complicates the domain name resolution procedure especially for serverselection. In this paper, we investigate the recursive resolution
mechanism for the delegated domain and the necessary operations. As there are no specifications for such resolution, we provide some
recommendations such as NS record substitution mechanism. Furthermore, we analyze the delegation impacts on server selection as
the NS records are obtained from both parent and child zone. We propose an integrated sever selection procedure to handle the lame
delegation and enhance server selection efficiency. It makes use of the two stages of server probing information and can help save the
initial server probing in the server selection algorithm. Several proposals as to the disposal of NS resource records and the maintenance
of the rtt information of servers are also presented.

Keywords: domain name system, zone delegation, server selection

1 Introduction

The Domain Name System (DNS) is a fundamental
component of the modern Internet [1], providing a critical
link between human users and Internet routing
infrastructure by mapping host names to IP addresses.

The Domain Name System uses a tree (or
hierarchical) name structure. At the top of the tree is the
root node followed by the Top-Level Domains (TLDs),
then the Second-Level Domains (SLD) and any number
of lower levels, each separated with a dot.

Each node within the domain name hierarchy is
assigned to an authority-an organization or person
responsible for the management and operation of that
node [2]. Such an organization or person is said to
administer the node authoritatively. The authority for a
particular node can in turn delegate authority for lower
levels of that node within the domain name hierarchy. The
rules and limitations of the authority are covered by
agreements that flow through the various nodes in the
hierarchy.

When a parent zone P delegates part of its namespace
to a child zone C, P stores a list of NS resource records for
the authoritative servers of zone C. This list of NS resource
records are kept both at the parent and the child zone. As
shown in Fig.1, com. zone delegates example.com. zone

$ORIGIN com.

example.com. IN NS ns1.example.com.

example.com. IN NS ns2.example.com.

example.com. IN NS ns3.example.com.

$ORIGIN example.com.

example.com. IN NS ns1.example.com.

example.com. IN NS ns2.example.com.

example.com. IN NS ns3.example.com.

Fig. 1: Zone delegation example.

to a child zone. The authoritative servers of the child zone
are listed in a set of NS resource records. And normally
the same set of NS resource records are also contained in
the zone file of the child zone- example.com. zone here.

In order to enhance availability, robustness and
reliability, each domain is usually handled by multiple
DNS servers. For example, there are 13 root servers
distributed around the world, and some servers also have
multiple instances using anycast. And for the Top Level
Domains, which usually see a very large number of
queries, it is not unusual to have five or six servers. A
local DNS server, which is also called iterative resolver,
receives the IP addresses of all the name servers for the

∗ Corresponding author e-mail:zhengwang09@126.com

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070613

2234 Z. Wang, R. Wang: Optimizing DNS Server...

INTERNET

Replicated

 distributed

servers

Server 1

Server 2

Server 3

Server n

Local Recursive

DNS Server

Local Cache

Client

Fig. 2: DNS server selection.

domain to which the query was directed. These IP
addresses are the items contained in the NS resource
records in DNS specification. And all of the NS resource
records corresponding to the same domain are called NS
RR sets. The local DNS server goes ahead and caches all
these IP addresses. Thus, the next time there is a query for
this domain, the DNS server chooses from the cached NS
records listed in the domain’s NS RR set. For instance, if
a local DNS server knows (via caching) the IP addresses
of more than one .com server, then it needs to select one
of these servers to forward the query. This is referred to as
the DNS server selection problem (see Fig. 2).

There have been some analysis and measurement
studies of DNS server selection. In general, many efforts
focus on DNS performance evaluation and identification
of possible DNS misconfigurations, errors or
implementation bugs [17–19]. Another hot field is related
to the security issues such as DNS traffic anomaly
detection [20, 21], counter measures of DNS DoS or
DDoS attacks [22, 23] etc. Our interest lies in
characterizing the performance of DNS server selection
algorithm implemented in BIND.

What complicates DNS server selection problem is
that the NS records are obtained respectively from the
parent and child zone, rather than once in the domain
name resolution. In other words, the resolver first gets the
referral to child zone from the parent zone. And then it
selects one of the name servers to fetch the authoritative
name servers from the child zone. Finally, it performs the
server selection again among the authoritative name
servers to send out the DNS query. This name resolution
procedure introduces a coupling between the two stages
of server selection, which the current DNS
implementations fail to exploit to facilitate the server
selection efficiency. We present in this paper an integrated
server selection procedure through which the rtt
information acquired in the first stage can be maintained
for the second stage, thereby unnecessary queries for the
duplicate name servers are saved. Another impact of DNS
specifications on the server selection comes from the
lame delegation. Previous analysis [3] shows that on
average 15% of the DNS zones suffer from a specific
misconfiguration called lame delegation, in which the
parent of a DNS zone points to wrong name servers for

Local Recursive Nameserver

.com (Parent) Zone Nameserver

example.com (Child) Zone Nameserver

① IP for www.example.com ?

② Referral to example.com zone

③ Cache the NS RR

set and the glue records
④ IP for www.example.com ?

⑤ IP for www.example.com
⑥ Replace the NS RR

set and the glue records

IP for www.example.com ? IP for www.example.com

Client

Fig. 3: Recursive resolution procedure.

the child zone. Lame delegation may translate to
increased query time when DNS queries sent to
non-existing servers timeout, and have to be resent to a
different server. As lame delegation, especially in the
server selection, has not been handled by DNS
implementations and specifications, we propose an
optimized server substitution mechanism for server
selection in this paper, which eliminates wrong name
servers for the second stage server selection while
retaining correct name servers and their rtt information.
DNS implementations provide varied choices on the NS
RR set to which DNS queries are sent. And the NS RR set
are cached for the afterwards DNS queries until its TTL
expires. We clarify that NS RR set from the parent zone
should not be used for DNS queries and server selection
algorithm should be based on IP (glue record) rather than
domain name (NS record). We also derive the TTL of
name server’s rtt information according to the query
fairness, and conclude that the TTL should be set as two
times that of NS RR set.

The rest of the paper is organized as follows: In
Section II, we will analyze the effects of delegation on
DNS server selection. A new server selection procedure is
proposed in Section III. In Section IV, other proposals for
DNS server selection are provided. We develop an
experimental test on the server selection algorithm of
BIND implementation and provide performance
evaluation of parent zone selection algorithm via
simulation study in Section V. Finally, we conclude the
paper in Section VI.

2 The effects of delegation on DNS server
selection

Fig. 3 illustrates the recursive resolution procedure. The
client’s browser uses a resolver and queries a local
recursive server for a name (say example.com). The query
may miss the DNS cache in this server, that is there is no

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2233-2240 (2013) /www.naturalspublishing.com/Journals.asp 2235

/* Authority section */

example.com. IN NS ns1.example.com.

IN NS ns2.example.com.

 IN NS ns3.example.com.

/* Additional section – “glue” records */

ns1.example.com. IN A 111.0.0.1

ns2.example.com. IN A 111.0.0.2

ns3.example.com. IN A 111.0.0.3

Fig. 4: Authority and additional section of DNS messaget

cached A records for ”www.example.com”. Moreover, if
the NS record set for the queried domain also expired at
this time (otherwise, the server can go to the authoritative
server of the ”example.com” zone straightly), the
recursive server has to request the parent zone of
”example.com” by contacting the authoritative server of
”.com” zone. The ”.com” authoritative server answers
with a referral to the servers responsible for the
example.com domain. This is in the form of NS records
of servers in the authority section of the DNS message
(see Fig. 4). Though technically we asked only for the NS
records, the servers also give us the IP address of each in
the additional section of the DNS message: this is known
as ”glue” and is provided to avoid ”query loop” and save
us from having to look it up. The recursive server chooses
one of the authoritative servers and sends off the same
query: ”what’s the A record for www. example.com?”.
The authoritative server’s reply message contains the A
record in the answer section, the NS records and glue
records in authority and additional section respectively.

Note that here the NS records and glue records are not
the replication of the previous referral message but those
stored in the child zone. Therefore the problem is which
NS resource records, those in parent zone or the child
zone, are finally cached by the recursive server and used
for afterwards requests? Ideally, when the operator of
zone C makes changes to one or more of C’s authoritative
servers, he must coordinate with the operator for zone P
to update P accordingly. In reality, there are cases where
changes made at the child zone are not re?ected at the
parent zone, usually due to ”bad” coordination between
them. So the NS records in the child zone are more likely
to represent the real delegation. So it is highly
recommended that the lately fetched NS records from the
child zone should be adopted as the cached ones.
However, the NS records from the parent zone should
also be temporarily cached until they are subsequently
substituted by the ones in the child zone. This is
necessary because the first request for one of the child
zone authoritative servers may fail and the recursive
server can also try other servers in the cache in the
afterwards requests. The worst case is that all servers can
not be successfully requested until the TTL expires, the
NS records are dropped from the cache and a new round
begins when a new request comes.

However, the NS records from the parent zone should
also be temporarily cached until they are subsequently
substituted by the ones in the child zone. This is
necessary because the first request for one of the child
zone authoritative servers may fail and the recursive
server can also try other servers in the cache in the
afterwards requests. The worst case is that all servers can
not be successfully requested until the TTL expires, the
NS records are dropped from the cache and a new round
begins when a new request comes.

In terms of the DNS server selection algorithm, as
discussed above, there are two problems to be considered:

1) How to choose one server from the NS records from
the parent zone?

2) How to choose one server from the NS records from
the child zone?

Under the above proposal (temporarily cache the
records from parent zone and then replace them by those
from child zone), since there is no historical server
performance information (eg. rtt) available when getting
the NS records from the parent zone, the best choice is to
choose one server at random, hopefully each server
having equal chance to be selected. If the first request is
successful, the cache substitution is done and the next
problem is problem 2. If the first request fails, as the NS
records are still in the cache, we can penalize this server
and favor other servers in the afterwards selections. We
can use various punishment techniques and the following
algorithm is similar to the BIND 9 algorithm [24].

Set the initial virtual rtt values for all servers, the
server selection algorithm always choose the server with
the smallest rtt value. The initial virtual rtt values should
be different and significantly less than the real ones.

If the query request fails when contacting a server, its
rtt is updated as follows:

rttnew = min(rttprevious +0.2,10)(second) (1)

Where rttprevious, and rttnew are the previous rtt
maintained by the algorithm and the updated rtt
respectively. For other servers not selected in the round,
their rtts are updated as follows:

rttnew = rttprevious ∗0.98 (2)

Simulation results show later that when all servers can
not be successfully requested, the algorithm degenerates
to round robin. Once a server’s request gets successful
answer, we come to problem 2.

For problem 2, BIND 9 uses the following algorithm.
Go through all servers in the first round to obtain their
initial rtts. Then always select the server with the least rtt
maintained by the algorithm. If the query request gets
response successfully from a server, update its rtt as
follows:

rttnew = rttprevious ∗0.7+ rttcurrent ∗0.3 (3)

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2236 Z. Wang, R. Wang: Optimizing DNS Server...

Get NS records from the

parent zone and cache

them

No

Request a server successfully ?

Yes

No

Select a server

according to the parent

selection algorithm

Select a server

according to the child

selection algorithm

Get NS resource records

from the child zone and

replace them in the cache

NS records expired ?
Yes

NS records expired ?

Yes
No

Fig. 5: Proposed DNS server selection algorithm

Whererttcurrent is the current measured rtt.
For the failed query and other servers not selected, the

update of rtt is as Equation (1) and (2).

3 Proposed DNS server selection procedure

Given that BIND 9 server selection algorithm performs
fairly well for problem 2, careful thought tells us that
problem 1 and 2 are actually the two stages of domain
name resolution, thus if the delegation is consistent, their
NS records to be selected are the same set. The server
probing information in the stages should be shared and
integrated to enhance the efficiency of server selection
algorithm. However, BIND 9 implementation does not
seem to see this point, and adopts the ”divide and
conquer” policy, which takes the NS records from the
child zone as the new start of the server selection
algorithm and neglects those from the parent zone. We
believe that this is a kind of probing information waste.
Therefore we propose the following server selection
solution.

The modified procedure of domain name resolution
can be expressed as follows (see Fig. 5). First the
recursive server gets NS records from the parent zone,
caches them and then selects a server according to the
parent selection algorithm. The selection algorithm runs
until any of two conditions is satisfied. One is that the NS
records expire, and then the recursive server has to
request the parent zone again. The other is that a server is
successfully requested and the procedure goes to the child
zone selection stage. In this stage, the recursive server
first checks the returned NS records and compares them
with those already cached. If the two sets of NS records
are partly different, there are some NS records in the

cache which match the ones in the child zone and also
have been requested by the parent selection algorithm.
Thus remain only those name servers’ rtts maintained by
the parent selection algorithm in the previous stage.
Meanwhile, replace all NS records in the cache by the
ones in child zone. Then perform the child zone selection
algorithm. Ordinarily, those servers already requested by
the parent selection algorithm are unlikely to be requested
at first. This means that the initial polling stage of the
child zone selection algorithm excludes those servers.
Note that those servers are sure to include one
successfully requested server and none or more
unreachable servers in the parent selection stage. Child
zone selection algorithm is stopped only by the event of
NS records expiration. Afterwards, the recursive server
contacts the parent zone and a new round starts.

4 Other proposals

4.1 On the use of cached parent zone NS records

As mentioned in Section 2, the parent zone NS records
can only be utilized for the selection of authoritative
servers (child zone servers), which means they should not
be cached to be replied as authoritative servers in the
form of NS records in the DNS message. Thus the kind of
cache is a little different from the common sense. This is
due to the consideration that only the NS records in the
authoritative servers can be regarded as the real authority.
Usually the NS records in the child zone file are first
altered while those in the parent file may fail to change
accordingly due to lack of coordination. Therefore it is
not until the NS records in the child zone are lately
obtained that the NS records can really be cached and
used in the authority section of the DNS message.

4.2 Base the server selection algorithm on IP
rather than domain name

Section 2 and 3 do not specify what does the ”server”
means. Does it denote the domain name in the RDATA of
the NS record? Or the IP address in the RDATA of the
glue record? The question is raised especially when one
NS RNAME corresponds to multiple glue records thus
multiple IP addresses. We argue that only server’s IP is
the ultimate target of server selection algorithm. So we
need to expand all relevant IPs according to the NS and
glue RRs before performing the server selection
algorithm. One example is illustrated in Fig. 6.
ns2.example.com has two glue records and
ns3.example.com has three glue records. The total 6 IP
addresses have the same rank and should be listed for the
server selection algorithm.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2233-2240 (2013) /www.naturalspublishing.com/Journals.asp 2237

/* Authority section */

example.com. IN NS ns1.example.com.

IN NS ns2.example.com.

 IN NS ns3.example.com.

/* Additional section – “glue” records */

ns1.example.com. IN A 111.0.0.1

ns2.example.com. IN A 111.0.0.2

ns2.example.com. IN A 111.0.0.3

ns3.example.com. IN A 111.0.0.4

ns3.example.com. IN A 111.0.0.5

ns3.example.com. IN A 111.0.0.6

Fig. 6: Authority and additional section of DNS message
(multiple glue RRs)

xn+1

0 s1 s1+T

Parent zone

NS RRs
Initial round

robin of rtt Query interval

Child zone

NS RRs

Query

x2

Query

xn

Query

...
x1

Query

xn+2

Query

Query interval

Fig. 7: Query fairness for rtt information of servers

4.3 The maintenance of rtt information of
servers

Section 2 and 3 have discussed how should the rtt
information of servers be updated, but have not detailed
how long should they be kept in the recursive server or do
they also have time-to-live just as RR? Instant thought
may tell us that the rtt information of servers should be
retained and maintained as long as the NS RRs still exist
in the recursive server. This idea, though seemingly
logical, fails to pay regard to the query fairness. Here we
use the query fairness to express the principle that if two
queries have the same interval to their previous ones, they
should be granted the equal rtt information.

The query fairness for rtt information of servers is
shown Fig. 7. The start time is the time when the
recursive server gets the parent zone NS RRs and it sends
the first request for the authoritative server atx1. Then at
s1, the child zone NS RRs are obtained. After subsequent
queries fromx2 to xn−1, the initial round robin of rtt
probing is completed. Afterwards, a query comes atxn.
The recursive server receives the last query before the
time-to-live (TTL) of NS RR set expires. Here we let the
TTL is T. Finally, the first query after the TTL expires
comes atxn+2. For the sake of completeness, we consider
two cases, discuss the extreme of their query intervals and
infer how should the TTL of rtt be redefined rather than

comply to that of NS RRs according to the fairness
assumption.

1) Let the queries fromx2 to xn do not exist and take the
first query after having the parent zone RRs as the starting
one and the query atxn+1 as the following one. Then the
query interval is

I1 = xn+1− x1 (4)

We have

0< x1 < s1 (5)

And let the second query approximates the time of NS
RRs expiration or

xn+1 → s1+T (6)

Usually the interval between two times of acquiring the
NS RRs is relatively small comparing to their TTL. For a
successful request for the authoritative server, that interval
is actually its rtt. So we have

s1 ≪ T (7)

By Equation (4)-(7), we have

I1 → T (8)

For the fairness, if the query interval betweenxn+1 and
xn+2 is no more thanI1, the query atxn+2 should also be
served with the rtt information of servers. Therefore the rtt
information should be kept at least until the query atxn+2
comes. Thus the TTL of the rtt information is

Trtt1 = 2T (9)

2) We let the completion of the initial round robin of rtt
probing as the fairness precondition. Then the query atxn
is the starting one and the query atxn+1 is as the following
one. Then the query interval is

I2 = xn+1− xn (10)

We have

s1 < xn < s1+T (11)

And let the query atxn approximatess1

xn → s1 (12)

Usually the interval between two times of acquiring the
NS RRs is relatively small comparing to their TTL. For a
successful request for the authoritative server, that interval
is actually its rtt.

By Equation (6), (7), (10) and (12), we have

I2 → T (13)

Similar to Case 1, the TTL of the rtt information is

Trtt2 = 2T (14)

In both cases, we can infer that the TTL of the rtt
information should be two times that of the NS RRs.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2238 Z. Wang, R. Wang: Optimizing DNS Server...

; <<>> DiG 9.6.0 <<>> @218.241.99.50 sina.com.cn +trace

; (1 server found)

;; global options: +cmd

. 510300IN NS H.ROOT-SERVERS.NET.

. 510300IN NS D.ROOT-SERVERS.NET.

. 510300IN NS F.ROOT-SERVERS.NET.

. 510300IN NS A.ROOT-SERVERS.NET.

. 510300IN NS B.ROOT-SERVERS.NET.

. 510300IN NS K.ROOT-SERVERS.NET.

. 510300IN NS I.ROOT-SERVERS.NET.

. 510300IN NS J.ROOT-SERVERS.NET.

. 510300IN NS G.ROOT-SERVERS.NET.

. 510300IN NS M.ROOT-SERVERS.NET.

. 510300IN NS L.ROOT-SERVERS.NET.

. 510300IN NS C.ROOT-SERVERS.NET.

. 510300IN NS E.ROOT-SERVERS.NET.

;; Received 500 bytes from 218.241.99.50#53(218.241.99.50) in 3 ms

cn. 172800IN NS a.dns.cn.

cn. 172800IN NS b.dns.cn.

cn. 172800IN NS c.dns.cn.

cn. 172800IN NS d.dns.cn.

cn. 172800IN NS e.dns.cn.

cn. 172800IN NS ns.cernet.net.

;; Received 294 bytes from 128.63.2.53#53(H.ROOT-SERVERS.NET) in 288 ms

sina.com.cn. 21600 IN NS ns3.sina.com.cn.

sina.com.cn. 21600 IN NS ns2.sina.com.cn.

sina.com.cn. 21600 IN NS ns1.sina.com.cn.

;; Received 131 bytes from 203.119.25.1#53(a.dns.cn) in 2 ms

sina.com.cn. 60 IN A 202.108.33.32

sina.com.cn. 86400 IN NS ns2.sina.com.cn.

sina.com.cn. 86400 IN NS ns3.sina.com.cn.

sina.com.cn. 86400 IN NS ns1.sina.com.cn.

;; Received 147 bytes from 61.172.201.254#53(ns2.sina.com.cn) in 28 ms

Fig. 8: Dig output for ”sina.com.cn”

5 Experimental and simulation results

5.1 Test of server selection method when NS
cache misses

As shown in Section 2, when a recursive name server
contacts the parent zone for NS records, it does not know
its previous selection for the substitution by the child
zone. What selection routine does the DNS software
follow? To answer this question we analyze the selection
results through a DNS request test.

We utilize dig - a utility for interrogating DNS servers
which is typically only available on BIND-supported
platforms. We use the trace option of dig to inhibit its
default recursion and issue queries for the requested name
to the root-servers and follow (and print) all referrals until
an authoritative name server for the domain name is
reached. This is similar to the cache miss effect of NS
records. We generate a large enough workload of requests
for a domain name by dig, record the selection results and
count the number of selection for different servers.

The test is carried out under Linux and the caching
NS software tested is BIND 9.2.1. We write a shell script
to call dig command for ”sina.com.cn” 10,000 times and
output the results to a file for statistics. The output of dig
for one request is shown in Fig. 8.

In Fig. 8, we can see that there are three selections in
the domain name resolution procedure: one for the root
server, one for the .cn domain, and one for the sina.com.cn
domain. Thus we can obtain three set of selection results
in Fig. 9, 10 and 11 respectively.

Fig. 9, 10 and 11 show an approximately uniform
distribution of queries to different name servers for all
three NS resource record sets, which indicates that BIND

�
A B C D E F G H I J K I J

0

100

200

300

400

500

600

700

800

900

Name Server

S
e
rv

e
r

S
e
le

ct
io

n
 T

im
e
s

Fig. 9: Distribution of queries to root servers

�
a.dns.cn b.dns.cn c.dns.cn d.dns.cn e.dns.cn ns.cernet.cn

0

200

400

600

800

1000

1200

1400

1600

1800

Name Server

S
e
rv

e
r

S
e
le

ct
io

n
 T

im
e
s

Fig. 10: Distribution of queries to cn servers

�
ns1.sina.com.cn ns2.sina.com.cn ns3.sina.com.cn

0

500

1000

1500

2000

2500

3000

3500

Name Server

S
e
rv

e
r

S
e
le

ct
io

n
 T

im
e
s

Fig. 11: Distribution of queries to sina.com.cn servers

9.2.1 selects the server randomly when NS records cache
misses.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2233-2240 (2013) /www.naturalspublishing.com/Journals.asp 2239

�
1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

Name Server

S
e
rv

e
r

S
e
le

ct
io

n
 P

ro
p
o
rt

io
n

Fig. 12: Server selection proportion

�
0 20 40 60 80 100 120 140 160 180 200

0

1

2

3

4

5

6

Sequence of Server Requests

S
e
rv

e
r

S
e
le

c
tio

n

Fig. 13: Server selection sequence

5.2 Parent zone selection algorithm simulation

To illustrate how the selection algorithm of the parent
zone performs when all servers are unreachable, we
present the simulation results such as server selection
proportion, server selection sequence and rtt change. If
the initial virtual rtt of server 1, 2, ...,n is rtt1, rtt2, ...,rttn
respectively, letn = 5 andrtt1, rtt2, ..., rtt5 is 1 ,2, 3, 4, 5
microsecond respectively which are relatively small
values compared to the real ones.

Fig. 12 shows that the server selection proportions for
500 requests, which indicates that each server has an
equal frequency of requests. Fig. 13 shows the result of
the first 200 selections. And we can see that all servers are
requested in round robin. This is due to the rtts
maintained by the algorithm, which is shown in Fig. 14.
In Fig. 14, after a round of polling all servers, the rtts
climb steeply at a step of 0.2. The trend of rtts ascending
continues until rtts reach 10 and then they fluctuate
around 10. The rtts in the first 100 requests are shown in
Fig. 15, which better illustrates the rtts ascending.

�
0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

3
x 10

6

Sequence of Server Requests

rt
t

Server 1
Server 2
Server 3
Server 4
Server 5

Fig. 14: rtt change (500 selections)

�
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5
x 10

6

Sequence of Server Requests

rt
t

Server 1
Server 2
Server 3
Server 4
Server 5

Fig. 15: rtt change (100 selections)

6 Conclusion

The Domain Name System (DNS) is a fundamental
component of the modern Internet. In the DNS zone
delegation, both parent and child zone file list the NS
resource records for the delegated domain and this
complicates the domain name resolution procedure
especially for server selection.

In this paper, we analyzed the recursive resolution for
the delegated domain and provide some recommendations
such as NS record substitution mechanism. Furthermore,
we analyzed the delegation effects on server selection as
NS records are obtained through both parent and child
zone and proposed an integrated sever selection solution
as well as some recommendations as to the disposal of
NS resource records and the maintenance of the rtt
information of servers.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2240 Z. Wang, R. Wang: Optimizing DNS Server...

Acknowledgement

This work was supported in part by the National Key
Technology R&D Program of China under the grant
number 2012BAH16B00 and the National Science
Foundation for Distinguished Young Scholars of China
under the grant number 61003239.

References

[1] P. Mockapetris, Internet Request for CommentsRFC 1034,
(1987).

[2] P. Albitz and C. Liu, DNS and BIND, O’Reilly and
Associates, (1998).

[3] H. Rood, Telecommunications Policy,24, 533-552 (2000).
[4] Name server DoS Attack October (2002),

http://www.caida.org/projects/dns-analysis/.
[5] UltraDNS DOS Attack (2002),

http://www.theregister.co.uk/2002/12/14/.
[6] Zheng Wang, KSII Transactions on Internet and Information

Systems,6, 2750-2763 (2012).
[7] ICANN Factsheet for the February

6, 2007 Root Server Attack (2007),
http://www.icann.org/announcements/factsheet-dns-attack-
08mar07.pdf.

[8] Events of 21-Oct-2002 (2002),
http://d.root-servers.org/october21.txt.

[9] DNS FAQ (2004),
http://www.cs.cornell.edu/People/egs/beehive/faq.html.

[10] M. Handley and A. Greenhalgh, Proceedings of HotNets,
2005, (2005).

[11] H. Yang, H. Luo, Y. Yang, S. Lu, and L. Zhang, Proceedings
of DSN,2004, 83-93 (2004).

[12] K. Parka, V. Pai, L. Peterson, and Z. Wang, Proceedings of
OSDI,2004, (2004).

[13] H. Ballani and P. Francis, Proceedings of HotNets,2006,
(2006).

[14] R. Cox, A. Muthitacharoen, and R. Morris, Proceedings of
IPTPS,2002, 155-165 (2002).

[15] V. Ramasubramanian and E. Sirer, Proceedings of
SIGCOMM,2004, 331-342 (2004).

[16] T. Deegan, J. Crowcroft, and A. Warfield, Proceedings of
CCR,2005, 5-13 (2005).

[17] J. Kangasharju and K. Ross, Proceedings of INFOCOM,
2000, 660-669 (2000).

[18] E. Cohen and H. Kaplan, Proceedings of SAINT,2001, 85-
94 (2001).

[19] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, IEEE/ACM
Transactions on Networking,10, 589-603 (2002).

[20] Million-PC botnet threatens consumers (2006),
http://www.infomaticsonline.co.uk/vnunet/news/2167474/million-
pc-botnet-threatens.

[21] L. Kleinrock, Queueing Systems, Wiley-Interscience,2,
(1976).

[22] Ziqian Liu, Presentation at the
2nd DNS-OARC Workshop (2009),
https://www.dns-oarc.net/files/workshop-200911/ZiqianLiu.pdf.

[23] Bind website,http://www.isc.org/products/BIND/.

[24] Zheng Wang, Xin Wang and Xiao-Dong Li, International
Journal of Innovative Computing, Information and Control,
6, 5131-5142 (2010).

Zheng Wang received
the MS degree in Electrical
Engineering from Institute of
Acoustics, Chinese Academy
of Sciences in 2006, and
the PhD degree in Computer
Science from Computer
Network Information
Center, Chinese Academy
of Sciences in 2010. He is
currently the director of Joint
Labs in China Organizational

Name Administration Center. His research interests are in
the areas of network architecture, Domain Name System,
and information systems.

Rui Wang received
the BE degree in Electrical
Engineering from Beihang
University in 2002, and
the MS degree in Electrical
Engineering from Peking
University in 2012. He
is currently the vice director
of China Organizational
Name Administration
Center. His research interests
includes network system and
applications, e-goverment and

Domain Name System.

c© 2013 NSP
Natural Sciences Publishing Cor.

http://www.caida.org/projects/dns-analysis/
http://www.theregister.co.uk/2002/12/14/
http://d.root-servers.org/october21.txt
http://www.cs.cornell.edu/People/egs/beehive/ faq.html
https://www.dns-oarc.net/files/workshop-200911/Ziqian_Liu.pdf
http://www.isc.org/products/BIND/

	Introduction
	The effects of delegation on DNS server selection
	Proposed DNS server selection procedure
	Other proposals
	Experimental and simulation results
	Conclusion

