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Abstract: In 2012, H. M. Srivastaveet al. [37] introduced and studied a number of interesting fundamental propeatids
characteristics of a family of potentially useful incomplete hypergeomdtricctions. The definitions of these incomplete
hypergeometric functions were based essentially upon some gentwaliahthe Pochhammer symbol by mean of the incomplete
gamma functiong/(s,x) and " (s,x). Our principal objective in this article is to present a systematic investigafiseveral further
properties of these incomplete hypergeometric functions and someafjetesses of the incomplete hypergeometric polynomials
which are associated with them. Various (known or new) special casksansequences of the results presented in this article are
considered. Several other generalizations of the Pochhammer bgmibtheir associated families of hypergeometric functions and
hypergeometric polynomials are also briefly pointed out.
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1 Introduction and Definitions so that, in the special case when

Throughout this presentation, we shall (as usual) denote p=n  (neNp; No:=NU{0}),
by R and C the sets of real and complex numbers,
respectively. In terms of the familiar (Euler's) Gamma
functionl” (z) which is defined, foee C\Z,, b A AA=D)-(A-n+l) (D" (=A
@ \ 0 %Y (n)_ ( )n!( )_( )ng & (nEN(()f)iS
where(A)y (A,v € C) denotes the Pochhammer symbol
given, in general, by

we have

/Ooo etz 1dt (R(2) > 0)

rz=1{ r(z+n - 1)
mii) (ze(C\ZO;neN), i TO0 1 (v=0;A eC\{0})
M (z+1) T AR DA 4n—1)  (veN;A€C),
= (4)
(Zg =77 U{0}; Z~ :={-1,-2,-3,---}; N:={1,2,3,---}), it being assumedconventionally that (0)p := 1 and
. . . (A , understoodtacitly that the I"-quotient exists (see, for
a generalized binomial coefficient may be defined details, B2, p. 21et sed)).
(for real or complex parameteAsand ) by ( Th)edscf)—cacliledncompletle (E)amma functionyss, x) and
I (s,x) defined, respectively, by
AN . rA+1 LA
(u) = F(u+1)(l'()\zu+l) - (A—u) (A, e, M1t :
) y(s,X) .:/0 t5teldt  (O(s)>0;x=20) (5)
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and

r(sx):= [t letdt  (x=0;0(s) >0 when x=0),

(6)
are known to satisfy the following decomposition formula:
y(s,X) +T (8,X) = I (9) (O(s) > 0). )

The functionl” (z), and its incomplete versiongs,x) and
I (s,x), play important dles in the study of the analytic

solutions of a variety of problems in diverse areas of

science and engineering (see, for
example, 1], [7], [6], [12], [15], [17], [21], [23], [24],
[39], [39], [40Q], [41], [5]], [52] and [B3]; see also 37]
and the references cited therein).

In a recent paper, the following family of generalized
incomplete hypergeometric functions was introduced an
studied systematically by Srivastaea al. [37, p. 675,
Equations (4.1) and (4.2)]:

(al,X),az,...,api o (al;X)n(az)n"'(ap)n Pl
PY [ by, ,bq;Z] - n;J (b1)n- - (bg)n nt
(8)

and
(al,X),az,... ,ap; © [al;x]n(3~2>n"'(ap)n A
prq[ by, - -7bq;z} _nZO (b1)n--- (bg)n n’
9)

where, in terms of the incomplete Gamma functions

y(s,x) and [ (s,x) defined by (5) and (6), themcomplete
Pochhammer symbols

(A;x)y and  [A;Xy (A,veC; xz20)
are defined as follows:

- YAFVX) >

(A;X)y = ) (A,veC; xz0) (10)
and

TtV .

[A;Xy = N (A,veC; x=0). (11)

so that, obviously, these incomplete Pochhammerdentity (18) below, which stem essentially from the

symbols (A;x), and [A;X]y
decomposition relation:

satisfy the following

(A;X)y + Ay = (A)y (A,veC;x=0), (12
where(A )y is the Pochhammer symbol given by (4).

Remark 1. The argumenk = 0 in the definitions (5) and

well-documented

As already pointed out by Srivastagtal.[37, p. 675,
Remark 7], since

[(A5%)n] < [(A)n and  |[A;Xn| < [(A)n (neNp; A €C; x=0),

(13)

the precisegufficien} conditions under which the infinite

series in the definitions (8) and (9) would converge
absolutely can be derived from those that are
in the case of the generalized
hypergeometric function ,F; (p,q € No) (see, for
details, R9, pp. 72-73] and 40, p. 20]; see
also B, [3], [20] and [30Q]). Indeed, in their special case

whenx = 0, both pyy (p,q € No) and plq (p,q € No)
would reduce immediately to the extensively-investigated
qq:eneralized hypergeometric functiopFq (p,q € No).

urthermore, as an immediate consequence of the
definitions (8) and (9),
decomposition formula:

p¥ [

we have the following

(a]_,X)7a2, T aap;

z| + plq
bl?"'7bq;
ag, -
= phyg z

bl7 e 7bq;
in terms of the familiar generalized hypergeometric
function pFq (p,q € No).

(alax)7a27 T aap;

by, -

7ap;

Motivated essentially by the demonstrated potential
for applications of the generalized incomplete
hypergeometric functions,yy and plq in many diverse
areas of mathematical, physical, engineering and
statistical sciences (see, for details37][ and the
references cited therein), we aim here at presenting a
systematic investigation of severlrther properties of
these generalized incomplete hypergeometric functions
and some classes of incomplete hypergeometric
polynomials associated with them. Specifically, we make
use of several such combinatorial identities as Gould’s

Lagrange expansion theorem (see, for
example, 42, Chapter 7]), with a view to deriving many
general families of generating functions for a certainglas

of incomplete hypergeometric polynomials associated
with these generalized incomplete hypergeometric
functions (see also some interesting recent
developments 35 and [47]). Various (known or new)
special cases and consequences of the results presented in

(6), (8) and (9), (10) and (11), and elsewhere in this paperthis article are considered. We choose also to point out

is independenbf the argument € C which occurs in the

several other generalizations of the Pochhammer symbol

definitions (1), (8) and (9), and also in the results presknte and their associated families of hypergeometric functions

in this paper.

and hypergeometric polynomials.
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2 Generating Functions Based Upon the class of generalized incomplete hypergeometric
Lagrange Expansion Theorem and Gould’s polynomials, we recall here a general result on generating
Identity fur_1ct|ons asserted by Lemma 1 beI(_)w, knqwn_ as the

Srivastava-Buschman generating function, which is due to

Upon suitable specialization, the Lagrange expansion Snvastava and_Buschmar8 p. 366, Theorem 3]
theorem (seeZ8, p. 146, Problem 206] and3, p. 133]; and @2, p. 373, Theorem 9]).

see also the Appendix farompletedetails) is known to  Lemma 1. Corresponding to the power seriégz) given
yield each of the following combinatorial by
identities P8, p. 349, Problem 216]:

i <a+ (B+1) )t” (1+0)2 15)
=3 1-p¢ let the polynomial syste f’,\]m()\;z) be defined by

= ignf (Qo #0), (19)

and P8, p. 348, Problem 212]: a n
ear ] S (xi9 = 50y Moki (@,B.A €C; NeN),

(a+Bn+1)x 1Nk
> a a+(B+1n\ , 1 a (16 (20)
Z a+(B+1)n n =(1+4)", (16) where[w] denotes the greatest integerdne R. Suppose
n=0
also that
wherea andf3 are complex numbers independenhaind 5, N a8,k 7;2)
{ is a function oft definedimplicitly by '

@ o —K+AK\ /n+Nk+k/(B+1) *19 "

{=t(1+Q)P** and Z(0)=0. (17) X B+1 Nk< n >< n ) (2kl)
In view of the following obvious combinatorial identity: (neNp; a,B,k,A € C; NeN).
(R = i (TR B DR, Then
the expansion formula (15) can easily be shown to imply
the expansion formula (16). In fact, it is not difficult to < K a+(B+1)n S9B(p:tn
show that the expansion formulas (15) and (16) are n;K+(B+1)n n N '
equivalent (see, for details}2, pp. 354-356]).

The following interesting generalization (and N A 14
unification) of the equivalent expansion =(1+0)%¢ |12-¢)" (1+0) Tz’ (22)
formulas (15) and (16) was given by Goulti4 p. 196,

Equation (6.1)]: where
i K a+(B+1)n\., i ) )
n;m< N )t ¢[27W}ZH;JS(H,N,U,B,KJ,Z)W” (23)

a2 afa—kK\ (n+k/(B+1 "
=1+ HZO(’D ( n >< /,EB )> (%) ' where { is given by (17), it being assumed that both
- (18)  members of the generating functi¢22) exist.

wherea, B andk are complex numbers independentof Themaingenerating functions for the aforementioned
and( is a function oft definedimplicitly by (17). associated class of generalized incomplete hypergeametri

For k = a, Gould's identity (18) reduces at once to polynomials are contained in the following theorem (see
the expansion formula (16). Moreover, in its limit case also BQ)).
when|k| — o, (18) correspondsa least formally to the
expansion formula (15). Thus, fmoundedk (k # a),
Gould’s identity (18) may naturally be looked upon as

Theorem 1.LetA(N;A) denote the array of N parameters

A A+l A4N-1

being independent of the equivalent expansion formulas , . (A €C; NeN),
(15) and (16). N° N N

The existing literature on generating functions is ha arrava N:A) being empty when N- 0. Suppose also
abundant in results that are based 4t yal( ) g emply - SUPP
essentially upon the Lagrange expansion theorem as WeH]
as the three formulas (15), (16) and (18) (see, for, , L K o —K+LKY /n+Nk+x/(B+1)\
details, B2, Chapter 71; see " N’L’Q’B’K’Z>7kZoK+(B+1)Nk< n )( n )
also [L0], 2], [32), (33, [34], [36], [43], [46] and [54), (el
and as well as many references to other closely-related (b (b K
investigations cited in each of these works). With a view (24)
to applying it to derive generating functions for a certain (x=20;neNp; a,B8,k €C; N,LeN)
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and Since the limit cases of the generating functions (26)
o kLK NK -t and'(27) whelj|K| — o0 are equivalent to the correspondmg

O(nN,L;a,B,k;2) = k;KJF(BKT)NkCX T )(M +§/(ﬁ+ )> obvious special cases of the generating functions (26) and
- (27) whenk = a, just as we observed above in connection

w % with the three combinatorial identities (15), (16) and (18)
(bu)e-- (g W (25) it would suffice our purpose if we state only the limiting
(x=0;neNo: a,B,k € C; N,L € N). cases of the generating functions (26) and (27) wkén»

. . , o as Corollary 1 below.
Then the following generating functions hold true for the

associated class of generalized incomplete hypergeametriCorollary 1. Assume that ¥ 0 and N.L € N. Then the
polynomials following generating functions hold true for the
. . ot (B associated class of generalized incomplete
;m( N ) hypergeometric polynomials

n

A(N;—n),A(L;a + (B+1)n+1),(a0.%). a1, - ,ap; . ® (g4 (B+1)n
* PENAL+LYG+N+L z|t 20< )
AN+L;a+pBn+1),by,--- by, n=

A(N;—n),A(L;a + (B+1)n+1),(20,X), 81, ,ap;
v o (M )a-or ar ot ~p.NMqu<L{ o pz}t”
+ AN+L;a+Bn+1),by, - by
(26)
and (1+)0+1 (80,%), 21,7+, 8p; /(4 L)N4L
" . a4t (B4 =T1pz mth b1~,"‘7bq;< NN LT >Z<_Z)N<1+Z)L
nZoK+(ﬁ+1>n( n ) (32)
A(N;—n),A(L;a+ (B+1)n+1). (a0.X). a1, ,8p; and
©peN+LralgEN L z| t"
AN+L;a+pn+1),by,-- by i<a+(ﬁ+l)n>
e ((NELNY T For ol
=1+ ‘DK NN LL )Z( O (1+0), 1+Z]’ 7 A(N; =), A (L@ + (B+1)n+1),(30,%), a1, ,ap;
. [ 2|t
where ] piN+L+algiN+L ANAL 0+ B 1) by e b
zw] =Y 6(n,N,L;a,B,k;z)w" 28 @yt (30,), 80, 8pi /(N 4 L)
(p[ ] n; ( B ) ( ) = 17[3( p+1yq bl"”7bq;< NV L )Z(*Z)N (1+Z)L .

and (33)
il ] ] where { is given by(17), it being assumed that both
Plzw] = nzbe(n’ N.Lia, B, k;Zw', (23)  members of the generating functiof®2) and (33) exist.

and{ is given by(17), it being assumed that both members ~ The methodology and techniques used here and in the
of the generating function®6) and (27) exist. treatise on generating functions by Srivastava and

) Manocha (see, for details}2, Chapter 7]) can be applied
Proof.The assertions (26) and (27) of Theorem 1 can b&y tatis mutandisn order to obtain a remarkably large

proven by appealing appropriately to Lemma 1. Indeed, i, ariety of generating functions for the associated class of

inLemma 1, we set =L (L€N), generalized incomplete hypergeometric polynomials of
. the type which we have considered in the preceding
X)n(a a _ Ve . s

(a(;]' ()g() 1)n (b() on (x=0; n,p,q € No) section. The details involved in these derivations may be
PPt a)n (30) omitted here.

and Various interesting special cases of the generating
functions (26) and (27) asserted by Theorem 1 and the
ao;Xn(81)n" -~ (@p)n generating functions (32) and (33) asserted by Corollary
nt (by)n--- (bg)n 1, which would correspond to the special cases of the
(31) potentially useful Srivastava-Buschman generating
and then interpret the incomplete hypergeometricfunction (22) asserted by Lemma 1 when (for example)
polynomials resulting from (20) by means of the A =0 andA = —1, can also be derived fairly easily.
definitions (8) and (9), respectively, the generatingThus, for instance, Theorem 1 in iexceptionalcase
functions (26) and (27) asserted by Theorem 1 wouldwhenL = 0 would yield the following resuilt.
follow after series iterations and necessary
simplifications. Corollary 2. LetNe N,
Alternatively, of course, the assertions (26) and (27)
of Theorem 1 can be derivedirectly by using Gould’s  yn(a,B8,k;0) =%(a,B8,k;{) ==,  (x=0;neNp; a,B,k € C),
identity (18) in an appropriate manner. (34)

On=

_Qn:[

(x=0;n,p,qe Np),

© 2013 NSP
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where

- (_1)”((1:() <n+K/r(]B+1)>—1 (1_&)(;5)

(xz20;neNp; a,B,k €C).

3 Further Generating Functionsfor the
Associated Class of Generalized | ncomplete
Hypergeometric Polynomials

Many general families of generating functions as well as
their basic (or g-) extensions for various polynomial
systems in one and more variables were derived by
Srivastava (see, for details3§]; see also B2, p. 142 et

Then the following generating functions hold true for the S€d.]). We choose to recall here one of Srivastava’s
associated class of generalized incomplete hypergecenetrifesults as Lemma 2 below (se83[ p. 331, Equation

polynomials
o K a+(B+n A(N;—n), (ao,x), a1, ,ap; .
2 K+(l3+1>n< n ) it [A(N;a+ﬁn+1),b1,~,bq;z t
w A(N;k/(B+1)),(20.X). a1, ,ap;
=1+ 204’n(as5~,‘<?5) p+N+1Yg+N Z(-QN
= A(N;1+n+K/(B+1)),by,-- by
(36)
and
o K a+(B+Dn A(N;—n), (ao.X).a1,- - ,ap; .
anK+(B+1)n< n ) peneafaen {A(N;g+pn+1)_bl_m .bq;z !
w A(N;k/(B+1)),(a0,X),a1, - ,ap;
=1+ %%(‘7’«,5«,'(?() piN+1lgiN ( ) ' " 2=V,
= A(N;1+n+k/(B+1)),by,-- by
(37)

where { is given by(17), it being assumed that both
members of the generating functiof®b6) and (37) exist.

If, in the aforementioned exceptional case of Theorem

1 when L= 0, we setk = a (or, equivalently, letk| — ),

we arrive at the following exceptional case of Corollary 1

when L= 0.

Corollary 3. Suppose that ¥ 0 and Ne N. Then the
following generating functions hold true for
associated class of  generalized
hypergeometric polynomials

= g+ (B+1)n A(N;-n), (0,X), a1, ap; |
ZJ n p+N+1Yg+N z|t
n= A(N,a+ﬁn+1)7b1, 7bq;

B (1+ Z)a+l

= 1-pz Pk 7N

(@0,%),a1," -+ ,ap;
by,---,bg;
(38)

and

= a4 (B+1)n A(N;—n), (a0,X), a1, , ap;
Zb< n ) p+N+1lgeN z|t"
n= A(N;a+pBn+1),by, -, bg;
(1+Z)a+l (a0,X),a1,---,ap; N
I Sl . /A -
B2 ,qu[ b |
(39)
where { is given by(17), it being assumed that both
members of the generating functiof®8) and (39) exist.

the generalized
incompletewhich are associated naturally with the generalized

(2.2)] and [42, p. 144, Equation 2.6 (28)]).

Lemma 2. Let {Gn}ney, and {@Pnkf, oy, denote
respectively suitably bounded single and double
sequences of essentially arbitrary complex parameters.
Then

¢ m
© j|;|1( i)n ot [n/N](*“)Nij;Il(lfdj*“)k P
= J_I'Il(dj)n noE jIill(l—cj- —n)x K
()
w [1(Ci)n n _qyeemii Nk
= Z J;nl 4 OniNk PniNkk :T' M (¢,me Ng; NeN),
nk=0 i - d
M
(40)

provided that each member ¢40) exists k] being the
greatest integer ix € R.

Remark 2. In results such as the generating function (40),
an emptyproduct is interpreted (as usual) to be 1. Thus,
for example, it is always understood that

m
M(cj)nh=1 when (=0 M(dj)n=1 when m=0.
=1 =1

and
=

With a view to applying Lemma 2 to a certain class of

incomplete hypergeometric polynomials

incomplete hypergeometric functionspyy and
defined by (8) and (9), respectively, we set

plq

Mo (80X)k(@k (@ -

(DnAk = |§| (hi e Bk Bk (X = 0; p,q,r,se No; L: M e N)
=1

and
,t'l‘g"*”)“ [aoid(@0)ic - (@p)k >

Pny = e Ok B (x=0; p,g,r,s€ Np; L,M € N).
j=1

For convenience, we denote the arrayNgbarameters

A A+l A4N-1

NN N (AeC;NeN)
by A(N;A) and the array of Nr parameters
Ap AL AN

N> N N ()\JGC'J:177r,N€N)
by A(N,r;A), the array being empty wheN = 0 (and
indeed also when= 0), so that

A(N,1;Aj) = A(N; Ap).

© 2013 NSP
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We are thus led eventually to the following family of
generating functions for
generalized incomplete hypergeometric polynomials.

Theorem 2. Let {Gn},.y, denote a suitably bounded
sequence of essentially arbitrary complex parameters

Then the following generating functions hold true for the
associated class of generalized incomplete
hypergeometric polynomials
‘ .
= 1O gy
m e prLr+(m-1)N+1Ya+Ms+N/
=0 (dpn
j=1
A(N;—n),A(L,r;gj+n),A(N,m;1—dj—n), (ao,X), a1, ,ap;

(

LLr )
Vs N—m-DN ) £
A(M,s;hj+n),A(N,4;1—cj—n),by, -, bg; MMs N(-m-2)N

1(91 +n+NK)Lk

=

" A

o
L

=~

Tl
L

A 1 (hj +n+NK)mk

(-t

(x=0; £,m,p,q,r,s€ No; L,M,N € N)

n! k!
(41)
and
4
hd jl:l1(cl)n Opt"
o o pLr+(mi DN+ 1 g+ Ms N
n= jljl(dj)n i

A(N;—n),A(L,r;gj+n),A(N,m; 1—dj —n),(ao,X), a1, ,ap;

(

LLr )
—_— | Z
AM,Shy+1), AN, ;1) —n) by, -+ bg; \MMSNCmDN

the associated class ofe,=(), (neNy)

Secondly, upon setting
and N-1=/=m=r—-1=s=0 (g1=A7),
the generating functions (41) and (42) yield the following

special cases:

—n,A 4n,(a9,x),a1,--- ,ap;

LS (A '
=0 " by, bg;
A(21),(80,X),81,+,8p; gt
—(1_t\A e
=(1-1) p+3Vq[ bi,- - by 1-1)72
(45)
(x20;tj<1;A€C)
and
= () —n,A +n,(a,X), a1, ,ap;
540w
n=o " by, -+, bg;
A(Z;A)v(a()sx)valv"'7ap; Azt
(1A _
=(1-t)"" pyslyg [ by, by (1-1)2
(46)
(x20; tj<1;A €0).
Thirdly, we set
G,=1 (neNp) and N-1=(-1=m=r=s=0 (cp=A).

Then the generating functions (41) and (42) reduce to the
following forms:

—n, (20, X), a1, ,@p

z} t"
q

o

2

(An

n!

p+2Ya+1
1-A—n,by,---,b

{ r
B i . o D@ NN e (ol -
Ay s bo)x-- (b ao,X),ay, -, ap;
G L (10 piave VUl xzo<naco)
R by, bg;
n — M+
e (Z{(il) t} ) (x=0; £,m,p,q.r,s€ No; L,M,N e N), (47)
n! k! d
(42) an
provided that both sides ¢#1) and (42) exist. . 1, (0,%), a1, . p;
Several interesting corollaries and consequences of%(% piolgen | z} t"
the generating functions (41) and (42) asserted by™= 1=A=nby, b
Theorem 2 are worthy of mention here. First of all, if we
set B (a0,X), a1, ,ap;
=(1-t)" pialy zt (x=0; ]t <1; A €C).
Gh=(A)n (neNp) and N-1=/=m=r=s=0, by, -, bg;
we find from (41) and (42) that (48)
Fourthly, if we set
2 (\a 7n7(a07x),a1,---,ap;z "
2y o7 b b Gn=1 (neNy) and N-l=f=m=r=s=0,

A, (a0,X),a1, - ap
=(1-1)7" piovy —— (x=0;]tf<1;A€C)
by, bg; 1-t
(43)
and
© (M - —n, (ao,X),ay, -, ap; .
— pt+2lqg z(t
nZo n! by,--- ,bg;
A, (0,%),81, .8 4
=(1-0)7 pialy - = (x=0; | <1;A Q).
by, by 1

(44)

then the generating functions (41) and (42) would
immediately yield
Z]

(aO7X)aal7"' 7ap;

—n, (a07x)7a17“' 7ap;

00 tn
nZO p+2¥q nl

bl7"'7bq;

—zt
7bq;

=é p+1Yq (x=0; t]<1)

by, -
(49)

© 2013 NSP
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and

© —n, (a07x)7a17"' 7ap; tn
p+2lq Z| =
an by, 7bq; n!
(a07x)7ala"‘ ,Ap;
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(50)
Lastly, upon setting
Oh=A)n (neNp) and {(=m=r=s=0,

the generating functions (41) and (42) yield the following
results:
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(x20;tj<1;AeC; NeN).

Remark 3. The generating functions (43) and (44) are
obvious consequences of the

generating functions (51) and (52), respectively, in their

special case wheN = 1. Moreover, the generating
functions (43) and (44) would follow also as the limit
cases of the generating functions (45) and (46)
respectively, if we first replacein (45) and (46) byz/A
and then proceed to the limit whéh| — co.

also B3)). In fact, as already observed by Srivasta®3 p.
329], the case of the generating functions (49) and (50)
whenx = 0 (see B3, p. 329, Equation (1.7)] andig, p.
141, Equation 2.6 (19)]) is usually attributed to Rainville
(cf., e.g, [13, p. 267, Equation 19.10 (25)]). The case of
the last generating functions (51) and (52) whxen 0 is
due to Brafman (se€9] p. 187, Equation (55)] and4p,

p. 136, Equation 2.6 (2)]). See als®/] and [42, p. 178,
Problem 34] for more general families of hypergeometric
generating functions than the aforecited results of Brafma
[9] and Chaundy11].

4 Reducible Cases of the Generalized
Incomplete Hypergeometric Functions

Our main results in this section are contained in Theorem
3 below (see alsop)).

Theorem 3. The following reduction formulas hold true
for the generalized incomplete hypergeometric functions

pYg and plq:
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(x=0;r <min{p,q}; p,qc No; p<q when zeC; p=qgq when |7 <1)
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(xz0;r =min{p,q}; pa€No; p<q when zeC; p=q when [7<1),
where for convenience

Ji=j1++ir
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Remark 4. The generating functions (49) and (50) are the ProofOur demonstrations of the reduction formulas (53)

limit cases of the generating functions (43) and (44),

respectively, if we first replacein (43) and (44) byt/A
and then proceed to the limit whéh| — c. Furthermore,

and (54) are based upon the principle of mathematical
induction on the integer € N. Indeed, in its special case
whenr = 1, the reduction formula (53) can be written in

the generating functions (49) and (50) can be deducedhe following form:
also as the limit cases of the generating functions (47) and

(48), respectively, if we first repladeandz in (47) and
(48) byt/A andAz, respectively, and then proceed to the
limit when |A| — oco.

Remark 5. Forx = 0, the generating functions (43) to (48)
were given by Chaundylfl] who also gave a much more

general result than the case of the generating functions (49

and (50) wherx = 0 (see, for details42, Section 2.6]; see
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(x=0; m,p,qeNp; p<q when zc€C; p=q when |z <1). sequels to the works by Karlssobg] and Srivastava3?]
In order to prove this last reduction formula (55), we (see, for example,2f]). Reference 26], on the other

b2+, bg+j;

generalizations. Furthermore, Karlsson’s proof of the
™ (3); - (3p)) (@o+].x),a2+ ], .ap+]; Karlsson-Minton ~ summation formula (see, for
Q= < .>7~z pYg-1
S\ 1) (br)j---(bg); . .
'ZO v (20)])) was based upon the hypergeometric reduction
V(8o+n,x) (az) () 2 MO (s (<), formula (58).

and the deﬁnition (4). We thus find that hypergeometnc identity (58) includingnultivariable
z details, [L6]; see also 22] and 48, p. 1080, Equation
=3 e o 2, by,

LX) (by - M)n(@0)n-- (ap)n 2 Remark 8. Numerous further corollaries and
= ZO aoao+n> L b )”“,2(; ) =y consequences of the general results asserted by Theorems
Ynon ' (56) 1, 2 and 3 can indeed be derived in a manner analogous to
where we have also applied the familiar those of the specializations that we have indicated in this
Chu-Vandermonde summation formula (see ; Presentation. We choose to omit the details involved in
. ' deriving theseadditional corollaries and consequences of
example, BO, p. 243, Entry (11.4)]):
ple, 80, p ' y (1-4)) Theorems 1, 2 and 3.

—n,b;
oF1 C_1 - <°<;)bn>" (neNg; beC; ceC\Zy),
(57) . .
Zy being the set ofionpositiveintegers. 5 Concluding Remarks and Observations

Upon interpreting the last member of (56) by means
of the definitions (8) and (10), the reduction formula (55)
would follow immediately. The general reduction formula
(53) can then be deduced by repeated applications of (561 view of the demonstrated potential for applications of
to itself and appealing to the principle of mathematical the generalized incomplete hypergeometric functigng
induction onr € N. and plq in many diverse areas of mathematical, physical,
The second assertion (54) of Theorem 3 can be prove@ngineering and statistical sciences (see, for det@, [
in an analogous manner by using the definitions (9) andand the references cited therein), we have successfully
(11) instead of the definitions (8) and (10), respectively. presented here a systematic investigation of several
further properties of these generalized incomplete
Remark 6. In its special case wher = 0, each of the  hypergeometric functions and some classes of incomplete
assertions (53) and (54) of Theorem 3 reduces at once thypergeometric polynomials associated with them.
the following known reduction formula (see, for Specifically, we make use of several such combinatorial
example, 16] and [32]; see also 48, p. 1080] and the identities as Gould's identity (18) below, which stem
references to more general results on hypergeometriessentially from the Lagrange expansion theorem (see, for
reduction formulas, which are cited iAg]): example, #2, Chapter 7]), with a view to deriving many
general families of generating functions for a certainlas
of incomplete hypergeometric polynomials associated
with these generalized incomplete hypergeometric
functions. We have also indicated various (known or new)
a1t apt } special cases and consequences of the results presented in
z

by+my, - b +my, a1, ap; }
zZ

br.---,brbryg,- - 7bq;

my
=2 Z Az 02" p-rFa-r _ this article. Here, in this concluding section, we choose to
bria+J, - bg+Jr;

(58) point out several other generalizations of the Pochhammer
symbol and their associated families of hypergeometric
functions and hypergeometric polynomials.

First of all, in the widely-scattered literature on the

(r<min{p,q}; p,aeNo; p<q+1 when zeC; p=qg+1 when |Z7<1),
where, as also in (53) and (54),

Ji=j1t+-+r subject of this paper, one can find several interesting

generalizations of the familiar (Euler’s) gamma function

and m (bp+my) g, ~(br+m)3  (Brp1)y(@p)y I(z) defined by (1), as well as the corresponding
Ajz i) = (1) (F) (bfh 673 Br 5 ~(Ba)5 generalizations and extensions of the Beta function

Remark 7. The general hypergeometric identity (58) was B(a, ), the hypergeometric functiongF; and F;, and
proved by Karlssonlg and (in two markedly different the generalized hypergeometric functiongk,. For
simpler ways) by Srivastava3p]. More interestingly, —example, for a suitably bounded sequereg} .y, of
various generalizations arsic(or g-) extensions of the essentially arbitrary (real or complex) numbers,
hypergeometric identity (58) can be found in several Srivastaveet al. [44, p. 243et seq|. recently considered
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the function®(z) given by definition (64) will define the corresponding family of
hypergeometric polynomials.
S K ; (12 <R R>0; ko= 1) Next, in his investigz_ation of the asyn_"npto_tic gxpan_sions
Ok =4 of a class ofbranch-cutintegrals occurring in diffraction
Mo 29 exp(2) [1+o(i)] (2] = 1 Mo > 0; w0 C) theory by means of the W|ener-Hc_pr technique, Kobayashl
I (see [L8] and [19]) encountered an integral of the following

(59)
for some suitable constant®t, and w depending
essentially upon the sequen{® } cn,.Then, in terms of
the function®©(z) defined by (59), Srivastavet al. [44] o -1 gt o tu—1 g\t
introduced a remarkably deep generalization of the m(u,v) 32/ Wdtzvufm/ W
extended Gamma functiorf,(z), the extended Beta 0 0
function By(a,B) and the extended hypergeometric
functionF, (a,b; c;z) (see, for details,g] and[5]) by

type:

dt (65)

(min{0(u),0(v)} > 0; me Np),

- so that, in the special case wher= 0 andv = 1, we have
,—p({Kg}/ENo)(Z) - / tZ—l ) ({Kf}feNo; - E) dt (60) .
0 t ro(u,l):/o tletdt=ru (O(u)>0). (66
(O(2>0;0(p) 20),
Remark 10. In view of their importance and usefulness in
({cheen) diffraction theory and probability distributions, severa
8, ) (@, B) = (o) (a1, Birp) extensions and generalizations of the gamma-type
-:/ﬂt“*l(l—t)ﬁ*l@({K} o )dt function Iy(u,v) defined by (66) were investigated in
" Jo N0 g1 ) recent years (see, for detaild9 for a systematic study
of a unified presentation of all such extensions and
(min{O(a),0(B)} > 0; O(p) 2 0) generalizations).
Finally, by introducing a generalization of the
definiton (4) of the Pochhammer symbol
(A)v (A,v eC) given by

and

S&{Kr}l’el\lo)( (a)n ‘Bg{K[}IGNO)(b-f— n,c— b) %

0
62)  (A;myv), = r”}(nf(;‘\’,’)") (A,veC; O(v) >0; me Ny),

(l7 <1;0(c) > O(b) > 0; O(p) 2 0), 67)

provided that the defining integrals in (60), (61) and (62) W€ can define a family of generalized hypergeometric
functions as follows:

™M 8

Car ) - 1
a,b,C,Z) = mn

exist.

Remark 9. In their special cases wheq =1 (¢ € Np), (@M V), 8,

the equations (60), (61) and (62) would reduce LY E2 Pl 2 (@myn@n(@aph 2
immediately to the corresponding definitions of the P~ b - b _nzo (b1)n-(Bg)n nr
gamma function” (z), the Beta functiorB(a, ) and the Lo e (68)

hypergeometric functionpFy(a, b;c;z), respectively. The
definiton (4) of the Pochhammer symbol
(A)y (A,v € C) can thus be generalized as follows:

provided that each member of (68) exists. In fact,
whenever one or the other of the numerator parameters
ap,---,ap in (68) is anonpositiveinteger, the definition
(68) will define the corresponding family of

3 _ ’_p({Ké}kNO)()\ +V) A Vel hypergeometric polynomials.
( 'p’{Ké}éENO)V T ({Ke}eeng) (A,ve0). Other (known or new) extensions of the familiar
Iy (A) (Euler's) gamma functiorl” (z) will lead us similarly to

o ) (63) the corresponding generalizations of the definition (4) of
Based upon the definition (63), we can introduce athe Pochhammer symbol(A), (A,v € C) and,
family of generalized hypergeometric functions given by consequently, also to the resulting families of generdlize
hypergeometric functions and generalized hypergeometric
PR VR W polynomials. Moreove(, by suitably a.pplying the
o Zq " A I (am={K1(Lac>N9)(%<iz>n"-(an>n 2 methodology and techniques described fairly adequately
b, ,bg; n=0 v ‘ by Srivastaveet al. [37] and in the preceding sections,
(64) one can derive analogous properties and relationships
provided that the series on the right-hand side convergesnvolving such families of generalized hypergeometric
Indeed, whenever one or the other of the numeratorfunctions and generalized hypergeometric polynomials as
parametersy,--- ,a, in (64) is anonpositiveinteger, the  those stemming from the definitions (64) and (68).
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Appendix Applied Analysis and Mathematical ModelilGAAMM
2013] (Yildiz Technical University, Istanbul, Turkey;

Here, for the convenience of the interested reader, weJune 2-5, 2013) (especially to the Chief Organizer, Prof.

recall the celebratedlagrange Expansion Theore(aee,  Dr. Mustafa Bayram) for their kind invitation and also for

for details, P8, p. 146, Problem 206] an®8, p. 133]; see  the excellent hospitality provided to both myself and my

also @2, p. 354 et seq) and its such already used husband, Prof. Dr. Hari M. Srivastava.

consequences as the combinatorial identities (15) and

(16).
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