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Abstract: In 2012, H. M. Srivastavaet al. [37] introduced and studied a number of interesting fundamental propertiesand
characteristics of a family of potentially useful incomplete hypergeometricfunctions. The definitions of these incomplete
hypergeometric functions were based essentially upon some generalization of the Pochhammer symbol by mean of the incomplete
gamma functionsγ(s,x) andΓ (s,x). Our principal objective in this article is to present a systematic investigation of several further
properties of these incomplete hypergeometric functions and some general classes of the incomplete hypergeometric polynomials
which are associated with them. Various (known or new) special cases and consequences of the results presented in this article are
considered. Several other generalizations of the Pochhammer symbol and their associated families of hypergeometric functions and
hypergeometric polynomials are also briefly pointed out.
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1 Introduction and Definitions

Throughout this presentation, we shall (as usual) denote
by R and C the sets of real and complex numbers,
respectively. In terms of the familiar (Euler’s) Gamma
functionΓ (z) which is defined, forz∈ C\Z−

0 , by

Γ (z) =



























∫ ∞

0
e−t tz−1 dt

(

R(z)> 0
)

Γ (z+n)
n−1
∏
j=0

(z+ j)

(

z∈ C\Z−
0 ; n∈ N

)

,
(1)

(

Z
−
0 := Z

−∪{0}; Z− := {−1,−2,−3, · · ·}; N := {1,2,3, · · ·}
)

,

a generalized binomial coefficient

(

λ
µ

)

may be defined

(for real or complex parametersλ andµ) by
(λ

µ
)

:= Γ (λ+1)
Γ (µ+1)Γ (λ−µ+1) =:

( λ
λ−µ

)

(λ ,µ ∈ C),
(2)

so that, in the special case when

µ = n (n∈ N0; N0 := N∪{0}),

we have
(λ

n

)

= λ (λ−1)···(λ−n+1)
n! = (−1)n (−λ )n

n! (n∈ N0),
(3)

where(λ )ν (λ ,ν ∈ C) denotes the Pochhammer symbol
given, in general, by

(λ )ν := Γ (λ+ν)
Γ (λ ) =







1 (ν = 0; λ ∈ C\{0})

λ (λ +1) · · ·(λ +n−1) (ν ∈ N; λ ∈ C),

(4)
it being assumedconventionally that (0)0 := 1 and
understoodtacitly that the Γ -quotient exists (see, for
details, [42, p. 21et seq.]).

The so-calledincomplete Gamma functionsγ(s,x) and
Γ (s,x) defined, respectively, by

γ(s,x) :=
∫ x

0
ts−1e−tdt

(

ℜ(s)> 0; x≧ 0
)

(5)
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and

Γ (s,x) :=
∫ ∞

x ts−1e−tdt
(

x≧ 0; ℜ(s)> 0 when x= 0),
(6)

are known to satisfy the following decomposition formula:

γ(s,x)+Γ (s,x) = Γ (s)
(

ℜ(s)> 0
)

. (7)

The functionΓ (z), and its incomplete versionsγ(s,x) and
Γ (s,x), play important r̂oles in the study of the analytic
solutions of a variety of problems in diverse areas of
science and engineering (see, for
example, [1], [7], [6], [12], [15], [17], [21], [23], [24],
[38], [39], [40], [41], [51], [52] and [53]; see also [37]
and the references cited therein).

In a recent paper, the following family of generalized
incomplete hypergeometric functions was introduced and
studied systematically by Srivastavaet al. [37, p. 675,
Equations (4.1) and (4.2)]:

pγq





(a1,x),a2, · · · ,ap;

b1, · · · ,bq;
z



 :=
∞

∑
n=0

(a1;x)n(a2)n · · ·(ap)n

(b1)n · · ·(bq)n

zn

n!

(8)
and

pΓq





(a1,x),a2, · · · ,ap;

b1, · · · ,bq;
z



 :=
∞

∑
n=0

[a1;x]n(a2)n · · ·(ap)n

(b1)n · · ·(bq)n

zn

n!
,

(9)
where, in terms of the incomplete Gamma functions
γ(s,x) andΓ (s,x) defined by (5) and (6), theincomplete
Pochhammer symbols

(λ ;x)ν and [λ ;x]ν (λ ,ν ∈ C; x≧ 0)

are defined as follows:

(λ ;x)ν :=
γ(λ +ν ,x)

Γ (λ )
(λ ,ν ∈ C; x≧ 0) (10)

and

[λ ;x]ν :=
Γ (λ +ν ,x)

Γ (λ )
(λ ,ν ∈ C; x≧ 0). (11)

so that, obviously, these incomplete Pochhammer
symbols (λ ;x)ν and [λ ;x]ν satisfy the following
decomposition relation:

(λ ;x)ν +[λ ;x]ν = (λ )ν (λ ,ν ∈ C; x≧ 0), (12)

where(λ )ν is the Pochhammer symbol given by (4).

Remark 1. The argumentx≧ 0 in the definitions (5) and
(6), (8) and (9), (10) and (11), and elsewhere in this paper,
is independentof the argumentz∈ C which occurs in the
definitions (1), (8) and (9), and also in the results presented
in this paper.

As already pointed out by Srivastavaet al. [37, p. 675,
Remark 7], since

∣

∣(λ ;x)n
∣

∣≦
∣

∣(λ )n
∣

∣ and
∣

∣[λ ;x]n
∣

∣≦
∣

∣(λ )n
∣

∣ (n∈ N0; λ ∈ C; x≧ 0),

(13)
the precise (sufficient) conditions under which the infinite
series in the definitions (8) and (9) would converge
absolutely can be derived from those that are
well-documented in the case of the generalized
hypergeometric function pFq (p,q ∈ N0) (see, for
details, [29, pp. 72–73] and [40, p. 20]; see
also [8], [3], [20] and [30]). Indeed, in their special case
whenx = 0, both pγq (p,q ∈ N0) and pΓq (p,q ∈ N0)
would reduce immediately to the extensively-investigated
generalized hypergeometric functionpFq (p,q ∈ N0).
Furthermore, as an immediate consequence of the
definitions (8) and (9), we have the following
decomposition formula:

pγq





(a1,x),a2, · · · ,ap;

b1, · · · ,bq;
z



+ pΓq





(a1,x),a2, · · · ,ap;

b1, · · · ,bq;
z





= pFq





a1, · · · ,ap;

b1, · · · ,bq;
z



 (14)

in terms of the familiar generalized hypergeometric
function pFq (p,q∈ N0).

Motivated essentially by the demonstrated potential
for applications of the generalized incomplete
hypergeometric functionspγq and pΓq in many diverse
areas of mathematical, physical, engineering and
statistical sciences (see, for details, [37] and the
references cited therein), we aim here at presenting a
systematic investigation of severalfurther properties of
these generalized incomplete hypergeometric functions
and some classes of incomplete hypergeometric
polynomials associated with them. Specifically, we make
use of several such combinatorial identities as Gould’s
identity (18) below, which stem essentially from the
Lagrange expansion theorem (see, for
example, [42, Chapter 7]), with a view to deriving many
general families of generating functions for a certain class
of incomplete hypergeometric polynomials associated
with these generalized incomplete hypergeometric
functions (see also some interesting recent
developments [35] and [47]). Various (known or new)
special cases and consequences of the results presented in
this article are considered. We choose also to point out
several other generalizations of the Pochhammer symbol
and their associated families of hypergeometric functions
and hypergeometric polynomials.
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2 Generating Functions Based Upon the
Lagrange Expansion Theorem and Gould’s
Identity

Upon suitable specialization, the Lagrange expansion
theorem (see [28, p. 146, Problem 206] and [53, p. 133];
see also the Appendix forcompletedetails) is known to
yield each of the following combinatorial
identities [28, p. 349, Problem 216]:

∞

∑
n=0

(

α +(β +1)n
n

)

tn =
(1+ζ )α+1

1−βζ
(15)

and [28, p. 348, Problem 212]:

∞

∑
n=0

α
α +(β +1)n

(

α +(β +1)n
n

)

tn = (1+ζ )α , (16)

whereα andβ are complex numbers independent ofn and
ζ is a function oft definedimplicitly by

ζ = t(1+ζ )β+1 and ζ (0) = 0. (17)

In view of the following obvious combinatorial identity:
(α+(β+1)n

n

)

= α
α+(β+1)n

(α+(β+1)n
n

)

+(β +1)
(α+(β+1)n−1

n−1

)

,

the expansion formula (15) can easily be shown to imply
the expansion formula (16). In fact, it is not difficult to
show that the expansion formulas (15) and (16) are
equivalent (see, for details, [42, pp. 354–356]).

The following interesting generalization (and
unification) of the equivalent expansion
formulas (15) and (16) was given by Gould [14, p. 196,
Equation (6.1)]:

∞

∑
n=0

κ
κ +(β +1)n

(

α +(β +1)n
n

)

tn

= (1+ζ )α
∞

∑
n=0

(−1)n
(

α −κ
n

)(

n+κ/(β +1)
n

)−1( ζ
1+ζ

)n

,

(18)
whereα, β andκ are complex numbers independent ofn
andζ is a function oft definedimplicitly by (17).

For κ = α, Gould’s identity (18) reduces at once to
the expansion formula (16). Moreover, in its limit case
when|κ | → ∞, (18) corresponds (at least formally) to the
expansion formula (15). Thus, forboundedκ (κ 6= α),
Gould’s identity (18) may naturally be looked upon as
being independent of the equivalent expansion formulas
(15) and (16).

The existing literature on generating functions is
abundant in results that are based
essentially upon the Lagrange expansion theorem as well
as the three formulas (15), (16) and (18) (see, for
details, [42, Chapter 7]; see
also [10], [2], [32], [33], [34], [36], [43], [46] and [54],
and as well as many references to other closely-related
investigations cited in each of these works). With a view
to applying it to derive generating functions for a certain

class of generalized incomplete hypergeometric
polynomials, we recall here a general result on generating
functions asserted by Lemma 1 below, known as the
Srivastava-Buschman generating function, which is due to
Srivastava and Buschman [36, p. 366, Theorem 3]
and [42, p. 373, Theorem 9]).

Lemma 1.Corresponding to the power seriesΛ(z) given
by

Λ(z) =
∞

∑
n=0

Ωn zn (Ω0 6= 0), (19)

let the polynomial systemS(α ,β )
n,N (λ ;z) be defined by

S(α ,β )
n,N (λ ;z) = ∑[n/N]

k=0
(−n)Nk

(

α+(β+1)n+1
)

λk
(α+βn+1)(λ+N)k

Ωk zk (α,β ,λ ∈ C; N ∈ N),

(20)
where[ω] denotes the greatest integer inω ∈ R. Suppose
also that

ϑ(n,N;α,β ,κ ,λ ;z)

=
∞

∑
k=0

κ
κ +(β +1)Nk

(

α −κ +λk
n

)(

n+Nk+κ/(β +1)
n

)−1

Ωk zk

(21)
(n∈ N0; α,β ,κ ,λ ∈ C; N ∈ N).

Then

∞

∑
n=0

κ
κ +(β +1)n

(

α +(β +1)n
n

)

S(α ,β )
n,N (λ ;z)tn

= (1+ζ )α ϕ
[

z(−ζ )N (1+ζ )λ ,−
ζ

1+ζ

]

, (22)

where

ϕ[z,w] =
∞

∑
n=0

ϑ(n,N;α,β ,κ ,λ ;z)wn (23)

where ζ is given by (17), it being assumed that both
members of the generating function(22) exist.

Themaingenerating functions for the aforementioned
associated class of generalized incomplete hypergeometric
polynomials are contained in the following theorem (see
also [50]).

Theorem 1.Let∆(N;λ ) denote the array of N parameters

λ
N
,

λ +1
N

, · · · ,
λ +N−1

N
(λ ∈ C; N ∈ N),

the array∆(N;λ ) being empty when N= 0. Suppose also
that

θ(n,N,L;α,β ,κ ;z) =
∞

∑
k=0

κ
κ +(β +1)Nk

(

α −κ +Lk
n

)(

n+Nk+κ/(β +1)
n

)−1

·
(a0;x)k(a1)k · · ·(ap)k

(b1)k · · ·(bq)k

zk

k!

(24)
(x≧ 0; n∈ N0; α,β ,κ ∈ C; N,L ∈ N)
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and

Θ(n,N,L;α,β ,κ;z) =
∞

∑
k=0

κ
κ +(β +1)Nk

(

α −κ +Lk
n

)(

n+Nk+κ/(β +1)
n

)−1

·
[a0;x]k(a1)k · · ·(ap)k

(b1)k · · ·(bq)k

zk

k!

(25)
(x≧ 0; n∈ N0; α,β ,κ ∈ C; N,L ∈ N).

Then the following generating functions hold true for the
associated class of generalized incomplete hypergeometric
polynomials:

∞

∑
n=0

κ
κ +(β +1)n

(

α +(β +1)n
n

)

· p+N+L+1γq+N+L





∆(N;−n),∆
(

L;α +(β +1)n+1
)

,(a0,x),a1, · · · ,ap;

∆(N+L;α +βn+1),b1, · · · ,bq;
z



 tn

= (1+ζ )α φ
[(

(N+L)N+L

NN LL

)

z(−ζ )N (1+ζ )L,−
ζ

1+ζ

]

(26)
and

∞

∑
n=0

κ
κ +(β +1)n

(

α +(β +1)n
n

)

· p+N+L+1Γq+N+L





∆(N;−n),∆
(

L;α +(β +1)n+1
)

,(a0,x),a1, · · · ,ap;

∆(N+L;α +βn+1),b1, · · · ,bq;
z



 tn

= (1+ζ )α Φ
[(

(N+L)N+L

NN LL

)

z(−ζ )N (1+ζ )L,−
ζ

1+ζ

]

,

(27)
where

φ [z,w] =
∞

∑
n=0

θ(n,N,L;α,β ,κ ;z)wn (28)

and

Φ [z,w] =
∞

∑
n=0

Θ(n,N,L;α,β ,κ ;z)wn, (23)

andζ is given by(17), it being assumed that both members
of the generating functions(26) and(27) exist.

Proof.The assertions (26) and (27) of Theorem 1 can be
proven by appealing appropriately to Lemma 1. Indeed, if
in Lemma 1, we setλ = L (L ∈ N),

Ωn =
(a0;x)n(a1)n · · ·(ap)n

n! (b1)n · · ·(bq)n
(x≧ 0; n, p,q∈ N0)

(30)
and

Ωn =
[a0;x]n(a1)n · · ·(ap)n

n! (b1)n · · ·(bq)n
(x≧ 0; n, p,q∈ N0),

(31)
and then interpret the incomplete hypergeometric
polynomials resulting from (20) by means of the
definitions (8) and (9), respectively, the generating
functions (26) and (27) asserted by Theorem 1 would
follow after series iterations and necessary
simplifications.

Alternatively, of course, the assertions (26) and (27)
of Theorem 1 can be deriveddirectly by using Gould’s
identity (18) in an appropriate manner.

Since the limit cases of the generating functions (26)
and (27) when|κ |→∞ are equivalent to the corresponding
obvious special cases of the generating functions (26) and
(27) whenκ = α, just as we observed above in connection
with the three combinatorial identities (15), (16) and (18),
it would suffice our purpose if we state only the limiting
cases of the generating functions (26) and (27) when|κ |→
∞ as Corollary 1 below.

Corollary 1. Assume that x≧ 0 and N,L ∈ N. Then the
following generating functions hold true for the
associated class of generalized incomplete
hypergeometric polynomials:

∞

∑
n=0

(

α +(β +1)n
n

)

· p+N+L+1γq+N+L





∆(N;−n),∆
(

L;α +(β +1)n+1
)

,(a0,x),a1, · · · ,ap;

∆(N+L;α +βn+1),b1, · · · ,bq;
z



 tn

=
(1+ζ )α+1

1−βζ p+1γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;

(

(N+L)N+L

NN LL

)

z(−ζ )N (1+ζ )L





(32)
and

∞

∑
n=0

(

α +(β +1)n
n

)

· p+N+L+1Γq+N+L





∆(N;−n),∆
(

L;α +(β +1)n+1
)

,(a0,x),a1, · · · ,ap;

∆(N+L;α +βn+1),b1, · · · ,bq;
z



 tn

=
(1+ζ )α+1

1−βζ p+1γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;

(

(N+L)N+L

NN LL

)

z(−ζ )N (1+ζ )L



 ,

(33)
where ζ is given by(17), it being assumed that both
members of the generating functions(32) and(33) exist.

The methodology and techniques used here and in the
treatise on generating functions by Srivastava and
Manocha (see, for details, [42, Chapter 7]) can be applied
mutatis mutandisin order to obtain a remarkably large
variety of generating functions for the associated class of
generalized incomplete hypergeometric polynomials of
the type which we have considered in the preceding
section. The details involved in these derivations may be
omitted here.

Various interesting special cases of the generating
functions (26) and (27) asserted by Theorem 1 and the
generating functions (32) and (33) asserted by Corollary
1, which would correspond to the special cases of the
potentially useful Srivastava-Buschman generating
function (22) asserted by Lemma 1 when (for example)
λ = 0 and λ = −1, can also be derived fairly easily.
Thus, for instance, Theorem 1 in itsexceptionalcase
whenL = 0 would yield the following result.

Corollary 2. Let N∈ N,

ψn(α,β ,κ;ζ ) =Ψn(α,β ,κ;ζ ) =: Ξn (x≧ 0; n∈ N0; α,β ,κ ∈ C),

(34)
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where

Ξn := (−1)n
(

α −κ
n

)(

n+κ/(β +1)
n

)−1 (

ζ
1+ζ

)n

(35)

(x≧ 0; n∈ N0; α,β ,κ ∈ C).

Then the following generating functions hold true for the
associated class of generalized incomplete hypergeometric
polynomials:

∞

∑
n=0

κ
κ +(β +1)n

(

α +(β +1)n
n

)

p+N+1γq+N





∆(N;−n),(a0,x),a1, · · · ,ap;

∆(N;α +βn+1),b1, · · · ,bq;
z



 tn

= (1+ζ )α
∞

∑
n=0

ψn(α,β ,κ ;ζ ) p+N+1γq+N





∆
(

N;κ/(β +1)
)

,(a0,x),a1, · · · ,ap;

∆
(

N;1+n+κ/(β +1)
)

,b1, · · · ,bq;
z(−ζ )N





(36)
and

∞

∑
n=0

κ
κ +(β +1)n

(

α +(β +1)n
n

)

p+N+1Γq+N





∆(N;−n),(a0,x),a1, · · · ,ap;

∆(N;α +βn+1),b1, · · · ,bq;
z



 tn

= (1+ζ )α
∞

∑
n=0

Ψn(α,β ,κ ;ζ ) p+N+1Γq+N





∆
(

N;κ/(β +1)
)

,(a0,x),a1, · · · ,ap;

∆
(

N;1+n+κ/(β +1)
)

,b1, · · · ,bq;
z(−ζ )N



 ,

(37)
where ζ is given by(17), it being assumed that both
members of the generating functions(36) and(37) exist.

If, in the aforementioned exceptional case of Theorem
1 when L= 0, we setκ = α (or, equivalently, let|κ | → ∞),
we arrive at the following exceptional case of Corollary 1
when L= 0.

Corollary 3. Suppose that x≧ 0 and N∈ N. Then the
following generating functions hold true for the
associated class of generalized incomplete
hypergeometric polynomials:

∞

∑
n=0

(

α +(β +1)n
n

)

p+N+1γq+N





∆(N;−n),(a0,x),a1, · · · ,ap;

∆(N;α +βn+1),b1, · · · ,bq;
z



 tn

=
(1+ζ )α+1

1−βζ p+1γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z(−ζ )N





(38)
and

∞

∑
n=0

(

α +(β +1)n
n

)

p+N+1Γq+N





∆(N;−n),(a0,x),a1, · · · ,ap;

∆(N;α +βn+1),b1, · · · ,bq;
z



 tn

=
(1+ζ )α+1

1−βζ p+1Γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z(−ζ )N



 ,

(39)
where ζ is given by(17), it being assumed that both
members of the generating functions(38) and(39) exist.

3 Further Generating Functions for the
Associated Class of Generalized Incomplete
Hypergeometric Polynomials

Many general families of generating functions as well as
their basic (or q-) extensions for various polynomial
systems in one and more variables were derived by
Srivastava (see, for details, [33]; see also [42, p. 142 et
seq.]). We choose to recall here one of Srivastava’s
results as Lemma 2 below (see [33, p. 331, Equation
(2.2)] and [42, p. 144, Equation 2.6 (28)]).

Lemma 2. Let {Θn}n∈N0
and

{

Φn,k
}

n,k∈N0
denote,

respectively, suitably bounded single and double
sequences of essentially arbitrary complex parameters.
Then

∞

∑
n=0

ℓ

∏
j=1

(c j)n

m
∏
j=1

(d j)n

Θn tn

n!

[n/N]

∑
k=0

(−n)Nk

m
∏
j=1

(1−d j −n)k

ℓ

∏
j=1

(1−c j −n)k

Φn,k zk

k!

=
∞

∑
n,k=0

ℓ

∏
j=1

(c j)n

m
∏
j=1

(d j)n

Θn+Nk Φn+Nk,k
tn

n!

(

z
{

(−1)ℓ−m+1 t
}N )k

k!
(ℓ,m∈ N0; N ∈ N),

(40)
provided that each member of(40) exists, [κ ] being the
greatest integer inκ ∈ R.

Remark 2. In results such as the generating function (40),
an emptyproduct is interpreted (as usual) to be 1. Thus,
for example, it is always understood that
ℓ

∏
j=1

(c j)n = 1 when ℓ= 0 and
m
∏
j=1

(d j)n = 1 when m= 0.

With a view to applying Lemma 2 to a certain class of
generalized incomplete hypergeometric polynomials
which are associated naturally with the generalized
incomplete hypergeometric functionspγq and pΓq
defined by (8) and (9), respectively, we set

Φn,k =

r
∏
j=1

(g j+n)Lk

s
∏
j=1

(h j+n)Mk

(a0;x)k(a1)k···(ap)k
(b1)k···(bq)k

(x≧ 0; p,q, r,s∈ N0; L,M ∈ N)

and

Φn,k =

r
∏
j=1

(g j+n)Lk

s
∏
j=1

(h j+n)Mk

[a0;x]k(a1)k···(ap)k
(b1)k···(bq)k

(x≧ 0; p,q, r,s∈ N0; L,M ∈ N).

For convenience, we denote the array ofN parameters

λ
N
,

λ +1
N

, · · · ,
λ +N−1

N
(λ ∈ C; N ∈ N)

by ∆(N;λ ) and the array of Nr parameters
λ j
N ,

λ j+1
N , · · · ,

λ j+N−1
N (λ j ∈ C; j = 1, · · · , r; N ∈ N)

by ∆(N, r;λ ), the array being empty whenN = 0 (and
indeed also whenr = 0), so that

∆(N,1;λ j) = ∆(N;λ1).

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2200 R. Srivastava: Some Generalizations of Pochhammer’s Symbol...

We are thus led eventually to the following family of
generating functions for the associated class of
generalized incomplete hypergeometric polynomials.

Theorem 2. Let {Θn}n∈N0
denote a suitably bounded

sequence of essentially arbitrary complex parameters.
Then the following generating functions hold true for the
associated class of generalized incomplete
hypergeometric polynomials:

∞

∑
n=0

ℓ

∏
j=1

(c j)n

m
∏
j=1

(d j)n

Θn tn

n! p+Lr+(m+1)N+1γq+Ms+Nℓ





∆(N;−n),∆(L, r;g j +n),∆(N,m;1−d j −n),(a0,x),a1, · · · ,ap;

∆(M,s;h j +n),∆(N, ℓ;1−c j −n),b1, · · · ,bq;

(

LLr

MMs N(ℓ−m−1)N

)

z





=
∞

∑
n,k=0

ℓ

∏
j=1

(c j)n

m
∏
j=1

(d j)n

Θn+Nk

r
∏
j=1

(g j +n+Nk)Lk

s
∏
j=1

(h j +n+Nk)Mk

(a0;x)k(a1)k · · ·(ap)k

(b1)k · · ·(bq)k

·
tn

n!

(

z
{

(−1)ℓ−m+1 t
}N )k

k!
(x≧ 0; ℓ,m, p,q, r,s∈ N0; L,M,N ∈ N)

(41)
and

∞

∑
n=0

ℓ

∏
j=1

(c j)n

m
∏
j=1

(d j)n

Θn tn

n! p+Lr+(m+1)N+1Γq+Ms+Nℓ





∆(N;−n),∆(L, r;g j +n),∆(N,m;1−d j −n),(a0,x),a1, · · · ,ap;

∆(M,s;h j +n),∆(N, ℓ;1−c j −n),b1, · · · ,bq;

(

LLr

MMs N(ℓ−m−1)N

)

z





=
∞

∑
n,k=0

ℓ

∏
j=1

(c j)n

m
∏
j=1

(d j)n

Θn+Nk

r
∏
j=1

(g j +n+Nk)Lk

s
∏
j=1

(h j +n+Nk)Mk

[a0;x]k(a1)k · · ·(ap)k

(b1)k · · ·(bq)k

·
tn

n!

(

z
{

(−1)ℓ−m+1 t
}N )k

k!
(x≧ 0; ℓ,m, p,q, r,s∈ N0; L,M,N ∈ N),

(42)
provided that both sides of(41) and(42) exist.

Several interesting corollaries and consequences of
the generating functions (41) and (42) asserted by
Theorem 2 are worthy of mention here. First of all, if we
set
Θn = (λ )n (n∈ N0) and N−1= ℓ= m= r = s= 0,
we find from (41) and (42) that

∞

∑
n=0

(λ )n

n! p+2γq





−n,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+2γq





λ ,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
−

zt
1− t



 (x≧ 0; |t|< 1; λ ∈ C)

(43)
and

∞

∑
n=0

(λ )n

n! p+2Γq





−n,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+2Γq





λ ,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
−

zt
1− t



 (x≧ 0; |t|< 1; λ ∈ C).

(44)

Secondly, upon setting
Θn = (λ )n (n∈ N0) and N−1= ℓ= m= r −1= s= 0 (g1 = λ ),
the generating functions (41) and (42) yield the following
special cases:

∞

∑
n=0

(λ )n

n! p+3γq





−n,λ +n,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+3γq





∆(2;λ ),(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
−

4zt
(1− t)2





(45)
(x≧ 0; |t|< 1; λ ∈ C)

and

∞

∑
n=0

(λ )n

n! p+3Γq





−n,λ +n,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+3Γq





∆(2;λ ),(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
−

4zt
(1− t)2





(46)
(x≧ 0; |t|< 1; λ ∈ C).

Thirdly, we set
Θn = 1 (n∈ N0) and N−1= ℓ−1= m= r = s= 0 (c1 = λ ).
Then the generating functions (41) and (42) reduce to the
following forms:

∞

∑
n=0

(λ )n

n! p+2γq+1





−n,(a0,x),a1, · · · ,ap;

1−λ −n,b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+1γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
zt



 (x≧ 0; |t|< 1; λ ∈ C)

(47)
and

∞

∑
n=0

(λ )n

n! p+2Γq+1





−n,(a0,x),a1, · · · ,ap;

1−λ −n,b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+1Γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
zt



 (x≧ 0; |t|< 1; λ ∈ C).

(48)
Fourthly, if we set

Θn = 1 (n∈N0) and N−1= ℓ=m= r = s= 0,

then the generating functions (41) and (42) would
immediately yield

∞

∑
n=0

p+2γq





−n,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z





tn

n!

= et
p+1γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
−zt



 (x≧ 0; |t|< 1)

(49)
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and

∞

∑
n=0

p+2Γq





−n,(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
z





tn

n!

= et
p+1Γq





(a0,x),a1, · · · ,ap;

b1, · · · ,bq;
−zt



 (x≧ 0; |t|< 1).

(50)
Lastly, upon setting

Θn = (λ )n (n∈ N0) and ℓ= m= r = s= 0,

the generating functions (41) and (42) yield the following
results:

∞

∑
n=0

(λ )n

n! p+N+1γq





∆(N;−n),(a0,x),a1, · · · .ap;

b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+N+1γq





∆(N;λ ),(a0,x),a1, · · · .ap;

b1, · · · ,bq;
z

(

−
t

1− t

)N




(51)
(x≧ 0; |t|< 1; λ ∈ C; N ∈ N)

and

∞

∑
n=0

(λ )n

n! p+N+1Γq





∆(N;−n),(a0,x),a1, · · · .ap;

b1, · · · ,bq;
z



 tn

= (1− t)−λ
p+N+1Γq





∆(N;λ ),(a0,x),a1, · · · .ap;

b1, · · · ,bq;
z

(

−
t

1− t

)N




(52)
(x≧ 0; |t|< 1; λ ∈ C; N ∈ N).

Remark 3. The generating functions (43) and (44) are
obvious consequences of the
generating functions (51) and (52), respectively, in their
special case whenN = 1. Moreover, the generating
functions (43) and (44) would follow also as the limit
cases of the generating functions (45) and (46),
respectively, if we first replacez in (45) and (46) byz/λ
and then proceed to the limit when|λ | → ∞.

Remark 4. The generating functions (49) and (50) are the
limit cases of the generating functions (43) and (44),
respectively, if we first replacet in (43) and (44) byt/λ
and then proceed to the limit when|λ | → ∞. Furthermore,
the generating functions (49) and (50) can be deduced
also as the limit cases of the generating functions (47) and
(48), respectively, if we first replacet and z in (47) and
(48) by t/λ andλz, respectively, and then proceed to the
limit when |λ | → ∞.

Remark 5.Forx= 0, the generating functions (43) to (48)
were given by Chaundy [11] who also gave a much more
general result than the case of the generating functions (49)
and (50) whenx= 0 (see, for details, [42, Section 2.6]; see

also [33]). In fact, as already observed by Srivastava [33, p.
329], the case of the generating functions (49) and (50)
whenx = 0 (see [33, p. 329, Equation (1.7)] and [42, p.
141, Equation 2.6 (19)]) is usually attributed to Rainville
(cf., e.g., [13, p. 267, Equation 19.10 (25)]). The case of
the last generating functions (51) and (52) whenx = 0 is
due to Brafman (see [9, p. 187, Equation (55)] and [42,
p. 136, Equation 2.6 (2)]). See also [27] and [42, p. 178,
Problem 34] for more general families of hypergeometric
generating functions than the aforecited results of Brafman
[9] and Chaundy [11].

4 Reducible Cases of the Generalized
Incomplete Hypergeometric Functions

Our main results in this section are contained in Theorem
3 below (see also [49]).

Theorem 3. The following reduction formulas hold true
for the generalized incomplete hypergeometric functions
pγq and pΓq :

p+1γq





(a0,x),b1+m1, · · · ,br +mr ,ar+1, · · · ,ap;

b1, · · · ,br ,br+1, · · · ,bq;
z



=
m1

∑
j1=0

· · ·
mr

∑
jr=0

Λ( j1, · · · , jr)

·zJr
p−r+1γq−r





(a0+Jr ,x),ar+1+Jr , · · · ,ap+Jr ;

br+1+Jr , · · · ,bq+Jr ;
z





(53)
(x≧ 0; r ≦ min{p,q}; p,q∈ N0; p< q when z∈ C; p= q when |z|< 1)

and

p+1Γq





(a0,x),b1+m1, · · · ,br +mr ,ar+1, · · · ,ap;

b1, · · · ,br ,br+1, · · · ,bq;
z



=
m1

∑
j1=0

· · ·
mr

∑
jr=0

Λ( j1, · · · , jr)

·zJr
p−r+1Γq−r





(a0+Jr ,x),ar+1+Jr , · · · ,ap+Jr ;

br+1+Jr , · · · ,bq+Jr ;
z





(54)
(x≧ 0; r ≦ min{p,q}; p,q∈ N0; p< q when z∈ C; p= q when |z|< 1),

where, for convenience,

Jr := j1+ · · ·+ jr

and
Λ( j1, · · · , jr) =

(m1
j1

)

· · ·
(mr

jr

) (b2+m2)J1 ···(br+mr )Jr−1 (ar+1)Jr ···(ap)Jr

(b1)J1 ···(br )Jr (br+1)Jr ···(bq)Jr
.

Proof.Our demonstrations of the reduction formulas (53)
and (54) are based upon the principle of mathematical
induction on the integerr ∈ N. Indeed, in its special case
whenr = 1, the reduction formula (53) can be written in
the following form:

p+1γq





(a0,x),b1+m1,a2, · · · ,ap;

b1, · · · ,bq;
z



=
m1

∑
j=0

(

m1

j

)

(a2) j · · ·(ap) j

(b1) j · · ·(bq) j

·zj
pγq−1





(a0+ j,x),a2+ j, · · · ,ap+ j;

b2+ j, · · · ,bq+ j;
z





(55)
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(x≧ 0; m1, p,q∈ N0; p< q when z∈ C; p= q when |z|< 1).

In order to prove this last reduction formula (55), we
denote its right-hand side byΩ and apply the identity (3)
and the definition (4). We thus find that

Ω :=
m1

∑
j=0

(

m1

j

)

(a2) j · · ·(ap) j

(b1) j · · ·(bq) j
·zj

pγq−1





(a0+ j,x),a2+ j, · · · ,ap+ j;

b2+ j, · · · ,bq+ j;
z





=
∞

∑
n=0

γ(a0+n,x)
Γ (a0+n)

(a2)n · · ·(ap)n

(b2)n · · ·(bq)n

zn

n!

min{m1,n}

∑
j=0

(−m1) j(−n) j

j!(b1) j

=
∞

∑
n=0

γ(a0+n,x)
Γ (a0+n)

(b1+m1)n(a2)n · · ·(ap)n

(b1)n · · ·(bq)n

zn

n!
,

(56)
where we have also applied the familiar
Chu-Vandermonde summation formula (see, for
example, [30, p. 243, Entry (II.4)]):

2F1





−n,b;

c;
1



= (c−b)n
(c)n

(n∈ N0; b∈ C; c∈ C\Z−
0 ),

(57)
Z
−
0 being the set ofnonpositiveintegers.

Upon interpreting the last member of (56) by means
of the definitions (8) and (10), the reduction formula (55)
would follow immediately. The general reduction formula
(53) can then be deduced by repeated applications of (56)
to itself and appealing to the principle of mathematical
induction onr ∈ N.

The second assertion (54) of Theorem 3 can be proven
in an analogous manner by using the definitions (9) and
(11) instead of the definitions (8) and (10), respectively.

Remark 6. In its special case whenx = 0, each of the
assertions (53) and (54) of Theorem 3 reduces at once to
the following known reduction formula (see, for
example, [16] and [32]; see also [48, p. 1080] and the
references to more general results on hypergeometric
reduction formulas, which are cited in [48]):

pFq





b1+m1, · · · ,br +mr ,ar+1, · · · ,ap;

b1, · · · ,br ,br+1, · · · ,bq;
z





=
m1

∑
j1=0

· · ·
mr

∑
jr=0

Λ( j1, · · · , jr)z
Jr

p−rFq−r





ar+1+Jr , · · · ,ap+Jr ;

br+1+Jr , · · · ,bq+Jr ;
z





(58)
(r ≦ min{p,q}; p,q∈ N0; p< q+1 when z∈ C; p= q+1 when |z|< 1),

where, as also in (53) and (54),

Jr := j1+ · · ·+ jr

and
Λ( j1, · · · , jr) =

(m1
j1

)

· · ·
(mr

jr

) (b2+m2)J1 ···(br+mr )Jr−1 (ar+1)Jr ···(ap)Jr

(b1)J1 ···(br )Jr (br+1)Jr ···(bq)Jr
.

Remark 7. The general hypergeometric identity (58) was
proved by Karlsson [16] and (in two markedly different
simpler ways) by Srivastava [32]. More interestingly,
various generalizations andbasic(or q-) extensions of the
hypergeometric identity (58) can be found in several

sequels to the works by Karlsson [16] and Srivastava [32]
(see, for example, [25]). Reference [26], on the other
hand, containsfurther general results stemming from the
hypergeometric identity (58) includingmultivariable
generalizations. Furthermore, Karlsson’s proof of the
Karlsson-Minton summation formula (see, for
details, [16]; see also [22] and [48, p. 1080, Equation
(20)]) was based upon the hypergeometric reduction
formula (58).

Remark 8. Numerous further corollaries and
consequences of the general results asserted by Theorems
1, 2 and 3 can indeed be derived in a manner analogous to
those of the specializations that we have indicated in this
presentation. We choose to omit the details involved in
deriving theseadditionalcorollaries and consequences of
Theorems 1, 2 and 3.

5 Concluding Remarks and Observations

In view of the demonstrated potential for applications of
the generalized incomplete hypergeometric functionspγq
and pΓq in many diverse areas of mathematical, physical,
engineering and statistical sciences (see, for details, [37]
and the references cited therein), we have successfully
presented here a systematic investigation of several
further properties of these generalized incomplete
hypergeometric functions and some classes of incomplete
hypergeometric polynomials associated with them.
Specifically, we make use of several such combinatorial
identities as Gould’s identity (18) below, which stem
essentially from the Lagrange expansion theorem (see, for
example, [42, Chapter 7]), with a view to deriving many
general families of generating functions for a certain class
of incomplete hypergeometric polynomials associated
with these generalized incomplete hypergeometric
functions. We have also indicated various (known or new)
special cases and consequences of the results presented in
this article. Here, in this concluding section, we choose to
point out several other generalizations of the Pochhammer
symbol and their associated families of hypergeometric
functions and hypergeometric polynomials.

First of all, in the widely-scattered literature on the
subject of this paper, one can find several interesting
generalizations of the familiar (Euler’s) gamma function
Γ (z) defined by (1), as well as the corresponding
generalizations and extensions of the Beta function
B(α,β ), the hypergeometric functions1F1 and 2F1, and
the generalized hypergeometric functionspFq. For
example, for a suitably bounded sequence{κℓ}ℓ∈N0 of
essentially arbitrary (real or complex) numbers,
Srivastavaet al. [44, p. 243et seq.] recently considered
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the functionΘ(z) given by

Θ
(

{κℓ}ℓ∈N0;z
)

=























∞
∑
ℓ=0

κℓ
zℓ

ℓ!
(|z|< R; R> 0; κ0 := 1)

M0 zω exp(z)

[

1+O

(

1
|z|

)]

(|z| → ∞; M0 > 0; ω ∈ C)

(59)
for some suitable constantsM0 and ω depending
essentially upon the sequence{κℓ}ℓ∈N0.Then, in terms of
the functionΘ(z) defined by (59), Srivastavaet al. [44]
introduced a remarkably deep generalization of the
extended Gamma functionΓp(z), the extended Beta
function Bp(α,β ) and the extended hypergeometric
functionFp(a,b;c;z) (see, for details, [6] and[5]) by

Γ ({κℓ}ℓ∈N0)
p (z) :=

∫ ∞

0
tz−1 Θ

(

{κℓ}ℓ∈N0;−t −
p

t

)

dt (60)

(

ℜ(z)> 0; ℜ(p)≧ 0
)

,

B
({κℓ}ℓ∈N0)
p (α,β ) =B({κℓ}ℓ∈N0)(α,β ;p)

:=
∫ 1

0
tα−1(1− t)β−1 Θ

(

{κℓ}ℓ∈N0;−
p

t(1− t)

)

dt

(61)
(

min{ℜ(α),ℜ(β )}> 0; ℜ(p)≧ 0
)

and

F
({κℓ}ℓ∈N0)
p (a,b;c;z) := 1

B(b,c−b)

∞
∑

n=0
(a)n B

({κℓ}ℓ∈N0)
p (b+n,c−b) zn

n!

(62)
(

|z|< 1; ℜ(c)> ℜ(b)> 0; ℜ(p)≧ 0
)

,

provided that the defining integrals in (60), (61) and (62)
exist.

Remark 9. In their special cases whenκℓ = 1 (ℓ ∈ N0),
the equations (60), (61) and (62) would reduce
immediately to the corresponding definitions of the
gamma functionΓ (z), the Beta functionB(α,β ) and the
hypergeometric function2F1(a,b;c;z), respectively. The
definition (4) of the Pochhammer symbol
(λ )ν (λ ,ν ∈ C) can thus be generalized as follows:

(

λ ;p,{κℓ}ℓ∈N0

)

ν :=
Γ ({κℓ}ℓ∈N0)
p (λ +ν)

Γ ({κℓ}ℓ∈N0)
p (λ )

(λ ,ν ∈ C).

(63)
Based upon the definition (63), we can introduce a

family of generalized hypergeometric functions given by

pFq





(

a1;p,{κℓ}ℓ∈N0

)

,a2, · · · ,ap;

b1, · · · ,bq;
z



 :=
∞
∑

n=0

(a1;p,{κℓ}ℓ∈N0)n
(a2)n···(ap)n

(b1)n···(bq)n
zn

n! ,

(64)
provided that the series on the right-hand side converges.
Indeed, whenever one or the other of the numerator
parametersa2, · · · ,ap in (64) is anonpositiveinteger, the

definition (64) will define the corresponding family of
hypergeometric polynomials.

Next, in his investigation of the asymptotic expansions
of a class ofbranch-cutintegrals occurring in diffraction
theory by means of the Wiener-Hopf technique, Kobayashi
(see [18] and [19]) encountered an integral of the following
type:

Γm(u,v) :=
∫ ∞

0

tu−1 e−t

(v+ t)m dt = vu−m
∫ ∞

0

tu−1 e−vt

(1+ t)m dt (65)

(

min{ℜ(u),ℜ(v)}> 0; m∈ N0
)

,

so that, in the special case whenm= 0 andv= 1, we have

Γ0(u,1) =
∫ ∞

0
tu−1 e−t dt =: Γ (u)

(

ℜ(u)> 0
)

. (66)

Remark 10. In view of their importance and usefulness in
diffraction theory and probability distributions, several
extensions and generalizations of the gamma-type
function Γm(u,v) defined by (66) were investigated in
recent years (see, for details, [45] for a systematic study
of a unified presentation of all such extensions and
generalizations).

Finally, by introducing a generalization of the
definition (4) of the Pochhammer symbol
(λ )ν (λ ,ν ∈ C) given by

(λ ;m,v)ν := Γm(λ+ν ,v)
Γm(λ ,v)

(

λ ,ν ∈ C; ℜ(v)> 0; m∈ N0
)

,

(67)
we can define a family of generalized hypergeometric
functions as follows:

pGq





(a1;m,v) ,a2, · · · ,ap;

b1, · · · ,bq;
z



 :=
∞
∑

n=0

(a1;m,v)n(a2)n···(ap)n
(b1)n···(bq)n

zn

n! ,

(68)
provided that each member of (68) exists. In fact,
whenever one or the other of the numerator parameters
a2, · · · ,ap in (68) is anonpositiveinteger, the definition
(68) will define the corresponding family of
hypergeometric polynomials.

Other (known or new) extensions of the familiar
(Euler’s) gamma functionΓ (z) will lead us similarly to
the corresponding generalizations of the definition (4) of
the Pochhammer symbol(λ )ν (λ ,ν ∈ C) and,
consequently, also to the resulting families of generalized
hypergeometric functions and generalized hypergeometric
polynomials. Moreover, by suitably applying the
methodology and techniques described fairly adequately
by Srivastavaet al. [37] and in the preceding sections,
one can derive analogous properties and relationships
involving such families of generalized hypergeometric
functions and generalized hypergeometric polynomials as
those stemming from the definitions (64) and (68).
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Appendix

Here, for the convenience of the interested reader, we
recall the celebratedLagrange Expansion Theorem(see,
for details, [28, p. 146, Problem 206] and [53, p. 133]; see
also [42, p. 354 et seq.]) and its such already used
consequences as the combinatorial identities (15) and
(16).

Lagrange Expansion Theorem.Let the functionϕ(z) be
holomorphic at the point z= z0 in the complex z-plane and
let

ϕ(z0) 6= 0. (A.1)

Suppose also that

z= z0+wϕ(z). (A.2)

Then an analytic function f(z), which is holomorphic at
the point z= z0, can be expanded in a power series in w
as follows:

f (z) = f (z0)+
∞

∑
n=1

wn

n!
dn−1

dzn−1

{

f ′(z)[ϕ(z)]n
}

∣

∣

∣

∣

z=z0

(A.3)

or, equivalently,

f (z)
1−wϕ ′(z)

=
∞

∑
n=0

wn

n!
dn

dzn

{

f (z)[ϕ(z)]n
}

∣

∣

∣

∣

z=z0

. (A.4)

For ϕ(z)≡ 1, both (A.3) and (A.4) evidently yield the
relatively more familiarTaylor-Maclaurin Expansion:

f (z) =
∞

∑
n=0

(z−z0)
n

n!
f (n)(z0). (A.5)

In order to derive (for example) thefirst combinatorial
identity (15), which we have already used in Section 2 of
this presentation, we set

z0 = 0, f (z) = (1+z)α and ϕ(z) = (1+z)β+1,
(A.6)

and then make the following notational changes:

w 7→ t and z 7→ ζ ,

whereα andβ are complex numbers independent ofn and
ζ is a function oft definedimplicitly by (17). Moreover,
as we pointed out in Section 2, the expansion formula (15)
can easily be shown to imply the expansion formula (16).
In fact, the expansion formulas (15) and (16) are equivalent
(see, for details, [42, pp. 354–356]).
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