
Appl. Math. Inf. Sci.7, No. 6, 2175-2188 (2013) 2175

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070607

FPGA Design for Pseudorandom Number Generator Based
on Chaotic Iteration used in Information Hiding Application
Jacques M. Bahi, Xiaole Fang∗, Christophe Guyeux and Laurent Larger

Femto-St Institute, University of Franche-Comté, France

Received: 20 Feb. 2013, Revised: 18 Jun. 2013, Accepted: 21 Jun. 2013
Published online: 1 Nov. 2013

Abstract: Lots of researches indicate that the inefficient generation of random numbers is a significant bottleneck for information
communication applications. Therefore, Field Programmable Gate Array(FPGA) is developed to process a scalable fixed-point method
for random streams generation. In our previous researches, we have proposed a technique by applying some well-defined discrete
chaotic iterations that satisfy the reputed Devaney’s definition of chaos, namely chaotic iterations (CI). We have formerly proven that
the generator with CI can provide qualified chaotic random numbers. In this paper, this generator based on chaotic iterations is optimally
redesigned for FPGA device. By doing so, the generation rate can be largely improved. Analyses show that these hardware generators
can also provide good statistical chaotic random bits and can be cryptographically secure too. An application in the information hiding
security field is finally given as an illustrative example.

Keywords: Information security, Pseudorandom number generator, Discrete chaotic iteration, Cryptographical security, FPGA.

1 Introduction

The extremely rapid development of the Internet brings
more and more attention to the information security
techniques, such as text, image, or video encryption, etc.
As a result, highly qualified random sequences, as an
inseparable part of encryption techniques, are urgently
required. There are two kinds of random sequences: real
random sequences generated by physical methods and
pseudorandom sequences generated by algorithm
simulations, which are in accordance with some kind of
probability distributions. The implementation methods for
different classes of random number generators are
visualized in Figure1. However, the constructions of the
real random sequences are usually poor in speed and
efficiency, and require considerably more storage space as
well, and these defects restrict their usage in modern
cryptography. On the one hand, field programmable gate
arrays (FPGAs) have been successfully used for realizing
the speed requirement in pseudorandom sequence
generation, due to their high parallelization
capability [1–3]. Advantages of such physical generation
way encompass performance, design time, power
consumption flexibility, and cost. On the other hand, there
is a growing interest to use chaotic dynamical systems as
PRNGs, among other things due to the unpredictability

and distorted-like properties of such systems ([4–6]).
Nowadays, such chaos-based generators have also been
successfully used to strengthen optical
communications [7].

A short overview of our previous researches is given
thereafter. It has firstly been stated that a tool called
chaotic iterations (CIs), used in distributed computing,
satisfies the chaotic property as it is defined by
Devaney [8]. The chaotic behavior of CIs has then been
exploited to obtain a class of unpredictable PRNGs [9].
This class receives two given, potentially defective,
generators as input and mix them with chaotic iterations,
producing by doing so a sequence having a better random
profile than the two inputs taken alone [10]. Then, in [11],
two new versions of such “CIPRNGs” have been
proposed, involving respectively two logistic maps and
two XORshifts.

In this paper, we continue the works initiated
in [9–12]: the two approaches introduced before are
merged by proposing a discrete chaos-based generator
designed on FPGA. The idea is to improve the efficiency
of our formerly proposed generators, without any lack of
chaos properties. To do so, a new model of CIPRNG
Version 1 [9] on Field Programmable Gate Array is
introduced and its security is proven in some cases.

∗ Corresponding author e-mail:xiaole.fang@univ-fcomte.fr

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070607

2176 Jacques M. Bahi et al : FPGA Design For Pseudorandom Number...

Random Number

 Generators

 True Random

Number Generators

 Pseudo Random

Number Generators

 Hardware

Implemented

 Software

Implemented

Digital RNGs Analog RNGs

Fig. 1: Implementations of random number generator classes

Additionally, the randomness of this novel proposal is
evaluated by the famous NIST test suite (widely used as a
randomness standard battery of tests [13]). Last but not
the least, a potential usage of this generator in a
cryptographic application is presented.

2 Definitions and terminologies

2.1 Notations

~1;N� → {1,2, . . . ,N}
Sn → thenth term of a sequenceS = (S1,S2, . . .)
vi → the ith component of a vector:v= (v1,v2, . . . ,vn)

strategy→ a sequence which elements belong in~1;N�
S → the set of all strategies

XN → the set of sequences belonging intoX
Ck

n → the binomial coefficient
(

n
k

)

= n!
k!(n−k)!

+ → the integer addition
≪ and≫→ the usual shift operators

N
∗ → the set of positive integers{1,2,3,...}

& → the bitwise AND
⊕ → the bitwise exclusive or between two integers.

2.2 Blum Blum Shub and XORshift

The Blum Blum Shub generator [14] (usually denoted by
BBS) takes the form:

xn+1 =
(

xn)2 mod m, yn+1 = xn+1 mod log(log(m)),

wherem is the product of two prime numbers (these prime
numbers need to be congruent to 3 modulus 4), andyn is
the returned binary sequence.

Algorithm 1 XORshift algorithm
Input : x (a 64-bit word)
Output : r (a 64-bit word)
Parameters: a,b,c (integers)

1: x← x⊕ (x≪ a);
2: x← x⊕ (x≫ b);
3: x← x⊕ (x≪ c);
4: r ← x;
5: An arbitrary round of XORshift

XORshift, on its part, is a category of very fast PRNGs
designed by George Marsaglia [15]. Algorithm 1 shows its
working procedure. The values ofa,b,c decide the offsets
of shifting.

2.3 Chaotic iterations

Definition 1.The setB denoting{0,1}, let f : BN −→ B
N

be an “iteration” function and S∈ S be a strategy. Then,
the so-calledchaotic iterationsare defined by [16]:



















x0 ∈BN,

∀n ∈N∗,∀i ∈ ~1;N�, xn
i =

{

xn−1
i if Sn , i

f (xn−1)Sn if Sn = i.
(1)

In other words, at thenth iteration, only theSn−th cell
is “iterated”. Note that in a more general formulation,Sn

can be a subset of components andf (xn−1)Sn can be
replaced byf (xk)Sn, wherek < n, describing for example
delays transmission. For the general definition of such
chaotic iterations, see, e.g., [16].

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2175-2188 (2013)/ www.naturalspublishing.com/Journals.asp 2177

Chaotic iterations generate a set of vectors (Boolean
vectors in this paper), they are defined by an initial state
x0, an iteration functionf , and a strategyS said to be a
“chaotic strategy”. Being an iterative process producing
binary vectors given a “seed”x0, such chaotic iterations
can be used as pseudorandom number generators. The
mathematical fundations of such a contruction is recalled
in the next section.

2.4 Chaotic iterations as PRNG

Our generator denoted byCI f (PRNG1,PRNG2) is
designed by the following process.

Let N ∈N∗,N> 2. Some chaotic iterations are fulfilled,
with f as iteration function andPRNG1 for strategy, to

generate a sequence(xn)n∈N ∈
(

B
N
)N

of Boolean vectors:
the successive states of the iterated system. Some of these
vectors are randomly extracted usingPRNG2, and their
components constitute our pseudorandom bit flow.

Chaotic iterations are realized as follows. Initial state
x0 ∈ BN is a Boolean vector taken as a seed and chaotic
strategy(Sn)n∈N ∈ ~1,N�

N is constructed with PRNG2.
Lastly, iterate functionf is the vectorial Boolean negation

f0 : (x1, ..., xN) ∈BN 7−→ (x1, ..., xN) ∈BN.

To sum up, at each iteration onlySi-th component of state
Xn is updated, as follows

xn
i =























xn−1
i if i , Si ,

xn−1
i if i = Si .

(2)

Finally, letM be a finite subset ofN∗. Somexn are
selected by a sequencemn as the pseudorandom bit
sequence of our generator, (mn)n∈N ∈ M

N . So, the
generator returns the following values: the components of
xm0

, followed by the components ofxm0+m1
, followed by

the components ofxm0+m1+m2
, etc. In other words, the

generator returns the following bits:

xm0
1 xm0

2 xm0
3 . . . x

m0
N xm0+m1

1 xm0+m1
2 . . . xm0+m1

N xm0+m1+m2
1 . . .

or the following integers:

xm0 xm0+m1 xm0+m1+m2 . . .

In details, when considering the Boolean negation and
two integer sequencesp and q, we obtain the
CIPRNG(p,q) version 1 published in [17]: p is S and the
output of the generator is the subsequence

(

xσ(n)
)

n∈N
,

whereσ(0)= q0 andσ(n+1)= σ(n)+qn. Reason to be of
the sequenceq is that, between two iterates of chaotic
iterations, at most 1 bit will change in the vector, and thus
the sequence (xn) cannot pass any statistical test: we must

extract a subsequence (xσ(n)) of (xn) to produce the
outputs. CIPRNG(p,q) version 2, for its part, will extract
a subsequence from the strategyS = p to prevent from
negating several times a same position between two
outputs.

Example 1.If we consider the Boolean negation forf ,
then chaotic iterations of Definition1 can be rewritten as:
xn+1 = xn⊕ sn, wheresn ∈ ~0,2N−1� is such that itsk−th
binary digit is 1 if and only ifk ∈ Sn. Such a particular
chaotic iterations will be our generator called XOR
CIPRNG [18].

2.5 PRNGs based on chaotic iterations

Let us now recall with more details some previous works
in the field of CIPRNGs: chaotic iteration based
pseudorandom number generators.

2.5.1 CIPRNG(PRNG1,PRNG2): Version 1

Let PRNG1 and PRNG2 be two given generators
provided as input, or “entropy sources”. The objective of
the CIPRNG approach is to mix them together using
chaotic iterations, in such a way that chaos improve their
statistics against well-known batteries of tests, while the
speed of the resulted mixed PRNGs is of the same order
than the slowest input. Additionally, we will show in a
further section that if the PRNG1 is cryptographically
secure, then it is the case too for the mixed
CIPRNG(PRNG1,PRNG2). Thus expected properties of
entropy sources could be, for instance, speed for PRNG2
and security or good statistical properties for PRNG1,
even though, theoretically speaking, nothing is required
for these inputs except that they must not be totally
defective (chaos cannot correct constant inputs for
instance).

Some chaotic iterations are fulfilled (see Flow chart2)

to generate a sequence(xn)n∈N ∈
(

B
N
)N

of Boolean
vectors, which are the successive states of the iterated
system. Some of these vectors are randomly extracted and
their components constitute the pseudorandom bit
flow [9]. Chaotic iterations are realized as follows. The
initial statex0 ∈ BN is a Boolean vector taken as a seed
and the chaotic strategy(Sn)n∈N ∈ ~1,N�

N is constructed
with PRNG2. At each iteration, only theSi-th component
of statexn is updated. Finally, somexn are selected by a
sequence mn, obtained using the PRNG1, as the
pseudorandom bit sequence of our generator.

The basic design procedure of the first version of the
CIPRNG generator is summed up in Algorithm2. The
internal state isx, whereasa and b are computed by
PRNG1 and PRNG2. See Table2 for a run example of
this CIPRNG version 1.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2178 Jacques M. Bahi et al : FPGA Design For Pseudorandom Number...

Table 1: Running example of CIPRNG version 1

m : 4 5 4

S 2 4 2 2 5 1 1 5 5 3 2 3 3

x0 x4 x9 x13

1 1
1
−→ 0

1
−→ 1 1 1

0
2
−→ 1

2
−→ 0

2
−→ 1 1 1

2
−→ 0 0

1 1 1
3
−→ 0

3
−→ 1

3
−→ 0 0

0
4
−→ 1 1 1 1

0 0
5
−→ 1

5
−→ 0

5
−→ 1 1 1

Output:x0
1x0

2x0
3x0

4x0
5x4

1x4
2x4

3x4
4x4

5x9
1x9

2x9
3x9

4 x9
5x13

1 x13
2 x13

3 x13
4 x13

5 ... = 10100111101111110011...

Fig. 2: Flow chart of CIPRNG version 1

2.5.2 CIPRNG(PRNG1,PRNG2): Version 2

The second version of the CI-based generators is
designed by the following process [11]. First of all, some
chaotic iterations have to be done to generate a sequence

(xn)n∈N ∈
(

B
32
)N

of Boolean vectors, which are the
successive states of the iterated system. Some of these
vectors will be randomly extracted and the pseudorandom
bit flow will be constituted by their components. Such
chaotic iterations are realized as follows.

–Initial statex0 ∈BN is a Boolean vector taken as a seed.

Algorithm 2 An arbitrary round of the CIPRNG
Version 1
Input: the internal statex (an array ofN 1-bit words)
Output: an arrayr of N 1-bit words
1: a← PRNG1();
2: m← a mod2+c;
3: while i = 0, . . . ,mdo
4: b← PRNG2();
5: S← b modN;
6: xS← xS;
7: end while
8: r ← x;
9: returnr;

–Chaotic strategy(Sn)n∈N ∈ ~1,N�
N is an irregular

decimation of the PRNG2 sequence.

At each iteration, only theSi-th component of statexn is
updated using the vectorial negation, as follows:xn

i = xn−1
i

if i , Si , elsexn
i = xn−1

i . Finally, somexn are selected by a
sequencemn as the pseudorandom bit sequence of our
generator, where (mn)n∈N ∈ M

N is computed from
PRNG1. The basic design procedure of this CIPRNG
Version 2 generator is summarized in Algorithm3. The
internal state isx. a andb are those computed by the two
inputted PRNGs. Finally, the valuem is the integers
sequence defined in Eq.(3).

mn = g1(Sn) =















































0 if 0 6 Sn <C0
32,

1 if C0
326 Sn <

∑1
i=0Ci

32,

2 if
∑1

i=0Ci
326 Sn <

∑2
i=0Ci

32,
...

...

N if
∑N−1

i=0 Ci
326 Sn < 1.

(3)

3 Security Analysis of CIPRNG Version 1

In this section the concatenation of two stringsu and v
is classically denoted byuv. In a cryptographic context,

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2175-2188 (2013)/ www.naturalspublishing.com/Journals.asp 2179

Algorithm 3 An arbitrary round of the CIPRNG
Version 2
Input: the internal statex (N bits)
Output: a stater of N bits
1: for i = 0, . . . ,N do
2: di ← 0
3: end for
4: a← PRNG1()
5: m← g1(a)
6: k←m
7: while i = 0, . . . ,k do
8: b← PRNG2() modN
9: S← b

10: if dS = 0 then
11: xS← xS
12: dS← 1
13: else ifdS = 1 then
14: k← k+1
15: end if
16: end while
17: r ← x
18: returnr

a pseudorandom generator is a deterministic algorithmG
transforming strings into strings and such that, for any seed
s of length m,G(s) (the output ofG on the inputs) has
size lG(m) with lG(m) > m. The notion of secure PRNGs
can now be defined as follows.

3.1 Algorithm expression conversion

For the convenience of security analysis, CIPRNG Version
1 detailed in Algorithm2 is converted as in Eq.(4), where
internal state isx, S andT are those computed by PRNG1
and PRNG2, whereas at each round,xn−1 is updated toxn.







































x0 ∈ ~0,2N−1�,S ∈ ~0,2N−1�N,T ∈ ~0,2N−1�N

C = Sn&1 +3∗N
w0 = Tm mod N,w1 = Tm+1&3, ...wC−1 = Tm+C−1&3
dn = (1≪ w0)⊕ (1≪ w1)⊕ ...(1≪ wC−1)
∀n ∈N∗, xn = xn−1⊕dn.

(4)

3.2 Security notion

Definition 2.A cryptographic PRNG G is secure if for any
probabilistic polynomial time algorithm D, for any
polynomial p, and for all sufficiently large m’s,

|Pr[D(G(Um)) = 1]−Pr[D(UlG(m)) = 1] <
1

p(m)
, (5)

where Ur is the uniform distribution over{0,1}r and the
probabilities are taken over Um, UlG(m) as well as over the
internal coin tosses of D.

Intuitively, it means that there is no polynomial time
algorithm that can distinguish a perfect uniform random
generator fromG with a non negligible probability. Note
that it is quite easily possible to change the functionl into
any polynomial functionl′ satisfyingl′(m) >m.

The generation schema developed in Eq.4 is based on
two pseudorandom generators. LetH be the “PRNG1”
and I be the “PRNG2”. We may assume, without loss of
generality, that for any stringS0 of size L, the size of
H(S0) is kL, then for any stringT0 of sizeM, it hasI (T0)
with kN, k > 2. It means thatlH(N) = kL andl I (N) = kM.
Let S1, ...,Sk be the string of lengthL such that
H(S0) = S1...Sk and T1, ...,Tk be the string of lengthM
s.t. H(S0) = T1...Tk (H(S0) and I (T0) are the
concatenations ofSi ’s andTi ’s).

The generatorX defined in Algorithm4 is mapping
any stringx0S0T0, of length L +M + N, into the string
x0 ⊕ d1, x0 ⊕ d1 ⊕ d2, ...(x0

⊕i=k
i=0di), c.f. Eq.(4). One in

particular has lX(L + M + N) = kN = lH(N) and
k> M+ L+N. We announce that if the inputted generator
H is cryptographically secure, then the new one defined
in Eq.(4) is secured too.

Proposition 1.If PRNG1 is a secure cryptographic
generator, then for all PRNG2, we can have that X is a
secure cryptographic PRNG too.

Proof.The proposition is proven by contraposition.
Assume thatX is not secure. By definition, there exists a
polynomial time probabilistic algorithmD, a positive
polynomial p, such that for all k0 there exists
L+M+N ≥ k0 satisfying

|Pr[D(X(UL+M+N))=1]−Pr[D(UkN=1)]| ≥
1

p(L+M+N)
.

Consider a wordw of sizekL.

1.Decomposew into w= w1...wk.
2.Pick a stringy of sizeN uniformly at random.
3.Pick a string of size (3kN+

∑ j=k
j=1(w j&1))M: u.

4.Decomposeu into u= u1...u3kN+
∑ j=k

j=1(w j&1)
.

5.Defineti = (
⊕ j=3N(i)+(

∑ j=i
j=1(w j&1))

l=3N(i−1)+(
∑l=i−1

l=1 (w j&1))+1
(1<< ul)).

6.Computez= (y⊕ t1)(y⊕ t1⊕ t2)...(y
⊕i=k

i=1(ti)).
7.ReturnD(z).

On one hand, consider for eachy∈BkN the functionϕy

from BkN into BkN mappingt = t1 . . . tk (eachti has length
N) to (y⊕ t1)(y⊕ t1⊕ t2) . . . (y

⊕i=k
i=1 ti). On the other hand,

treat eachul ∈ B
(3Nk+

∑ j=k
j=0(w j&1))M by the functionφu from

B
(3kN+

∑ j=k
j=0(wi&1))M into BkN mappingw = w1 . . .wk (each

wi has lengthL) to:
(
⊕l=3N+(w1&1)

l=1 (1<< ul))((
⊕l=6N+(w1&1)+(w1&1)

l=1+3N+(w1&1) (1<< ul))

. . . (
⊕l=3Nk+

∑ j=k
j=1(w j&1)

l=3N(k−1)+
∑ j=k−1

j=1 (w j&1)
(1<< ul)).

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2180 Jacques M. Bahi et al : FPGA Design For Pseudorandom Number...

By construction, one has for everyw,

D′(w) = D(ϕy(φu(w))). (6)

Therefore, and using Eq.(6), one has
Pr[D′(UkL) = 1] = Pr[D(ϕy(φu(UkL))) = 1]
and, therefore,

Pr[D′(UkL) = 1] = Pr[D(UkN) = 1]. (7)

Now, using Eq.(6) again, one has for everyx,

Pr[D′(UH(x)) = 1] = Pr[D(ϕy(φu(UH(x)))) = 1]. (8)

Since wherey and u j are randomly generated. By
construction,ϕy(φu(x)) = X(yu1w), hence

Pr[D′(H(UkL)) = 1] = Pr[D(X(UN+M+L)) = 1]. (9)

Compute the difference of Eq.(9) and Eq.(8), one can
deduce that there exists a polynomial time probabilistic
algorithmD′, a positive polynomialp, such that for allk0
there existsL+M+N ≥ k0 satisfying

|Pr[D′(H(UKL)) = 1]−Pr[D(UkL) = 1]| ≥
1

p(L+M+N)
,

proving thatH is not secure, which is a contradiction.

Compared to stream ciphers, which are symmetric
key ciphers where plaintext digits are combined with a
pseudorandom cipher digit stream (keystream), the
CIPRNG method can be described as a post-treatment on
two inputted PRNGs, that:

1.add chaotic properties to these generators,
2.by doing so, improve their statistical properties when

the inputs are defective,
3.while preserving their security, for instance when one

of the input is cryptographically secure.

If PRNG1 is already used as a keystream in a stream
cipher, because it is cryptographically secure, then the
combined CIPRNG(PRNG1,XORshift), which runs
potentially faster than PRNG1, can be used too as a
keystream. The security comparison between CIPRNG
and other designs is thus summarized in Proposition1:
the security of
CIPRNG(PRNG1,PRNG2) is directly related to the one
of PRNG1, meaning that if PRNG1 is secure, then the
resulted CIPRNG is secure too.

4 CIPRNG Version 1 Designed for FPGA

4.1 An efficient and cryptographically secure
PRNG based on CIPRNG Version 1

In Algorithm 4 is given an efficient and cryptographically
secure generator suitable for FPGA applications. It is

Algorithm 4 An efficient and cryptographically secure
generator based on CIPRNG version 1
Notice: xorshift1, xorshift2 (64-bit XORshift generators)
Input : z (a 16-bit word)
Output : r (a 16-bit word)

1: x← xorshi f t1();
2: y← xorshi f t2();
3: z1← x&0x f f f f f f f f
4: z2← (x>> 32)&0x f f f f f f f f
5: z3← y&0x f f f f f f f f
6: z4← (y>> 32)&0x f f f f f f f f
7: t← bbs();
8: t1← t&1;
9: t2← t&2;

10: t3← t&4;
11: t4← t&8;
12: w1← 0;
13: w2← 0;
14: w3← 0;
15: w4← 0;
16: while i = 0, . . . ,11do
17: w1← (w1⊕ (1≪ ((z1≫ (i ×2))&3)));
18: w2← (w2⊕ (1≪ ((z2≫ (i ×2))&3)));
19: w3← (w3⊕ (1≪ ((z3≫ (i ×2))&3)));
20: w4← (w4⊕ (1≪ ((z4≫ (i ×2))&3)));
21: end while
22: if (t1, 0) then w1← (w1⊕ (1≪ ((z1≫ 24)&3)));
23: if (t2, 0) then w2← (w2⊕ (1≪ ((z2≫ 24)&3)));
24: if (t3, 0) then w3← (w3⊕ (1≪ ((z3≫ 24)&3)));
25: if (t4, 0) then w4← (w4⊕ (1≪ ((z4≫ 24)&3)));
26: z← z⊕w1⊕ (w2≪ 4)⊕ (w3≪ 8)⊕ (w4≪ 12);
27: r ← z;
28: return r;

based on CIPRNG Version 1 and thus presents a good
random statistical profile.

The internal statex is a vector of 16 bits, whereas two
64-bit XORshift generators (xorshi f t1(), xorshi f t2()) are
provided as entropy sources. As it can be seen in the
algorithm, the two outputs of XORshift generators are
spread into four 32-bit integers. Then for each integer,
there are 16 2−bits components that can be found; every
12 of these components are used to update the states.
Lastly, the 4 least significant bits (LSBs) of the output
bbs() of the Blum Blum Shub generator decide if the state
must be updated with the considered 13-bits block or not.

According to Section3, this generator based on
CIPRNG version 1 can turn to be cryptographically
secure, if the PRNG1 entropy source is cryptographically
secure. Here, this inputted generator is the well known
BBS, which is believed to be the most secured PRNG
method currently available [19]. The t value is computed
by a BBS with a modulom equal to 32 bits. Then the
log(log(m)) LSBs oft can be treated as secure, this is why
we only considerate 4 LSBs in this algorithm.

Following the approach detailed in [10], we thus have
used chaotic iterations in order to improve the statistical

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2175-2188 (2013)/ www.naturalspublishing.com/Journals.asp 2181

x

>>

s1

X

O

R

<<

s2

X

O

R

>>

s1

X

O

R

feedback

(a) XORshift

b

0
b_extend

b
2

%

m

feedback
(b) BBS

BBS

xorshift1

xorshift2

 First

32-bits

Second

 32-bits

 First

32-bits

Second

 32-bits

1 2 3 4 5 6 7 8 9 1011 12 13

16 2-bits blocks

1 2 3 4 5 6 7 8 9 1011 12 13

16 2-bits blocks

1 2 3 4 5 6 7 8 9 1011 12 13

16 2-bits blocks

1 2 3 4 5 6 7 8 9 1011 12 13

16 2-bits blocks

1 2 3 4

if not 0 then pass

if not 0 then pass

if not 0 then pass

if not 0 then pass

shift and Xor

 compute

shift and Xor

 compute

shift and Xor

 compute

shift and Xor

 compute

First 4-bits

Second 4-bits

Third 4-bits

Fourth 4-bits

16-bits

Integer

States
 XOR

operation

Feedback

(c) The proposed CIPRNG

Fig. 3: The processing structure for BBS in FPGA (per clock step)

behavior of the inputted generators. Here, two coupled 64
bits XORshift generators together with one BBS are
applied. By doing so, we obtain in Algorithm4 a
generator being both chaotic and cryptographically
secure [18].

Table 2 shows the test results of the proposed
CIPRNG against the NIST battery [13]. Results of
XORshift and BBS are provided too. According to NIST
test suite, the sole BBS generator algorithm cannot
produce a statistically perfect output. This is not
contradictory with Prop.1, as the cryptographically
secure property is an asymptotic one: even though the
Blum Blum Shum generator is cryptographically secure
(which is a property independent from the chosen modulo
m), the very small value chosen form makes it unable to
pass the NIST battery. Obviously, best statistical
performances are obtained using the proposed CIPRNG.

4.2 FPGA Design

In order to take benefits from the computing power of
FPGA, a whole processing needs to spread into several
independent blocks of threads that can be computed
simultaneously. In general, the larger the number of
threads is, the more logistic elements of FPGA are used,
and the less branching instructions are used (if, while, ...),
the better the performances on FPGA are. Obviously,
having these requirements in mind, it is possible to build a
program similar to the algorithm presented in Algorithm
4, which produces pseudorandom numbers with chaotic
properties on FPGA. To do so, Verilog-HDL [20] has
been used to help programming. In this generator, there
are three PRNG objects that use the exclusive or
operation, two XORshifts, and a BBS, their processing
are described thereafter.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2182 Jacques M. Bahi et al : FPGA Design For Pseudorandom Number...

Table 2: NIST SP 800-22 test results (PT)

Method CIPRNG XORshift BBS

Frequency (Monobit) Test 0.073128 0.145326 0.32435

Frequency Test within a Block 0.719128 0.028817 0.000000

Runs Test 0.314992 0.739918 0.000000

Longest Run of Ones in a Block Test 0.445121 0.554420 0.000000

Binary Matrix Rank Test 0.888124 0.236810 0.000000

Discrete Fourier Transform (Spectral) Test 0.912003 0.514124 0.000000

Non-overlapping Template Matching Test* 0.500459 0.512363 0.000000

Overlapping Template Matching Test 0.702445 0.595549 0.000000

Universal Statistical Test 0.666230 0.122325 0.000000

Linear Complexity Test 0.475761 0.249284 0.000000

Serial Test* (m=10) 0.780099 0.495847 0.043355

Approximate Entropy Test (m=10) 0.679102 0.000000 0.000000

Cumulative Sums (Cusum) Test* 0.819200 0.074404 0.000000

Random Excursions Test* 0.697803 0.507812 0.000000

Random Excursions Variant Test* 0.338243 0.289594 0.000000

Success 15/15 14/15 2/15

4.2.1 Design of XORshift

The structure of XORshift designed in Verilog-HDL is
shown in Figure3(a). There are four inputs:

–The first one is the initial state, which costs 64 bits of
register units,

–the other three ones are used to define the shift
operations.

Let us remark that, in FPGA, this shift operation costs
nothing, as it simply consists in using different bit cells of
the input. We can thus conclude that there are
64− s1+64− s2+64− s3= 192− s1− s2− s3 logic gates
elements that are required for the XORshifts processing.

4.2.2 Design of BBS

Figure 3(b) gives the proposed design of the BBS
generator in FPGAs. There are two inputs of 32 bits,
namelyb andm. Registerb stores the state of the system
at each time (after the square computation).m is also a
register that saves the value ofM, which must not change.
Another registerb extendis used to combineb to a data
having 64 bits, with a view to avoid overflow. After the
last computation, the three LSBs from the output of % are
taken as output. Let us notice that a BBS is performed at
each time unit.

4.2.3 Design of CI

Two XORshifts and one BBS are connected to work
together, in order to compose the proposed CIPRNG (see

Figure3(c)). As it can be shown, the four bits of the BBS
output are switches for the corresponding 32 bits outputs
from XORshift. Every round of the processing costs two
time units to be performed: in the first clock, the three
PRNGs are processed in parallel, whereas in the second
one, the results of these generators are combined with the
current state of the system, in order to produce the output
of 16 bits.

In our experiments, the typeEP2C8Q208C8 from
Altera company’s CYCLONE II FPGA series has been
used. By default, its working frequency is equal to 50
MHz. However, it is possible to increase it until 400 MHz
by using the phase-lock loop (PLL) device. In that
situation, the CIPRNG designed on this FPGA can
produce over 6000 Mbits per second (that is,
400(MHz)× 16(bits), see Figure4), while using 6114 of
the 8256 logic elements inEP2C8Q208C8. This is nearly
30 times faster than when it is processed in continuous
method.

In the next section, an application of this CSPRNG
designed on FPGA in the information hiding security
fields is detailed, to show that this hardware
pseudorandom generator is ready to use.

5 An Information Hiding Application

Information hiding has recently become a major
information security technology, especially with the
increasing importance and widespread distribution of
digital media th-rough the Internet [21]. It includes
several techniques like digital watermarking. The aim of

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2175-2188 (2013)/ www.naturalspublishing.com/Journals.asp 2183

clock

xorshift1

xorshift2

bbs

CIPRNG

11111011001

10011000011

00101101010

10001001100

11000011001

011011010

01011101001

11111011010

00011000100

11100100100

00011011000

000010111

101

NAN
010101000

100110111

010100110

00000

11110000000

00100011100

00111100010

00111101000

10000010100

010001111

10110000001

00100011010

01010010100

01000100000

11110000101

100100000

101

001010001

110101011

101110110

10100

00111000000

00101000101

10101000100

11110010001

01001000011

001000100

00111101001

00001001001

01011100011

10110010011

00010001111

101101011

000

001011011

100111011

011101000

00111

...

...

...

...

Fig. 4: Outputs of each component in clock step unit

digital watermarking is to embed a piece of information
into digital documents, such as pictures or movies. This is
for a large panel of reasons, such as: copyright protection,
control utilization, data description, content
authentication, and data integrity. For these reasons, many
different watermarking schemes have been proposed in
recent years. Digital watermarking must have essential
characteristics, including: security, imperceptibility, and
robustness. Chaotic methods have been proposed to
encrypt the watermark before embedding it in the carrier
image for these security reasons. In this paper, a
watermarking algorithm based on the chaotic PRNG
presented above is given, as an illustration of use of this
PRNG based on CI.

5.1 Most and least significant coefficients

The definitions of most and least significant coefficients
are shown at first, as they have been formerly introduced
in [22,23].

Definition 3.For a given image, the most significant
coefficients (in short MSCs), are coefficients that allow
the description of the relevant part of the image,i.e., its
most rich part (in terms of embedding information),
through a sequence of bits.

Definition 4.By least significant coefficients (LSCs), we
mean a translation of some insignificant parts of a
medium in a sequence of bits (insignificant can be
understand as: “which can be altered without sensitive
damages”).

These LSCs can be for example, the last three bits of
the gray level of each pixel, in the case of a spatial domain
watermarking of a gray-scale image.

In the proposed application, LSCs are used during the
embedding stage: some of the least significant coefficients
of the carrier image will be chaotically chosen and
replaced by the bits of the mixed watermark. With a large
number of LSCs, the watermark can be inserted more
than once and thus the embedding will be more secure
and robust, but also more detectable. The MSCs are only
useful in the case of authentication: encryption and
embedding stages depend on them. Hence, a coefficient
should not be defined at the same time, as a MSC and a
LSC; the last can be altered, while the first is needed to
extract the watermark. For a more rigorous definition of
such LSCs and MSCs see,e.g., [24].

5.2 Stages of the algorithm

We recall now a formerly introduced watermarking
scheme, which consists of two stages: (1) mixture of the
watermark and (2) its embedding [25].

5.2.1 Watermark mixture

Firstly, for safety reasons, the watermark can be mixed
before its embedding into the image. A common way to
achieve this stage is to use the bitwise exclusive or
(XOR), for example, between the watermark and the
above PRNG. In this paper and similarly to [25], we will
use another mixture scheme based on chaotic iterations.
Its chaotic strategy, defined with our PRNG, will be
highly sensitive to the MSCs, in the case of an
authenticated watermark, as stated in [12].

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2184 Jacques M. Bahi et al : FPGA Design For Pseudorandom Number...

5.2.2 Watermark embedding

Some LSCs will be substituted by all bits of the possibly
mixed watermark. To choose the sequence of LSCs to be
altered, a number of integers, less than or equal to the
numberN of LSCs corresponding to a chaotic sequence
(

Uk
)

k
, is generated from the chaotic strategy used in the

mixture stage. Thus, theUk-th least significant coefficient
of the carrier image is substituted by thekth bit of the
possibly mixed watermark. In the case of authentication,
such a procedure leads to a choice of the LSCs that are
highly dependent on the MSCs.

5.2.3 Extraction

The chaotic strategy can be regenerated, even in the case
of an authenticated watermarking because the MSCs have
not been changed during the stage of embedding the
watermark. Thus, the few altered LSCs can be found, the
mixed watermark can then be rebuilt, and the original
watermark can be obtained. If the watermarked image is
attacked, then the MSCs will change. Consequently, in
the case of authentication and due to the high sensitivity
of the embedding sequence, the LSCs designed to receive
the watermark will be completely different. Hence, the
result of the recovery will have no similarity with the
original watermark: authentication is reached.

5.3 The FPGA setting

The 32-bit embedded-processor architecture designed
specifically for the Altera family of FPGAs is applied in
this information hiding specific application. Nios II
incorporates many enhancements over the original Nios
architecture, making it more suitable for a wider range of
embedded computing applications, from DSP to
system-control [26].

Figure 5(a) shows the structure of this application.
The NIOS II system can read the image from the HOST
computer side. Via the bus control, pseudorandom bits are
produced into the FPGA and according to the CIPRNG.
Then the results are transmitted back into the host.

In Figure5(b), the NIOS II is using the most powerful
version the CYCLONE II can support (namely, the NIOS
II /f one). 4 KB on chip memory and 16 MB SDRAM are
set, and thePLL device is used to enhance the clock
frequency from 50 to 200 MHz. Finally, the data
connection bus NIOS II system and generator works in 32
bits.

5.4 Results

For evaluating the efficiency and the robustness of the
application, some attacks are performed on some

chaotically watermarked images. For the attacks, the
similarity percentages with the original watermark are
computed. These percentages are the numbers of equal
bits between the original and the extracted watermark,
shown as a percentage. A result less than or equal to 50%
implies that the image has probably not been
watermarked.

5.4.1 Cropping attack

In this kind of attack, a watermarked image is cropped. In
this case, the results in Tab.3 have been obtained. In
Figure6, the decrypted watermarks are shown after a crop
of 50 pixels and after a crop of 10 pixels, in the
authentication case.

By analyzing the similarity percentage between the
original and the extracted watermark, we can conclude
that in the case of unauthentication, the watermark still
remains after a cropping attack. The desired robustness is
reached. It can be noticed that cropping sizes and
percentages are rather proportional. In the case of
authentication, even a small change of the carrier image
(a crop by 10× 10 pixels) leads to a really different
extracted watermark. In this case, any attempt to alter the
carrier image will be signaled, thus the image is well
authenticated.

5.4.2 Rotation attack

Let rθ be the rotation of angleθ around the center
(128,128) of the carrier image. So, the transformation
r−θ ◦ rθ is applied to the watermarked image. The results
in Tab.3 have been obtained. The same conclusion as
above can be declaimed.

5.4.3 JPEG compression

A JPEG compression is applied to the watermarked
image, depending on a compression level. This attack
leads to a change of the representation domain (from
spatial to DCT domain). In this case, the results in Tab.3
have been obtained, illustrating a good authentication
through JPEG attack. As for the unauthentication case,
the watermark still remains after a compression level
equal to 10. This is a good result if we take into account
the fact that we use spatial embedding.

5.4.4 Gaussian noise

A watermarked image can be also attacked by the addition
of a Gaussian noise, depending on a standard deviation. In
this case, the results in Tab.3 are obtained, which are quite
satisfactory another time.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2175-2188 (2013)/ www.naturalspublishing.com/Journals.asp 2185

HOST PC

NIOS II

control bus

 CI

Generator

processing

(a) General structure

(b) Schematic view

Fig. 5: NIOS II setting in FPGA

(a)
Unauthentication
(10×10)

(b)
Authentication
(10×10)

(c)
Unauthentication
(50×50)

Fig. 6: Extracted watermark after a cropping attack (zoom
×2)

5.5 Discussion

Generally, the quality of a PRNG depends, to a large
extent, on the following criteria: randomness, uniformity,
independence, storage efficiency, and reproducibility. A
chaotic sequence may satisfy these requirements and also
other chaotic properties, as ergodicity, entropy, and
expansivity. A chaotic sequence is extremely sensitive to

the initial conditions. That is, even a minute difference in
the initial state of the system can lead to enormous
differences in the final state, even over fairly small
timescales. Therefore, chaotic sequence fits the
requirements of pseudorandom sequence well. Contrary
to XORshift, our generator possesses these chaotic
properties [17, 27]. However, despite a large number of
papers published in the field of chaos-based
pseudorandom generators, the impact of this research is
rather marginal. This is due to the following reasons:
almost all PRNG algorithms using chaos are based on
dynamical systems defined on continuous sets (e.g., the
set of real numbers). So these generators are usually slow,
requiring considerably more storage space and lose their
chaotic properties during computations. These major
problems restrict their use as generators [28].

In the CIPRNG method, we do not simply integrate
chaotic maps hoping that the implemented algorithm
remains chaotic. Indeed, the PRNG we conceive is just
discrete chaotic iterations and we have proven in [27] that
these iterations produce a topological chaos as defined by
Devaney: they are regular, transitive, and sensitive to

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2186 Jacques M. Bahi et al : FPGA Design For Pseudorandom Number...

Table 3: Robustness agains attacks

Attacks UNAUTHENTICATION AUTHENTICATION

C
ro

pp
in

g Size (pixels) Similarity Size (pixels) Similarity

10 99.18% 10 50.06%
50 96.13% 50 54.44%
100 91.21% 100 52.04%
200 66.16% 200 50.88%

R
ot

at
io

n

Angle (degree) Similarity Angle (degree) Similarity

2 96.11% 2 71.41%
5 93.66% 5 60.03%
10 92.55% 10 53.87%
25 82.05% 25 50.09%

JP
E

G
co

m
pr

es
si

on

Compression Similarity Compression Similarity

2 81.90% 2 53.79%
5 66.43% 5 55.51%
10 61.82% 10 51.24%
20 54.17% 20 47.33%

G
au

ss
ia

n
no

is
e

Standard dev. Similarity Standard dev. Similarity

1 75.16% 1 51.05%
2 62.33% 2 50.35%
3 56.34% 3 49.95%

initial conditions. This famous definition of a chaotic
behavior for a dynamical system implies unpredictability,
mixture, sensitivity, and uniform repartition. Moreover,as
only integers are manipulated in discrete chaotic
iterations, the chaotic behavior of the system is preserved
during computations, and these computations are fast.

These chaotic properties are behind the observed
robustness of the proposed information hiding scheme:
transitivity, for instance, implies that the watermark is
spread over the whole host image, making it impossible to
remove it by a simple crop. Regularity implies that the
watermark is potentially inserted several times,
reinforcing the robustness obtained by topological mixing
and transitivity. Expansivity and sensitivity guarantee us
that authentication is reached, as in an authenticated
watermarking, MSBs are taken into account, and even a
slight alteration of these bits leads to a completely
different extracted watermark due to these metrical
properties. Finally, unpredictability plays obviously an
important role in the security of the whole process againts
malicious attacks, even if this role is difficult to measure
precisely in practice.

6 Conclusion and future work

In this paper, the pseudorandom generator proposed in
our former research work has been developed in terms of
efficiency. We also have proven that this generator based
on hardware can be cryptographically secure. By using a
BBS generator and due to a new approach in the way the
Version 1 CI PRNG uses its strategies, the generator
based on chaotic iterations works faster and is more
secure. This new CIPRNG is able to pass NIST test suite
when considering software implementation, and to reach
6000 Mbps (with the throughtput is about 132/16 each
processing round) in FPGA hardware. These
considerations enable us to claim that this CIPRNG(BBS,
XORshift) offers a sufficient speed and level of security
for a whole range of applications where secure generators
are required as cryptography and information hiding.

In future work, we will continue to explore new
strategies and iteration functions. The chaotic behavior of
the proposed generator will be deepened by using the
various tools provided by the mathematical theory of
chaos. Additionally a probabilistic study of its security
will be done. Lastly, new applications in computer
science will be proposed, among other things in the
Internet security field.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 6, 2175-2188 (2013)/ www.naturalspublishing.com/Journals.asp 2187

References

[1] Slobodan Bojanic, Gabriel Caffarena, Slobodan Petrovic,
and Octavio Nieto-Taladriz. Fpga for pseudorandom
generator cryptanalysis. Microprocessors and
Microsystems, 30(2):63 – 71, 2006.

[2] J. L. Danger, S. Guilley, and P. Hoogvorst. High speed true
random number generator based on open loop structures
in fpgas. Microelectron. J., 40(11):1650–1656, November
2009.

[3] K. H. Tsoi, K. H. Leung, and P. H. W. Leong. Compact
fpga-based true and pseudo random number generators. In
Proceedings of the 11th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM ’03,
pages 51–61, Washington, DC, USA, 2003. IEEE Computer
Society.

[4] Massimo Falcioni, Luigi Palatella, Simone Pigolotti, and
Angelo Vulpiani. Properties making a chaotic system a good
pseudo random number generator.Phys. Rev. E, 72:016220,
Jul 2005.

[5] Songul Cecen, R. Murat Demirer, and Coskun Bayrak. A
new hybrid nonlinear congruential number generator based
on higher functional power of logistic maps.Chaos, Solitons
& amp; Fractals, 42(2):847 – 853, 2009.

[6] Po-Han Lee, Yi Chen, Soo-Chang Pei, and Yih-Yuh Chen.
Evidence of the correlation between positive lyapunov
exponents and good chaotic random number sequences.
Computer Physics Communications, 160(3):187 – 203,
2004.

[7] Laurent Larger and John M. Dudley. Nonlinear dynamics:
Optoelectronic chaos.Nature, 465(7294):41–42, 05 2010.

[8] Robert L. Devaney.An Introduction to Chaotic Dynamical
Systems, 2nd Edition. Westview Pr (Short Disc), March
2003.

[9] Jacques Bahi, Christophe Guyeux, and Qianxue Wang. A
novel pseudo-random generator based on discrete chaotic
iterations. InINTERNET’09, 1-st Int. Conf. on Evolving
Internet, pages 71–76, Cannes, France, August 2009.

[10] Jacques Bahi, Xiaole Fang, and Christophe Guyeux. An
optimization technique on pseudorandom generators based
on chaotic iterations. InINTERNET’2012, 4-th Int. Conf. on
Evolving Internet, pages 31–36, Venice, Italy, June 2012.

[11] Jacques Bahi, Xiaole Fang, Christophe Guyeux, and
Qianxue Wang. Evaluating quality of chaotic pseudo-
random generators. application to information hiding.IJAS,
International Journal On Advances in Security, 4(1-2):118–
130, 2011.

[12] Jacques Bahi and Christophe Guyeux. Topological chaos
and chaotic iterations, application to hash functions. In
IJCNN’10, Int. Joint Conf. on Neural Networks, joint
to WCCI’10, IEEE World Congress on Computational
Intelligence, pages 1–7, Barcelona, Spain, July 2010. Best
paper award.

[13] Andrew Rukhin, Juan Soto, James Nechvatal, Elaine
Barker, Stefan Leigh, Mark Levenson, David Banks,
Alan Heckert, James Dray, San Vo, Andrew Rukhin,
Juan Soto, Miles Smid, Stefan Leigh, Mark Vangel, Alan
Heckert, James Dray, and Lawrence E Bassham Iii. A
statistical test suite for random and pseudorandom number
generators for cryptographic applications, Accessed:
30/09/2011. http://csrc.nist.gov/publications/nistpubs/800-
22-rev1a/SP800-22rev1a.pdf.

[14] Lenore Blum, Manuel Blum, and Michael Shub. A simple
unpredictable pseudo-random number generator.SIAM
Journal on Computing, 15:364–383, 1986.

[15] George Marsaglia. Xorshift rngs.Journal of Statistical
Software, 8(14):1–6, 7 2003.

[16] J. Terno. Robert, f., discrete iterations. a metric study. berlin-
heidelberg-new york-tokyo, springer-verlag 1986. xvi, 195
s., 126 abb., dm138,. isbn 3-540-13623-1 (springer series in
computational mathematics 6) translation from the french.
ZAMM - Journal of Applied Mathematics and Mechanics
/ Zeitschrift fr Angewandte Mathematik und Mechanik,
67(11):578–578, 1987.

[17] Qianxue Wang, Christophe Guyeux, and Jacques Bahi. A
novel pseudo-random generator based on discrete chaotic
iterations for cryptographic applications.INTERNET ’09,
pages 71–76, 2009.

[18] Jacques M. Bahi, Raphaël Couturier, Christophe Guyeux,
and Pierre-Cyrille H́eam. Efficient and cryptographically
secure generation of chaotic pseudorandom numbers on
gpu. CoRR, abs/1112.5239, submitted in Dec. 2011.

[19] F. Montoya Vitini, J. Monoz Masque, and A. Peinado
Dominguez. Bound for linear complexity of bbs sequences.
Electronics Letters, 34:450–451, 1998.

[20] Verilog hdl. http://www.verilog.com/IEEEVerilog.html,
2008. Accessed: 30/09/2012.

[21] X. Wu and Z. Guan. A novel digital watermark algorithm
based on chaotic maps.Physical Letters A, 365:403—-406,
2007.

[22] Christophe Guyeux, Nicolas Friot, and Jacques M. Bahi.
Chaotic iterations versus spread-spectrum: Chaos and stego
security. In IIH-MSP’10, 6-th Int. Conf. on Intelligent
Information Hiding and Multimedia Signal Processing,
pages 208–211, Darmstadt, Germany, October 2010.

[23] Jacques M. Bahi and Christophe Guyeux. An improved
watermarking algorithm for internet applications. In
INTERNET’2010. The 2nd Int. Conf. on Evolving Internet,
pages 119–124, Valencia, Spain, September 2010. IEEE
seccion ESPANIA.

[24] Jacques Bahi, Jean-François Couchot, and Christophe
Guyeux. Steganography: A class of secure and robust
algorithms.The Computer Journal, 55(6):653–666, 2012.

[25] Jacques Bahi and Christophe Guyeux. A new chaos-based
watermarking algorithm. InSECRYPT’10, Int. conf. on
security and cryptography, pages 455–458, Athens, Greece,
July 2010. SciTePress.

[26] Introduction to the altera nios ii soft processor.
http://coen.boisestate.edu/smloo/files/2011/11/, 2011.
Accessed: 30/09/2012.

[27] Jacques M. Bahi and Christophe Guyeux. Hash functions
using chaotic iterations. Journal of Algorithms &
Computational Technology, 4(2):167–181, 2010.

[28] L. Kocarev. Chaos-based cryptography: a brief overview.
IEEE Circ Syst Mag, 7:6–21, 2001.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2188 Jacques M. Bahi et al : FPGA Design For Pseudorandom Number...

Jacques Mohcine Bahi
received a Master of Science
in applied mathematics
from the University of
Franche-Comte (France). He
received his Ph.D. in Applied
Mathematics from the
same university in 1991. Until
september 1999, he was a
associate professor of applied

mathematics at the Mathematical Laboratory of Besanon.
Since then, he became a full professor of computer
science at the University of Franche-Comte. He is a IEEE
senior member and currently the Vice-President of the
Scientific Council of the University of Franche-Comte.

Xiaole Fang is a third
year doctoral student in the
computer science department
of complex system (DISC),
FEMTO-ST Institute,
University of Franche-Comt
under Professor Jacques
Bahi and Laurent Larger. The
main objective of his thesis
is to explore different possible

approaches efficiently (in terms of speed and quality of
randomness) to extract pseudo-random number sequence
by adapting new mathematical topology properties.
Before arriving in University of Franche-Comt, he
completed two postgraduate studies: Master of Science in
Theory and Engineering of Control (2006-2008) and
Electronics and Electrical Engineering Systems (2009).
Since 2010, he has published 2 articles in international
journal, and 4 articles in peer reviewed international
conferences.

Christophe Guyeux
has taught mathematics
and computer science
in the Belfort-Montbliard
University Institute of
Technologies (IUT-BM) this
last decade. He has defended
a computer science thesis
dealing with security, chaos,
and dynamical systems in

2010 under Jacques Bahi’s leadership, and is now an
associated professor in the computer science department
of complex system (DISC), FEMTO-ST Institute,
University of Franche-Comt. Since 2010, he has
published two books, 9 articles in international journals,
and 25 articles in peer reviewed international conferences
dealing with security or chaos.

Laurent Larger
received the Degree in
electronic engineering
from the University of
Paris XI, Orsay, France,
in 1988, the Agrgation
degree in applied physics
in 1991, and the Ph.D. degree
in optical engineering and the
Habilitation degree from the
University of Franche-Comt,

Besanon, France, in1997 and 2002, respectively. He
was in charge of the International Research Center
GTL-CNRS Telecom, a joint laboratory between the
French CNRS, Georgia Tech University, Atlanta, and the
University of Franche-Comt, Besanon, from 2003 to
2006. He became a Full Professor with the University of
FrancheComt in 2005. He is involved in research with the
Franche Comt Electronique, Mcanique Thermique et
Optique - Sciences et Technologies Institute, Besanon.
His current research interests include the study of
chaos in optical and electronic systems for secure
communications, delayed nonlinear dynamics, optical
telecommunication systems, high spectral purity
optoelectronic oscillators, and neuromorphic photonic
computing exploiting the complexity of nonlinear
dynamical transients. Prof. Larger is a honorary member
of the Institut Universitaire de France. He has been a
Deputy Director of the FEMTO-ST Research Institute,
Besanon, since 2012

c© 2013 NSP
Natural Sciences Publishing Cor.

	Introduction
	Definitions and terminologies
	Security Analysis of CIPRNG Version 1
	CIPRNG Version 1 Designed for FPGA
	An Information Hiding Application
	Conclusion and future work

