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Abstract: In this paper we establish Strichartz type estimates associated with a classigf@ip operators iR", which forn = 2
correspond to some 2D water wave models. We also establish a nontia#tarieg result for solutions of the generalized Benney-Luke
equation for higher order nonlinearity and small data initial in the energgesp
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1 Introduction semigroups which are related with water waves models
for n = 2, as the wave equation, the generalized

The formulation of some phenomena in nonlinear optics,BeNney-Luke equation and some Boussinesq type models

fluid dynamics, nuclear physics, plasma physics,’(See L3, [18). In particular, for the generalized
biosciences and several other areas can be reduced RENNey-Luke model with a nonlinearity of orderlarge
some cases to studying nonlinear evolution equations irgnough, we establish nonlinear scattering for s_maII data in
mathematical physics and applied mathematics, amon@sﬁe energy space to get the asymptotic behavior of global
other. For these nonlinear evolution models, it is verySolutions ag — -teo.
important to determine existence and uniqueness of Models considered in this paper are related with the
solution, and the existence of special solutions asevolution of long water waves with small amplitude of an
travelling waves solutions (periodic and solitary waves).irrotational, three-dimensional flow of an inviscid,
For instance, solitary waves are important in the study ofincompressible fluid which at rest occupies the region
dynamics of wave propagation in many applied models(x.y) € R? and 0< z < ho. It is known that this type of
such as fluid dynamics, optics, acoustics, oceanographynodels can be described as an approximation of the full
and weather forecasting. As it is well known now, an water wave problem imposing some restrictions on the
important application is the use of optical solitons parameters that affect the propagation of gravity water
(solitary waves of finite energy) in fibers as an efficient waves as the nonlinearity (amplitude parameggrthe
(reliable and fast) means of long-distance communicatiordispersion (long-wave parametgr) and the horizontal
([, [41, [6], [7], [13], [14], [15], [18], [23). spreading. In these models, the variablg(x,y,t)
Since the works by I. Segal2f]) and R. Strichartz ~ represents the free surface elevation and the varigble
([24)) related with the study of the Cauchy problem for represents essentially the velocity potential at the otto
some nonlinear wave models and diverse space-tim@fter the approximation process using Taylor expansion
estimates for solutions of homogeneous andon the variablez (see ], [3], [9], [10], [11], [13], [14],
nonhomogeneous problems, there has been a hudddl, [16]).
number of papers using Strichartz type estimates for the This paper is organized as follows. In section 2, we
study of different PDE’s in the framework of some include some preliminaries. In section 3, we establish
function spaces (Sobolev spaces, Besov sfdtspaces, Strichartz estimates for a general class of semigroups
distributional spaces, for example) to establishdefined in R". As for many models, the Strichartz
well-posedness and scattering properties. estimates are obtained by combining the Littlewood-Paley
In this paper we are interested in obtaining Strichartzdyadic decomposition, the Riesz-Thorin Interpolation
type estimates inR" associated with some special Theorem, the Hardy-Littlewood-Sobolev Inequality and
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duality arguments. In section 4, we verify the hypotheses2.1 Littlewood-Paley decomposition

to have the Strichartz estimates for the semigroup

associated with some water wave models as the Wavé—he main tool used to obtain Strichartz estimates for
equation, the generalized Benney-Luke equation andnany models is the Littlewood-Paley dyadic
some Boussinesg-Benney-Luke type systems. In sectiofecomposition, which are defined in the following
5, we prove a nonlinear scattering result for the standard way. Lex € Cg(R") be a radial cut-off function

generalized Benney-Luke equation and analyze thesuchthat 0<x <1 and

asymptotic behavior of global solutions for this model as

t — doo,

2 Preliminaries.

We will use the following notation.P(R"),1 < p < oo,

denote the usual Lebesgue space with the norma
Sobolev  space
HSP(R"),s € R is defined as the closure of Schwartz

The usual

- llp =1 - llpcn-

spaceS(R") with respect to the norm given by

[ Fllwsnqan = 77 (@ +1€3F)

LP(RM)
where the Fourier transform of a functisndefined orR"
is given by

1

(Tw(E) =) =

/. e X Sw(x)dx
Rn

The homogeneous Sobolev spat&P(R") is defined as
the closure of Schwartz spa&€R") with respect to the
norm

I Fllisoen = |77 (1€1°F)

LP(R)

Especially we write HS(R") = HS%R") and
HS(RM) = HS2(RM). The spac&S(R") denote the closure
of $(IR?) with respect to the norm given by

[ llvs@n) = [I0F]lys-2mn) = [[|€] ‘?HHH(RW

We also adopt the notation

- . 1/q
1#hgat = (11 CORen )

with the obvious modification wheq = «. HereafterC

it [§]<1/2,

1
X(&) = {o if &> 1.

If B(&) =x(&)—x(2&), thenB € C7(R") is a radial
function supported away from zero such that for any

& eR?\ {0}, )
3 8(z)-1

J:—oo

Now, define the operatak; : S(R") — §(R") by

&16)=p(5) @), for jez

Thenf =37 _,Ajfin 8(R?). Moreover, we see that

suppd; f C {272 < |€| < 21}, (1)
and also that ifj —k| > 2 then
(8 ) () = 0. @

We remember thafA;f}; is called the Littlewood-Paley
decomposition off. We will use the coming important
result.

Lemma 2.Let s€ R, then holds the following statements.
1) Given2 < p < o, there exist C= Cp ns > 0 such that

I f Hasp(Rﬂ) = C_ z 4 f|||2-|&p(Rn)7

j=—00

I f HZHSP(]RH) < C. z 14 f||2|-'|&p(Rn)-

j=—00

2) Givenl < p < 2, there exist C= Cy s > 0 such that

> 14 flEseen) < Cllf I Espn),

j=—o0

. Z |4;f Hasp(Rn) = CHfHZHs.,p(Rn)-

j=—o0

denotes a generic constant whose value may change fromiso we will use the following version of Bernstein’s
instance to instance. The following lemma will be | eqmma.

frequently used.

Lemma l.Letsr € Rand1 < p < «. Then we have that

1)Ifs>r+n(s - ;) andl< p<qg< o, then FP(R") —
HRM(RN).

2)If s> 2, then HFP(R") — L*(R").

Lemma 3.[Bernstein’s Lemma] Assumeg LP(R"),1 <
p < o such that

suppf C {£ e R": 2172 < [¢| < 2}
Then for every & 0 there exist C= Cy s > 0 such that

1 liisp(ny < C2°) flLogrn).
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3 Strichartz estimates for a class of Lemma 4.Let n> 2 and 91 the unit sphere ifR". Define
semigroups

6n(x):/ & ids, xeR",
In this section we establish Strichartz type estimates in st
the case of semigrouf(t) that are linear combination of then we have that
operators(t) of the form o
[Gn()| <C[x|™" 7" (6)

S/(ﬁ &) = N(&)etlEIPIENF (&), & RN, 3

1) ) &) ) In order to define the truncated operator, we choose a
where 1< k < 3 and radial cutoff function € Cj*(R") supported away from
zero. So, ifj € Z define the operatd¥j, for (x,t) € R™,

AL(&) = 91(&), Na(E) = |€192(E), N3(&) = as

with (M) (x) =
¢k € L”(R").

If p =41 andA; = 1, we have that semigrou§ (t) is
associated with the wave equation®f. We will see in
section 4 that the semigroup associated with some twowhere

dimensional water wave type models have exactly the form 1
S defined for 8) in R?. (Kj(t) (x) =

We are interested in deriving some Strichartz estimates
for general semigroups, as possible. So, hereafter we willhe following results describes some estimates of the
assume thap : R — R is aC"(R) function. Forj € Z, we  family of operator(T;};cz onLP(R").
define functiong; andh; by

pi(r) =p(2'r), hij(r)=p;(r)+rpj(r).  (4)

We will assume that the functigm satisfies the condition:

~

1 e EtlEle@IEDp(8)F(&)de.

(2rm)2 Jrn

Note that

a7 Rnéxfét\flp(zi\ﬂ)mg)dg,

Lemma 5. There exist C= C, > 0 (not depending on j)
such that

ITi®fll2<ClIf]2.

Moreover, if n> 2 and p satisfiedH], then
[H] Given the intervalry,rp] C RY, there iscy > 0 such
that for all(r, j) € [r1,r2] X Z,

Oy _ _
r:_ )] <g, 1<I<n—-1 (5) Proof. Let g(&) = €tlélP@EDB(&). Using Plancherel
[y (r)] Theorem we have that

~(n-1)
[Ti) flleo <Clt|™ 2 | f]2.

Note that for the wave equation, we have tpat +1, HT" (t)fHZ = llgfllz < ClIllz = Clifll2,

meaning that the hypothegHd] is trivial. We will see that 55 claimed in the first inequality. Now we will show the

Boussinesq type models in section 4 for= 2, which  yoyung's inequality we find that

corresponds to the physical problem. The technical
condition[H] on the functionp appears when we try to

truncate the semigroup Fourier symbolS(t)
appropriately, as done for the water wave equation. Now, we consider the casi > 1. We will prove that there
existC > 0 such that for alfj € Z,

—(n-1)
(T3 (1) Flloo < IKj (@)oo [ Fll2 < ClI Tl < CJt] ™2 [ 2.

3.1Local estimates 1K (t)]]e < C|t|#. 7

We obtain some Strichartz estimates by performing aRecall thatB is assumed to be radial and supported away
slight modification of the Strichartz estimates used forfrom zero. Using polar coordinatés= rw we have that

wave equation (see8], [20], [24]). As in the mention ©

works, we use a very well known result related with the  (27m)% (K;(t))(x) :/ g x@+tpiN)g(r) dS, dr
pointwise estimate for the Fourier transform restricted to o Sh

the (n—1)-sphere (see T. Wolff,25]), in order to obtain :/ 6.n(rx)eitrpj(r>a(r)dr’
estimates for some operators. 0
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wherea is a smooth function such that Then, using inequalityd) and conditior{H] for n= 3, we
obtain that
suppac {reR: 0<ry <|r| <rp}. 1)
<
Now, letcg > 0 such thath;j(r)| > cq for all j € Z (see 2
(5)). We consider two cases. c [0 ()R} ()] + [hj (N ()] + h’j(r)‘ 1
Case 1Supposey|t| < 2|x|. Using estimate]) inLemma  |h;(r)|? - lhj(r)|? It|?
4, we have that
o - Cc
(K () ()| <C /O |Ga(rx)]a(r)| dr =

If we continue using the integration by part argument and
condition[H], we have after tha — 1 step that
~(n-1)

<Clt|"z . He G (g sk 1 Cn
= e M) e S e

gC/ x| == [a(r)|dr
0

Case 2.Supposep|t| > 2|x|. From the integration by parts

formula we see that where the sum is finite and each tefiyis the product of
o n— 1 functions in the set
| = eir(x~w+tpj(r)) d }
J alrjdr [y i, ono
_[~d jr (x-w-+tp; (r)) a(r)
_/O dr (EI ) i(x~w+thj(r))dr In other words,
— /0 elr(x~w+tpj(f))F(r)dr, [(Kj(t)(x)| < C/SIH [1dSs, < |t|”7*1
where Then we see tha¥j follows by combining case 1. and case
2.0
_q H.
F(r)=: a(r) - ta(n)h(r) 5- Lemma 6. Let n> 2 and assume thagp satisfies[H]. If
10 @+thy () i0x- w+thy(r) 2< DSooandleré:l, then there exist & 0 such that

If |w| = 1, we obtain that forall j € Z,

—n-D(1_1
Sl < [thy ()] - K <[ty (1) +x- 0l (®) Mot <cr 08y

Proof. Using the Riesz-Thorin Interpolation Theorem and

Then, using previous inequality and conditi¢f] forn=" revious lemma we obtain that
2, we concluded that there@> 0 (independent of) such :
that Ti(t) : LP (R") — LP(R™)
i
K. (t <C Id is a bounded linear operator and there is a positive constant
|(Ki®)] < /s,1| A, C (independent of) such that
1 M 1 -1\ 1-6
< 1+ = :
<Clamm ( o)) T M@ fle<c(t™= ) Il
C where
S 1 6 2 1 1
1t 5<% and 1-60=1-—-—=—-——,
Applying the same argument of integration by parts as P PP P
before, it follows that as desired]
w Hereafter we will assume, unless otherwise stated, that
| = / gdrx @+t ()G (r)dr. 2< p< oo, 2<g< o andn> 2 satisfy the relation
JO
2 n-1 2
where —=— l—). 9
/ / q 2 ( p ( )
/! f
G —am 3l () (1) We will say that the couplép,q) is an admissible pair if
(x-w+thi(r)? (X w+thi(r))3 satisfies @) for a fixedn > 2. The following notation also
5 ) 2 is used,
ta)(r) 3%l (W) 1,1 1,1
(x-w+th;(r)?  (x-w+thj(r))* PP q
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Lemma 7. Assume thap satisfiedH]. If 2< p< e and  whichimplies (1). To finish the proof we see that a duality
(p,q) is an admissible pair, then there exist@ such that  argument implies that

forall j € Z,
o 1/a
~00 00 1/q </ Hh(x t)”q dt>
q Bllp
(/mH/wTj(t—r)g(-,r)derdt) (10) -
o o\ :sup{‘/_w - h(x,t)w(x,t)dxdt‘ : ||WHL9,(L£,) :1}.
<c( [ lgolga)
. " RNET Then |f||w\|Lq w) =1
|/ mosta], <c( [T acoiga) . ay
o 1/d ‘/ ) (Tj(t) w(X,t) dxdt’
(/ Hﬂ(t)fHﬂdt) <CJ/fl2, (12) :
<[]/ <T,-<t>w<-,t>><x>dtH2
where C= C,  is a constant that depends only on p and n. < 1If/l2]wi|
- L (L8
Proof. First we will show (@0). Using the Minkowski < If]l2. t

integral inequality and previous proposition we have that

H/00 Tj(t—r)g(~,r)drH

/ Tt =g | ,dr 3.2Global estimates

So that (2) follows, as desired.]

,1) 1 1
= C/_m“ —r| 77 (5-3) 19(, 1) pdr. Now, using the local estimates, we are position to obtain
Strichartz estimates for the semigroufis (k = 1,2,3),
From the Hardy-Littlewood-Sobolev inequality we obtain given by the equation3j with ¢ € L*(R") and the

(10) with function p : R — R satisfying the conditioqH]. Our
argument is based on the Littlewood-Paley dyadic
i 1 [1_ n-1 <1 1 ecomposition, the estimat&2) and Lemmab.
qa o 2 \p p/]
Theorem 1. Assume thapy € L*(R") for 1 <k < 3 and
This implies that thatp satisfies the conditioh—l] If (p,q) is an admissible
airanda=5-9-= then there existC> 0 such that
2_(n-1) (1_2> P p e>
q 2 P/ 1)||51(t)f|\Lg(Lg) < Cle”H"(R”)'

Now, define h(x) = /%, (T;(t)g(-.t)) (x)dt. Then we 2)||52(t)f|\|_q<|_p) SCz|\f||Ha+1<Rn),
obtain that T

2 3S(0)lla(p) < Call Fllta-an)-
H |||_2(]Rn)
= {h(x) </°° (T'(*f)ig(' r)) (x)dr)} dx Proof. First we consider the operatd(t) defined in
RN o\ ’ Fourier space by
-/ {g(x,t)/_w Ti(t—r)g(n ) (x )dr} dxdt G (&) — b fir),
0 1/d
< ( / laC,t) o dt) : X and use the Littlewood-Paley decompositiahy f } given
— o bl p/ by
1/q — &N -~ _
(/ H/ Tit—r)g drH dt) . Ajf(f),8<2j)f(é), i€z,
Hence, using10) we find that where 8 € C3(R") is a radial function supported away
’ from zero. Then we have thét= 3 ., A; f. Moreover,
[+ , 2/q’
2 q
172 gn) SC</_w||9(~,t)||ydt> : U= 3 3U0ON= T VOG0,
IS j€
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Now, we see that

U(1)4; f)(X)

__1 jx-& tI[P(1€]) (E)A
=2t ke e Bl ) f(&)de
_ 1 i(21%)-€ d(20)IE1p2E) 3 £\
2n)? Rné e B(&)a(&)d¢,
whereg(-) = f (5;). Then we conclude that
U®A;F) (%) = (Tj(9) (21x,2t), (xt) e R™L (13)

Using this fact and inequalityl@) for 2 < p < « and
2 n-1 2
e I ,
="z (75)

VA flleaep)

we find that

,n,l
=25 M@)o, (14)

n

<:c:2J P

n

<2z

l
“gll2
_n_1

o) £

By orthogonality property3), for fixed j we have that

Af =4 <|ng' f) :IGZ%”SSAJA f.

Thenifa=135— % — ﬁ we see from 14) and Bernstein’s
Lemma that

VO fllawp < > IVOAA g

[I=j]<3
<C 29|42
[I=j]<3
<Ca > IAfllxagn-
[I=j]<3

Hence, using Lemma& and previous inequality we find
that

(15)

VO s < | 3 a1,

\/z U4 2,0,

JEZ

z Z |A| f”Ha RN)

jez1-T<3

z HAJf”Ha RN)
\/ €%

< Call f{lfya (n)-

<Cq

Now, if S (t) is given by
SIOT(E) = 92(§)e €I T(E),

¢1(&)F(&). Then using {5) we have that

=[Ut)aull e
< Call9/l1a mn)
< Cal[@lloolIFll13a m)-

Recall that {4) holds for 2< p < «. We notice that if
p =2, theng= oo, a@ = 0 andH(R") = L%(R"). In this
case for alt € R we see that

1S1O)Fll2 = SO Fll2 < [16a]wl| [

Therefore

we seiy(£) =

1S1(t) Fll oy

ISL®) fllez) < ClI 2
UsingG2(&) = |€|¢2(&) f (&) andGa (&) = ¢3(&) T (&) /|€]

we obtain the statemen®} and3) of theoremD

Corollary 1. Assume thapy € L*(R") for 1 <k < 3 and
that p satisfies the conditiofH] . If s e R, (p,q) is an
admissible pair anda = § — 5 — =, then there exist
Cx > O such that

1) ||Sl(t)f||LE(Hsp(Rn)) <Cif ||HS+G(R")v
2) 1S fllagse@ny) < Call Fllisraraggn),
3) ||S3(t)f||Lﬁ(Hsp(Rn)) <Gsllf ||HS+G*1(R“)-

Proof. Let s € R and defineg(£) = |€|3f(£), then using

Theoreml we have that

</°:°||Sl( ke dt) " (/i I&(t)gll%dt) :

<Cllgllpan)

=C| fllstagn)-

We use the obvious modification when= co. Similarly
follows 2) and3). O

Theorem 2. Assume thagy € L*(R") for 1 < k < 3 and
that p satisfies the conditiofH]. Ifse R, 2 < p < o and

y="51 (é — —) then there existC> 0 such that

—(n-1)

(3}
DIIS) Fllrsprn) < Calt] P E v

(RM)-
(-1 (1 1
2)So(0)Fllsoqam <Caltl 2 &) lguyeas g

-1 (1 1
SO flasrzry < Caltl T 58 Flry s ny

Proof. For the proof ofl) it is suffices to show that

“(n-1 (1 _1
18O < B8l

Using the same notation as in the proof of Theorkeme
have that

U4 H) (x) = (Tj (@) (2% 2)t), (xt) e R,
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whereg(-) = f(5;). Then using Lemm& for 2 < p < o with A=1—aA, B=1—bA, whereG andF are given by
we find that

e 2 (33) @ 0
VM)A fllp<C2V[t] 2\ Py G = ;
W B~IF (@, @y, w)
From this inequality and proceeding as in the proof of
Theoreml the result followsJ Fuvw) = [W((Um)XJF (Vm)y) +2(UmW><+VmWy)] :

We see that the Fourier symbol associated with the
. . operatorsA andB are given by
4 Strichartz estimates for some water wave

models A=1+alf|?, B=1+b|E2

We see directly that the linear operatdd is the
infinitesimal generator of &—semigroupS(t). In fact,

S(t) is defined as
In this section we establish Strichartz estimates for the

4.1 The generalized Benney-Luke equation

semigroup associated with the two—dimensional F-1 0 F 0
generalized Benney-Luke (gBL) equation St) = M
0 F1 (e
By — AP+ U (aA2P —bADy) (16)
Le [d’t <[(¢,X)m]x+ [(q’y)m]y) where we have that
+2((B" B+ (BB ) | =0, em:( cos((&lp(ENl)  SEL(EL )
wherea,b, &, > 0 andm= [ with (my,mp) = 1 andm, —[&lp(&)sin([&lp(|€])t) cos(|&[p(|E])t)

odd. J. Quintero and R. Pego id4 showed that the
evolution of three-dimensional water waves with surface
tension can be reduced to studying the solui@(x,y,t)

of the equation6) with m= 1, wheree is the amplitude 1+ar?
parameter, 4 is the long-wave parameter and p(r) = \/ Trbrz
a—b=0- % whereo is the Bond number (associated

with the surface tension). The variab is the rescale | emma 8. p satisfies the conditiofH] .
nondimensional velocity potential on the bottam: 0.

with p being defined as

Hereafter we consider= p = 1, since the parameters Proof. Sincen =2, we want to establish that
€ andu can be scale from the equation by defining ,
Ihj(r)| > co, [hj(r)]<cy,

~ VH < X y y ) ,
PXYt) =@ —, ==, —— |. which implies the conditiorfH]. If p;(r) = p(2!
P4l € ’ ’ . i = p( r), we
VIV VE have that
Also, we will writte HSP = HSP(IR2), HSP = HSP(R2) and
V2 VARD), ) ) ny (1) = i)+ 1)
jar2 _ jr2 ihr2
We observe that the generalized Benney-Luke = 1+4{ar 4 (a b,)4]r 1+4{br
: ; i i 1+4ibr2 " (14 4ibr2)2 \ 11 4iar?
equation can be written as a first-order system in the +4lbre — (1+4lbre) +a4ar
variables® andw = @,
o o ® 1+ (2a+Db)4Ir2 4 3ab4?ir® + ap?4%ir®
(w)ﬁ'\" (w) +G<w) =0, 17 (1+4ibr2)2\/(1+ 4iar) (1 + 41br2) -
where Letl = [r1,ro) C RY, then for any(j,r) € Z x | we have
the estimate
0 | . : .
M = ( ) hi(r) > 1+ (2a+b)4ir? + 3ab4?rf + ab?43r§
_ ’ i\ = . : - =
AB'A 0 (1+4ibr2)2, /(1+ 4iar3) (1+ 4ibr3)
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Now, we have that

Aim =1,
jo—e

. a/r 6
Iimm=4/-|—=] .
j—o0 b\ro

Hence, we concluded that there exist> 0 such that for
all (j,r) e Zx1,
Ihj(r)| = co.

On the other hand, we have that

(1) = 2(2a+b)4ir 4 12ab4?)r3 + 6ak?43ir®
T (14-b4ir2)2, /(14 adir?) (1+ b4ir?)

4b (14 (2a+b)4ir? + 3ab4?ir* 4 ab?4%r®) 4r
(1+b4ir2)3,/(1+adlr?)(1+b4ir?)

((a+b)4ir 4 2aba?ir3) y
(1+adir2)(1+b4ir2)3
(1+ (2a+b)4ir2 + 3ab4?ir* + ab?4%r8)
V/(1+a4ir2)(1+bair2)

Then for any(j,r) € Z x | we find that

2(2a-+b)4iry + 12ab42)r3 + 6abP43irs
(1+b4ir3)2, /(1+adir)(1+ bair3)

()] <

4b (1+ (2a+b)4ir2 +3ab4?ir + ab?43ir$) 4l
+
(1+b4ir3)2, /(1+adir3) (1+ bair3)

((a+b)4lr + 2ab4?ir3) y
(1+adir2)(1+b4ir2)3
(14 (2a+b)4ir? + 3ab4?ir + ab?431r6)
: V/(1+adir?)(1+b4ir?) '

Then we see that

lim hj(r) = lim h(r) =0.

| ——00 ] — J

So that, there exist; > 0 such thathi(r)| < ¢, for all

(i,r) € Zx 1. Hence, forc; = % we conclude that

[h; ()]
[hi(r)]

< Cp.

O

Next, we will state the Strichartz estimates for the

semigroupS(t) associated with the systerhd).

Theorem 3.Suppose § R, 2< p <o, ¢ =7 — 5

a = § — 5. Then the semigroup( satisfies the estimates
ISO(@. W)l La(spcris-2p) < CU[Pllsra + [Wllisra-1).

Proof. From the previous lemma we have thap(r)
satisfies the condition[H]. Moreover, the functions
p(l&]), 1/p(|&]) are bounded and the functions
sin(|€|p(J€))t) and cog|&|p(|&])t) are linear
combinations ofet!l¢1P(&)t Then using Corollanyl for
n= 2, we have that

15 (cos1€1p(1€ 1)) @) Il agier)

Ho ey ™
< C([|Plgsta + W] gsta-1) 5

Li(HsP)

and also that

Hff—l (|E‘p(|5\)sln(|5|P(|E|>t) a) HL?(HS*“’)
+[|F* (cos(I€ |1 t) W) [ a5 1)
< C(|@llpsra + [Wlpsa-2).

Then we obtain that

ISO(@ Wl 8(1459,15-15) < C | Pl + [Wilgora-a)

O
In a similar fashion, using Theoremalso we have the
following estimates for the semigrougst ).

Theorem 4. Suppose § R, 2 < p <, ; + ﬁ =1 and
y=3 (% — %) Then there exist & 0 such that

[1S(t) (P W)||1spfys-1p
253
<Ol 2 (1@l + [Wlgorr1 )

Now we have the following classical results for the
linear wave equation iR".

Corollary 2. Suppose > 2, s€ R, (p,q) an admissible

pair and a = § — 2 — & If @ € HSI(R"),

Wop € HS"@~1(R") and @ is a solution to the initial value
problem inR",
Py —ADP=0
(D(Xa O) = ®0(X)7 ¢I(Xa O) = WO(X)'

Then the following estimate holds

(18)

[ q’HL{‘(HSp(Rn)) + ] q’tHLﬁ(Hs—l,p(Rn))
<C (||‘DO||HS+G(RH) + HWOHH&W—l(Rn)) .
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Proof. The equationX8) can be written, in the variables
anduy; = v, as the first order system,

u u 0l
(4, () m-(30)
Then the semigrouf§(t) associated with the problert9)
is given by

(19)

cos([<t)

3:71 0 % F 0
(70 Jo2)
0 F1) \—|&|sin(|&]t) cos(|€]t)/ \O F

So that, the proof follows as in Theoredwith a = b and
p=10

In a similar way we have the coming corollary.
Corollary 3. Suppose n> 2, se R, 2 < p < oo,

1 1 1(1 1 ) Nt
5+H:13ndy:%(a—5). If &y e HSTEP(RM),

Wo € HSt@~LP(R") and @ is a solution to the initial
value problem irR",
Gy —AD =0
P (x,0) = Bp(X), D (x,0) =wp(X).
Then the following estimate holds

H (DHH&P(]RH) + || d)tHHsfl.p(Rn)

-n-1),1 1
e
SCM 2 r (H¢0|||_'|s+y.p’(Rn)+HWOHHHV*LP/(]R”))'

4.2 A Boussinesq-Benney-Luke system

J. Quintero and A. Montes irLB] (see also10]) reduced

Using this, we can written the Boussinesq system as

() #() ()

whereM is a linear operator an corresponds to the

nonlinear part,
0 AAlB
M(AlD 0 )

A~1(On-00+nA®)
G<g>:e< %An1(|D;r|g) )

(20)

and

Moreover, linear operata¥! is the infinitesimal generator
of aCp-semigroupS(t) defined as

(3"1 o) . (ff o)
Sit) = M
0 1 07

where we have that

N (COS(IEIP(IEI)I) E|¢(€)Sin(flp(lfl)t)>
M =

_sin(€[p(|EDt)

E16(8) cos(|&]p(|&N))

where the functiong andp are given by

1+ BJE?
¢(E)— m’

withd=4%, B=2 and v=ypo.

N V(14 Br2) (1+vr2)
(r)= 1+0r2 ’

Lemma 9. p satisfies the conditiofH].

the study of the evolution of long water waves with small Proof. If pj(r) = p(2!r), then we have that

amplitude to studying solutior(gp(x,y,t)), n(x,y,t) of the
2D-Boussinesg-Benney-Luke system,

hj(r) = pj(r) +rpj(r)
V/(1+ B4ir2)(1+ vair?)

2 2 _ -
{('gﬂ()”tjf)q;tguﬂ Q’JFASD’(;IE‘:))%g 1+ 64ir2
_ B + — U + £ =0, . A
2 T~ HIaN+3 N B4ir2 1+ v4ir2
wheree¢ is the amplitude parameten is the long-wave 1+064ir2\| 1+ B4ir2
parameter and is the Bond number (associated with the , ‘
surface tension). The variablep is the rescale vair? 1+ B4ir2
nondimensional velocity potential on the bottam-= 0, + 1+ 04ir2\| 14+ v4ir2
and the variable is the rescaled free surface elevation. - : :
2041r2,/(1+ BAIr2)(1+v4ir?)
We will show how Corollaryl and Theoren? are - (1+541r2)2

used to obtain Strichartz type estimates for the
Boussinesq system. We first note that operators
A=1-4A,B=1-%AandD =1 uoA are defined
via the Fourier transform as

A=1+51E2 B=1+% (&P, D=1+pualé”

1+ 84ir2 4 2(B — 5)4ir?
(1+64ir2)2,/(1+ B4ir2)(1+ vair2)
2v4lr2 4 3Bv4%r4 + 5BV 43I 6

(1+54ir2)2,/(1+ B4ir2)(1+v4ir?)
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Now, letl = [ry,ro] C R*. Using that3 > d > 0 andv >0,
we see that for anyr, j) € | x Z holds the estimate

hj(r) =
1+ 041r2 +2(B — 8)4)r?
(1+ 34 rg)Z\/(lJr BAir2)(1+vaird)
2v4ir2 4 3pv4%irt + 6BvARIrS
1+ 64ir§)2\/(1+/34ir§)(1+ vair2)

Note that

6
im =1, fimm = YPY (”) .

j——o j—oo o I
Hence, there exisly > 0 such that for al(r, j) € | x Z,
Ihj(r)| > co.
On the other hand, a calculation shows that

hi(r)
25,411 4+ 12Bv42ir3 4 35Bv43Ir>
(1+64ir2)2,/(1+ B4ir2) (14 vair2)
46411 (14 5,42 + 3Bv42irt + 5 Bv4%r6)
(L4 064ir2)3 /(11 pAIrZ)(1+ vAIr2)
AIBr (1+ &4r2 4 3pv42ird + 5pv4%Ir®)
(14 541r2)2(1+ B4ir2)\/(1+ B4ir2)(1+v4ir?)
VAT (1+ 64112 4 3Bv42Ir4 + 5pv4%Ir®)
(14 84ir2)2(14 v4ir2),/(1+ B4ir2)(1+vair2)’

whered; = 2(B +v) — d. Then for any(r, j) € | x Z we
have that

[ ()]
281411 +12Bv42Ir3 + 36 Bv4A%Ir3
(1484122 (L+ BAIR) 1+ vaird)
N 464115 (1+ 51413 + 3Bv42irg + 5pv4Sirs)
(1+84ir2)3,/(1+ B4ir3)(1+ vair?)
A1Br (14 5413+ 3Bv4%ir3 + 6Bv4acIrs)
(1+ 54Ir2)2(1+ BAirD)/(L+ BAIr2)(L-+ vair?)
vair, (1+ 64113+ 3Bv42irg + 5pvairs)
(L+64Ir2)2(L+vaird) (1+ pair) 1+ vairg)

So, we conclude that there exis > 0 such that
I (r)| < ¢ for all (j,r) € Z x1. Hence, forc; = ¢1/co
we concluded that
G (r)]
hi ()]

< Cp.

O
Next we will state the main results of this section.

Theorem 5. Suppose € R, 2 < p < o, % =1- TIp and

a = §— 5 Then the semigroup(§ associated with

system Boussinesq-Benney-LukQ) ( satisfies the
estimates

IS @)llars-oxrsey < CUMNHsra1 4[| Pllsia)

Proof. From previous lemma we have thafp satisfies
the condition[H] . Now, note thatp and 1/¢ are bounded
functions and  functions  sié|p(|&])t) and

cos(|&|p(|&|)t) are linear combinations o*I€P(ENt,
Then using the Corollar§ for n = 2, we have that

|7 (cos(1€ 1p(1& ) ) | s o2,
+ |72 (1E19&)singloqEny @) |
< C(Inlsia-+ | @lsea)

(ks 1)

and also that

gy

+ 7 (costigloznt) @)
<C(Inllysta-1+ [|Plls+a)-
Hence we obtain,
IO, P)llias 1opis) < CUINIsa 1+ [ @lsa)-
|

Li(HeP)

LiHeP)

In a similar fashion we have the following theorem.

Theorem 6. Suppose € R, 2 < p < oo, %4—% =1land
y= %(% —3)- Then there exist & 0 such that

SE)(7. @) -2
Z(5-3)
<G 27 (10 lgeryapr + @l ).

4.3 A 2D Boussinesq Type System

In this section we show Strichartz type estimates for
solutions of associated linear problem with the
Boussinesq type systemRi-+2

Then we find that
N+A®—EA?P+e0-(nO®) =0,
lim K (r)=0, lim |h’-(r)‘<37\/ﬁvﬁ i (21)
e O+ —p(o—3)An+ 5002 =0,
© 2013 NSP
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with €, 4,0 > 0. J. Quintero reduced the study of the We notice that fok = 1,2,
evolution of long water with small amplitude to studying Or. J, G W € L (Rz)_

solutions(@®, n) of this 2D-Boussinesq system (sd&]).
Moreover,p satisfies the conditiofH] . In fact,
fA=LB=p(c—3)>0u=0® andv= 03
then formallyd,u = d1v and the systen®(l) is transformed hj(r) = pj(r)+ rpj(r)
into a first order system in the variablgsu, v of the form

= \/(L+A4ir2) (14 pair2)

ﬁ +M Z +G ?x =0, (22) +(/\+B)4J'r2+2)\[342ir4
Y/ v v VLT A4ir2) (11 Bair?)

~ 1+42(A +PB)Ar2 432 B4%rt

where : _
V(1+240r2)(1+ B4ir?)
0 AdL Ad, Then itis easy to see that for any intervvat [r1,r;] C RT,
M=|Bd 0 0 there existy > 0 such that for al(j,r) € Z x|,
B, 0 O
o hj(r)] > c1.
andG is given by
Now, we see that
n d1(nu) + d2(uv) j 2] 03 2j.3
Glu|l=—e| uvawtvav |, (1) = 3(Afﬁ)4r+2(_)\+ﬁ) 4°lr flOAB4 r‘
v UdoU -+ VooV (1+A41r2) (14 B4ir2)\/(1+ A 4ir2)(1+ B4ir?)

OAB(A + B)43Ir5 + 6(A B)24%r7

withA=1—-AA andB=1—BA. The linear operatav is

the infinitesimal generator of @—semigroupS(t) given (1+A4ir2)(1+ BAIr?)\/(1+ A41r2)(1+ B4ir?)
by So that,
510 o0 F00 iGN
)= 0 7L 0 [e™ [0F0 Ihito)
St = ’ 3(A +B)AIr +2(A +B)%4%)r3 - 100 p4r3
0o o0 1 007 (L+A4ir2)(1+ B4ir2) (1+2(A + B)4ir2 4+ 3A B42ir4)

NB(A +B)4Ir°+6(AB)*4%r’
(1+A4Ir2)(1+ B4ir) (1+2(A + )4ir? + 3A p4?ird)’
Then a simple calculation shows that there egjst> 0

— +
whereéM is defined as the matrix

C(&) —i92(5)S(&)  —192($)S(E) such that o
(r
SG@SE)  a@cE)  wEcE hoR =%
—i102(&)S(&) w(&)cos(|€|p(lENt) @(&)C(E) In a similar fashion as for the previous models we have

the following theorems. We use the notation

whit YSP — ISP« HSP « HSP.

S(&) =sin(|]p([&))t), C(&) = cos([£[p(I<])t)
1 1

1_
and the functionsby, Zk, @, W (k = 1,2) are defined for 11€0rem 7.Suppose & R, 2 < p <, § = 7 — 5; and
& =(&,&) by a=3- 2%. Then the semigroup(S satisfies the estimates

pu(e) = S JLEARE gy S [LHBIEP IS4y ier)
RO gl Y T 1AiER < C(Inllsra + l[ullssa + IVl[s+a) -

Theorem 8.Suppose § R, 2< p<w, £+ =landy=

&2 &ié
w(&) = ﬁ7 P(&) = ﬁ7 3 (é — %) . Then the semigroup§ satisfies the estimates
andp is given by [St)(n,u,V)[lysp
p(r) = \/(1—1—)\1‘2) (1+ Br2). <Clt| (H’7||Hs+v.p’ + Ul sy + ||VHHs+y.p’)-
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5 Asymptotic behavior of solutions in the
energy space of the (gBL)

Now, if (®,w) € V2 x H then using Theorer@ with p =
2,g=oc, 0 =0 ands= 1,2 we have that there § > 0
such that for alt € R,

In present section, fan > 4 and the initial data small and
belongs to a suitable Sobolev space, we study the ISO(@W) [z < CI(P, W)l 2,
asymptotic behavior of global solutions in the energy onq
space of the (gBL) equation &s—+ +c, Throughout this
section we use the following result concerning the global [SO(P.W) 42,11 < ClI(P, W) [lh2,m1
well-posedness for the generalized Benney-Luke equation

in the energy spac®? x H! (see J. Quinterol[7]). For  Then we find that

this particular problem, it is known that there exists a

energy functionak(t) = &(®, ®)(t) which is conserved SO (P, W)[|p2, q1 < Cl[(P, W) [ y2, 1.
in time on solutions® for the generalized Benney-Luke

equation. The energy is given by
8(<D,w):}/ (1002 +ala@P + jwi?+bjowf ) dxdy
2 Jr2

We note that there exis€ = C(a,b) such that for all
(d,w) € V2 x H!

CH(@,W) 12,1 < E(@.W) <CI(@, W)z, - (23)

Theorem 9. ([17]) Let m > 1 and (®o,wp) € V2 x H1.

Then the Cauchy problem associated with the (gBL)

equation has an unique global solutighwith
® € C((—c0,e) : V) NC* ((—o0,m) : HY),
that satisfies the initial condition
®(0,) = @, @(0,-) =Wo.

Moreover,&(®, &) (t) = E(Pp,Wp) for t € R and we also
have that the following estimate holds

(@), P (1))l v2.nz < Cll(Po,Wo) [z, (24)

Thus, sinca.? — H! we have that

IS (@, W) [l20.00 < CIS)(P.W)]ly2, 42
< Cl[(®,W) [ y2 1.

On the other hand, by Theorefiwe see that
,l)
PSP W) [[120Lp
< CI(P,W) | y14v.0 v -
Hence, combining the previous inequalities yields the
result.]
We will need the following result.

Lemma 11.([19], [22]) If r 1,r2 > 0andmax{rq,ra} > 1,
then

1.1

/ (L Jt— 7))~ (14 [7])"2dT < C(L+ ft]) ™"

Theorem 10. Let fixed m> 4. SupposeZm < p < o,
++2%=1andy=3(3 — ). Then there exis > 0 and
R = R(d) > 0 such that if the initial condition
(®o,Wo) € HITV-P x HY:P M2 5 H with

[1(Po,Wo) |y iy + [ (o, Wo)[p2ps < 8, (25)

In order to obtain the result which describe the \hay the corresponding solution of Cauchy problem
asymptotic behavior of the solutions in the energy space,qqqciated with the (gBL) equation provided by Theorem

of the (gBL) equation we will use the following lemma.

Lemma 10.Let2 < p < oo, % +% —landy= %(é _ %)_
Then there exist G 0 such that

3(3-3)
(L[t =P PSSO (P, W)[1pyre
<C(I(PLW) |1y v + (P W) 2, 442)-

Proof. First we note that if @, w) € V2 x H! then we have
that

Wil = [IWl[ 2 + (Wi, [[@[lyz = [Pl + | @] 2.
Therefore

(P, W) [v2,pr = | Pl + [ @z + (Wil 2 + [ Wil

(9) satisfies
sup(L ¢ )27 2| (@), A1) rpr <R (26)
(S

Proof. Note that the smallness conditioB5) promptly
implies the existence global solutions in the space
V2 x HL. Without loss of generality we restrict ourselves
to the casda > 0. Recall that ifw = &; then the (gBL)
equation can be written as the systeli)( In which case,
the solution of Cauchy problem with initial condition
(®p,Wp) is given by the expression

(®(t),w(t)) = S(t)(Po, Wo)
t
—/O St —1)G(@(1),w(1))dT.
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Let B = 3( — 5), then using LemmaOwe find that
(@ W) li2p,Lp
<Co(1+1)7P
t
+/ (1+t—1)"Px
0
% (IG(®) 1y s + [G(® W) 24 )T
Now, using Lemmad. and definition oB we see that

IG(®.W) [l y1ive pivr + [1G(P,W) [z, 42
= [IB™F (W, @, @y) |y + BT (W, By, @) 141
< 2C||B7HF (W, ) 2
< ClIF(w, @, By)| -
Recall that

F (W, ¢X¢y) == mW((cD)()michXX

+ (@)™ Dyy) +2( (D) i+ (By) My ).

Then, multiplying the previous inequality kgt +t)? and
using Lemmadl1 we have that

K(T) < CO+Ca%K(T)™1(1+1)Px
t
></ (1+t—1)PA+1) Mg
0
< C3+CHK(T)™ L,
Note that the hypothesia > 4 guarantees that
m —4m+1>0
and sincep > 2mthen we see that
B(m-1)=
Next, Consider the functioriz(x) = CS +Cd°x™1 —x.
Since f5(0) = Cd and for anyx > 0, fs5(x) — —x as
0 — 0 then there exisdy > 0 such that fo® € (0, ), fs
has a positive zero. L& = R(d) be the first positive zero

of this function. The estimates just obtained imply that
fs(K(T)) > 0 and soK(T) < R since fs changes its

max{B,B(m—-1)} > 1. (27)

To illustrate the type computation we consider the termsmonotonicity only once ifR. [

wW( @)™ Lo, and (®y)™wy. In fact, if r =
Holder inequality we have that

p2m>2 by

—1 —1
IW( @)™ Bl < [ Pl T | Prcll 2| W e
< Cl|@|Fp | @llv2 Wil

2
<C||((D W)||H1p><|_pH ¢7W Hvszl-
Also we have that

(@)™ < 1Pl 1wl o1 D
< Cll@|Fp Wl @]y
< Cll (@ W) Fep, ol (W32, 1

In a similar way we have the same type of estimate for the

other terms. Now, if fol > 0 we introduce the notation

K(T) = sup (1+6)P|| (@(t),W(t)) ll1pyir,
te[0,T]

and using inequality4) follows that
(@ W) g,
<Co(1+1)7P
t
+c/ (1+t—1) Px
0
< (@@ WO o (@0 W)z, 1) T
<Co(1+t)7P

t
+C52K(T)m*l/ (1+t—1) P(1+1) FmDgr,
0

RemarkFrom the conditionZ7) we see that it suffices to
takem > 2+ /3 in TheoremlO.

The decay in Z6) allows us to study the asymptotic
behavior of such global solutions in the energy space as
t — +oo. We will show under the smallness conditidby
that for the couple(®(t), ®(t)) there are associated
element§ @, ,w, ), (®_,w_) such that

(@), ®i(t)) ~ S(t) (P, w4 )

and
(®(1), P (t)) ~ S(t)(P-,w-),

ast — o andt — —oo respectively. More precisely we have
the following theorems.

Theorem 11. Let @(t) be the solution of the Cauchy
problem associated with the (gBL) equation introduced by
Theorem 10. If w = @, then there exist a unique
(@, ,w, ) € V? x H! such that

(@), w(t)) -

St(Py, Wy )[[yzqr =0 as t— oo
Proof. The proof of this theorem is quite standard and it
follows similar arguments used to other Boussinesq type
models (seeq], [12]). Define

(P, Wy ) = (Do, Wo)

- ["s-ne

,w(T))dr.  (28)
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Then we have that

H [ s, win)dr

V2xH1

t

<C [ I6((1), (1) 2. dT
t

<C [ [|B iR 3 ) st
t

<c [[1BF 0B 9y) ey dr

<€ [ (@D (O

1 1
™Dy < const

which proves that the integral ir28) converges irV? x
HL. A similar argument and the formula

S(—t)(D(1),w(t)) — (D, W)
:/t S(—1)G(@(1),w(1)) dr
show that

[S(—t)(D(t),W(t)) — (D, W, )|y g1 — O as t — oo,

By (24) we see that|(®(t),w(t))||y2,1 is bounded, so
S(—t)(@(t),w(t)) converges weakly iV x H!, and we

concluded that als— o,

[S(=)(@(t),W(t)) = (P1, Wy ) [z,
= [[(@(®),w(t)) = S(t) (P4, W) [l y2, 1 — 0.

O
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