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Abstract: In this paper we establish Strichartz type estimates associated with a class of semigroup operators inRn, which for n= 2
correspond to some 2D water wave models. We also establish a nonlinear scattering result for solutions of the generalized Benney-Luke
equation for higher order nonlinearity and small data initial in the energy space.
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1 Introduction

The formulation of some phenomena in nonlinear optics,
fluid dynamics, nuclear physics, plasma physics,
biosciences and several other areas can be reduced in
some cases to studying nonlinear evolution equations in
mathematical physics and applied mathematics, among
other. For these nonlinear evolution models, it is very
important to determine existence and uniqueness of
solution, and the existence of special solutions as
travelling waves solutions (periodic and solitary waves).
For instance, solitary waves are important in the study of
dynamics of wave propagation in many applied models
such as fluid dynamics, optics, acoustics, oceanography,
and weather forecasting. As it is well known now, an
important application is the use of optical solitons
(solitary waves of finite energy) in fibers as an efficient
(reliable and fast) means of long-distance communication
([1], [4], [6], [7], [13], [14], [15], [18], [23]).

Since the works by I. Segal ([21]) and R. Strichartz
([24]) related with the study of the Cauchy problem for
some nonlinear wave models and diverse space-time
estimates for solutions of homogeneous and
nonhomogeneous problems, there has been a huge
number of papers using Strichartz type estimates for the
study of different PDE’s in the framework of some
function spaces (Sobolev spaces, Besov space,Lp spaces,
distributional spaces, for example) to establish
well-posedness and scattering properties.

In this paper we are interested in obtaining Strichartz
type estimates inRn associated with some special

semigroups which are related with water waves models
for n = 2, as the wave equation, the generalized
Benney-Luke equation and some Boussinesq type models
(see [13], [15]). In particular, for the generalized
Benney-Luke model with a nonlinearity of orderm large
enough, we establish nonlinear scattering for small data in
the energy space to get the asymptotic behavior of global
solutions ast →±∞.

Models considered in this paper are related with the
evolution of long water waves with small amplitude of an
irrotational, three-dimensional flow of an inviscid,
incompressible fluid which at rest occupies the region
(x,y) ∈ R2 and 0< z< h0. It is known that this type of
models can be described as an approximation of the full
water wave problem imposing some restrictions on the
parameters that affect the propagation of gravity water
waves as the nonlinearity (amplitude parameterε), the
dispersion (long-wave parameterµ) and the horizontal
spreading. In these models, the variableη(x,y, t)
represents the free surface elevation and the variableΦ
represents essentially the velocity potential at the bottom,
after the approximation process using Taylor expansion
on the variablez (see [2], [3], [9], [10], [11], [13], [14],
[15], [16]).

This paper is organized as follows. In section 2, we
include some preliminaries. In section 3, we establish
Strichartz estimates for a general class of semigroups
defined in Rn. As for many models, the Strichartz
estimates are obtained by combining the Littlewood-Paley
dyadic decomposition, the Riesz-Thorin Interpolation
Theorem, the Hardy-Littlewood-Sobolev Inequality and
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duality arguments. In section 4, we verify the hypotheses
to have the Strichartz estimates for the semigroup
associated with some water wave models as the wave
equation, the generalized Benney-Luke equation and
some Boussinesq-Benney-Luke type systems. In section
5, we prove a nonlinear scattering result for the
generalized Benney-Luke equation and analyze the
asymptotic behavior of global solutions for this model as
t →±∞.

2 Preliminaries.

We will use the following notation,Lp(Rn),1 ≤ p ≤ ∞,
denote the usual Lebesgue space with the norma
‖ · ‖p = ‖ · ‖Lp(Rn). The usual Sobolev space
Hs,p(Rn), s ∈ R is defined as the closure of Schwartz
spaceS(Rn) with respect to the norm given by

‖ f‖Hs,p(Rn) =
∥∥∥F−1

(
(1+ |ξ |2) s

2 f̂
)∥∥∥

Lp(Rn)
,

where the Fourier transform of a functionw defined onRn

is given by

(Fw)(ξ ) = ŵ(ξ ) =
1

(2π) n
2

∫

Rn
e−ix·ξ w(x)dx.

The homogeneous Sobolev spaceḢs,p(Rn) is defined as
the closure of Schwartz spaceS(Rn) with respect to the
norm

‖ f‖Ḣs,p(Rn) =
∥∥∥F−1

(
|ξ |s f̂

)∥∥∥
Lp(Rn)

.

Especially we write Hs(Rn) = Hs,2(Rn) and
Ḣs(Rn) = Ḣs,2(Rn). The spaceVs(Rn) denote the closure
of S(R2) with respect to the norm given by

‖ f‖Vs(Rn) = ‖∇ f‖Hs−1(Rn) = ‖|ξ | f̂ ‖Hs−1(Rn).

We also adopt the notation

‖ f‖Lq
t (L

p
x )
=

(∫ ∞

−∞
‖ f (·, t)‖q

Lp(Rn)
dt

)1/q

,

with the obvious modification whenq = ∞. HereafterC
denotes a generic constant whose value may change from
instance to instance. The following lemma will be
frequently used.

Lemma 1.Let s, r ∈ R and1≤ p< ∞. Then we have that

1) If s≥ r+n( 1
p− 1

q) and1< p≤ q<∞, then Hs,p(Rn) →֒
Hr,q(Rn).

2) If s> n
p, then Hs,p(Rn) →֒ L∞(Rn).

2.1Littlewood-Paley decomposition

The main tool used to obtain Strichartz estimates for
many models is the Littlewood-Paley dyadic
decomposition, which are defined in the following
standard way. Letχ ∈C∞

0 (R
n) be a radial cut-off function

such that 0≤ χ ≤ 1 and

χ(ξ ) =

{
1 if |ξ | ≤ 1/2,
0 if |ξ | ≥ 1.

If β (ξ ) = χ(ξ )− χ(2ξ ), then β ∈ C∞
0 (R

n) is a radial
function supported away from zero such that for any
ξ ∈ R2\{0},

∞

∑
j=−∞

β
(

ξ
2 j

)
= 1.

Now, define the operator∆ j : S(Rn)→ S(Rn) by

∆̂ j f (ξ ) = β
(

ξ
2 j

)
f̂ (ξ ), for j ∈ Z.

Then f = ∑∞
j=−∞ ∆ j f in S(R2). Moreover, we see that

supp̂∆ j f ⊂ {2 j−2 ≤ |ξ | ≤ 2 j}, (1)

and also that if| j −k| ≥ 2 then

(∆ j f )(∆k f ) = 0. (2)

We remember that{∆ j f} j is called the Littlewood-Paley
decomposition off . We will use the coming important
result.

Lemma 2.Let s∈ R, then holds the following statements.
1) Given2≤ p< ∞, there exist C=Cp,n,s > 0 such that

‖ f‖2
Hs,p(Rn) ≤C

∞

∑
j=−∞

‖∆ j f‖2
Hs,p(Rn),

‖ f‖2
Ḣs,p(Rn) ≤C

∞

∑
j=−∞

‖∆ j f‖2
Ḣs,p(Rn).

2) Given1< p≤ 2, there exist C=Cp,n,s > 0 such that

∞

∑
j=−∞

‖∆ j f‖2
Hs,p(Rn) ≤C‖ f‖2

Hs,p(Rn),

∞

∑
j=−∞

‖∆ j f‖2
Ḣs,p(Rn) ≤C‖ f‖2

Ḣs,p(Rn).

Also, we will use the following version of Bernstein’s
Lemma.

Lemma 3. [Bernstein’s Lemma] Assume f∈ Lp(Rn),1≤
p≤ ∞ such that

suppf̂ ⊂ {ξ ∈ R
n : 2 j−2 ≤ |ξ | ≤ 2 j}.

Then for every s≥ 0 there exist C=Cp,n,s > 0 such that

‖ f‖Ḣs,p(Rn) ≤C2 js‖ f‖Lp(Rn).
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3 Strichartz estimates for a class of
semigroups

In this section we establish Strichartz type estimates in
the case of semigroupS(t) that are linear combination of
operatorsSk(t) of the form

Ŝk(t) f (ξ ) = Λk(ξ )eit |ξ |ρ(|ξ |) f̂ (ξ ), ξ ∈ R
n, (3)

where 1≤ k≤ 3 and

Λ1(ξ ) = ϕ1(ξ ), Λ2(ξ ) = |ξ |ϕ2(ξ ), Λ3(ξ ) =
ϕ3(ξ )
|ξ | ,

with
ϕk ∈ L∞(Rn).

If ρ = ±1 andΛ1 = 1, we have that semigroupS±1 (t) is
associated with the wave equation inRn. We will see in
section 4 that the semigroup associated with some two-
dimensional water wave type models have exactly the form
Sk defined for (3) in R2.

We are interested in deriving some Strichartz estimates
for general semigroups, as possible. So, hereafter we will
assume thatρ : R→ R is aCn(R) function. For j ∈ Z, we
define functionsρ j andh j by

ρ j(r) = ρ(2 j r), h j(r) = ρ j(r)+ rρ ′
j(r). (4)

We will assume that the functionρ satisfies the condition:

[H] Given the interval[r1, r2] ⊂ R+, there iscl > 0 such
that for all(r, j) ∈ [r1, r2]×Z,

∣∣h j(r)
∣∣≥ c0,

∣∣h(l)j (r)
∣∣

∣∣h j(r)
∣∣ ≤ cl , 1≤ l ≤ n−1. (5)

Note that for the wave equation, we have thatρ = ±1,
meaning that the hypothesis[H] is trivial. We will see that
conditions onρ and ϕk are verified explicitly for some
Boussinesq type models in section 4 forn = 2, which
corresponds to the physical problem. The technical
condition [H] on the functionρ appears when we try to

truncate the semigroup Fourier symbolŜk(t)
appropriately, as done for the water wave equation.

3.1Local estimates

We obtain some Strichartz estimates by performing a
slight modification of the Strichartz estimates used for
wave equation (see [8], [20], [24]). As in the mention
works, we use a very well known result related with the
pointwise estimate for the Fourier transform restricted to
the (n−1)-sphere (see T. Wolff, [25]), in order to obtain
estimates for some operators.

Lemma 4.Let n≥ 2 and Sn−1 the unit sphere inRn. Define

σ̌n(x) =
∫

Sn−1
eix·ξ dSξ , x∈ R

n,

then we have that

|σ̌n(x)| ≤C|x|− n−1
2 . (6)

In order to define the truncated operator, we choose a
radial cutoff functionβ ∈ C+∞

0 (Rn) supported away from
zero. So, if j ∈ Z define the operatorTj , for (x, t) ∈ Rn+1,
as

(Tj(t) f )(x) =
1

(2π) n
2

∫

Rn
eix·ξ eit |ξ |ρ(2 j |ξ |)β (ξ ) f̂ (ξ )dξ .

Note that
(Tj(t) f )(x) = (K j(t)∗ f )(x),

where

(K j(t))(x) =
1

(2π) n
2

∫

Rn
eix·ξ eit |ξ |ρ(2 j |ξ |)β (ξ )dξ .

The following results describes some estimates of the
family of operators{Tj} j∈Z onLp(Rn).

Lemma 5. There exist C= Cn > 0 (not depending on j)
such that

‖Tj(t) f‖2 ≤C‖ f‖2.

Moreover, if n≥ 2 andρ satisfies[H] , then

‖Tj(t) f‖∞ ≤C|t|
−(n−1)

2 ‖ f‖1.

Proof. Let g(ξ ) = eit |ξ |ρ(2 j |ξ |)β (ξ ). Using Plancherel
Theorem we have that

∥∥Tj(t) f
∥∥

2 = ‖gf̂ ‖2 ≤C‖ f̂‖2 =C‖ f‖2,

as claimed in the first inequality. Now we will show the
second estimate. First assume that|t| ≤ 1. Then using
Young’s inequality we find that

‖Tj(t) f‖∞ ≤ ‖K j(t)‖∞‖ f‖1 ≤C‖ f‖1 ≤C|t|
−(n−1)

2 ‖ f‖1.

Now, we consider the case|t|> 1. We will prove that there
existC> 0 such that for allj ∈ Z,

‖K j(t)‖∞ ≤C|t|
−(n−1)

2 . (7)

Recall thatβ is assumed to be radial and supported away
from zero. Using polar coordinatesξ = rω we have that

(2π)
n
2 (K j(t))(x) =

∫ ∞

0

∫

Sn−1
eir (x·ω+tρ j (r))a(r)dSω dr

=

∫ ∞

0
σ̌n(rx)e

itr ρ j (r)a(r)dr,
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wherea is a smooth function such that

suppa⊂ {r ∈ R : 0< r1 ≤ |r| ≤ r2}.

Now, let c0 > 0 such that|h j(r)| ≥ c0 for all j ∈ Z (see
(5)). We consider two cases.

Case 1.Supposec0|t|< 2|x|. Using estimate (6) in Lemma
4, we have that

|(K j(t))(x)| ≤C
∫ ∞

0
|σ̌n(rx)| |a(r)|dr

≤C
∫ ∞

0
|rx|

−(n−1)
2 |a(r)|dr

≤C|t|
−(n−1)

2 .

Case 2.Supposec0|t| ≥ 2|x|. From the integration by parts
formula we see that

I =
∫ ∞

0
eir (x·ω+tρ j (r))a(r)dr

=
∫ ∞

0

d
dr

(
eir (x·ω+tρ j (r))

) a(r)
i (x ·ω + th j(r))

dr

=
∫ ∞

0
eir (x·ω+tρ j (r))F(r)dr,

where

F(r) =
−a′(r)

i (x ·ω + th j(r))
+

ta(r)h′j(r)

i(x ·ω + th j(r))2 .

If |ω|= 1, we obtain that

1
2

∣∣th j(r)
∣∣≤
∣∣th j(r)

∣∣−|x| ≤ |th j(r)+x ·ω|. (8)

Then, using previous inequality and condition[H] for n=
2, we concluded that there isC> 0 (independent ofj) such
that
∣∣(K j(t))(x)

∣∣≤C
∫

S1
|I |dSω

≤C
∫

S1

1
|h j(r)|

(
1+

|h′j(r)|
|h j(r)|

)
1
|t| dSω

≤ C
|t| .

Applying the same argument of integration by parts as
before, it follows that

I =
∫ ∞

0
eir (x·ω+tρ j (r))G(r)dr.

where

G(r) =
−a′′(r)

(x ·ω + th j(r))
2 −

3ta′(r)h′j(r)

(x ·ω + th j(r))3

+
ta(r)h′′j (r)

(x ·ω + th j(r))
3 −

3t2a(r)
(

h′j(r)
)2

(x ·ω + th j(r))4 .

Then, using inequality (8) and condition[H] for n= 3, we
obtain that

|I | ≤

C
|h j(r)|2


1+

|h j(r)h′j(r)|+ |h j(r)h′′j (r)|+
∣∣∣h′j(r)

∣∣∣
2

|h j(r)|2


 1

|t|2

≤ C
|t|2 .

If we continue using the integration by part argument and
condition[H] , we have after then−1 step that

|I | ≤ Cn

|h j(r)|n−1

(
1+

∑k fk
|h j(r)|n−1

)
1

|t|n−1 ≤ Cn

|t|n−1 .

where the sum is finite and each termfk is the product of
n−1 functions in the set

{
h j ,h

′
j , . . . ,h

(n−1)
j

}
.

In other words,

|(K j(t))(x)| ≤C
∫

Sn−1
|I |dSω ≤ Cn

|t|n−1 .

Then we see that (7) follows by combining case 1. and case
2.�

Lemma 6. Let n≥ 2 and assume thatρ satisfies[H] . If
2≤ p≤ ∞ and 1

p +
1
p′ = 1, then there exist C> 0 such that

for all j ∈ Z,

‖Tj(t) f‖p ≤C|t|
−(n−1)

2

(
1
p′ −

1
p

)
‖ f‖p′ .

Proof. Using the Riesz-Thorin Interpolation Theorem and
previous lemma we obtain that

Tj(t) : Lp′(Rn)→ Lp(Rn)

is a bounded linear operator and there is a positive constant
C (independent ofj) such that

‖Tj(t) f‖p ≤C
(
|t|

−(n−1)
2

)1−θ
‖ f‖p′ ,

where

1
p
=

θ
2

and 1−θ = 1− 2
p
=

1
p′

− 1
p
,

as desired.�
Hereafter we will assume, unless otherwise stated, that

2≤ p< ∞, 2≤ q≤ ∞ andn≥ 2 satisfy the relation

2
q
=

n−1
2

(
1− 2

p

)
. (9)

We will say that the couple(p,q) is an admissible pair if
satisfies (9) for a fixedn≥ 2. The following notation also
is used,

1
p
+

1
p′

=
1
q
+

1
q′

= 1.
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Lemma 7. Assume thatρ satisfies[H] . If 2< p< ∞ and
(p,q) is an admissible pair, then there exist C> 0 such that
for all j ∈ Z,

(∫ ∞

−∞

∥∥∥
∫ ∞

−∞
Tj(t − r)g(·, r)dr

∥∥∥
q

p
dt

)1/q

(10)

≤C

(∫ ∞

−∞
‖g(·, t)‖q′

p′dt

)1/q′

,

∥∥∥
∫ ∞

−∞
Tj(t)g(·, t)dt

∥∥∥
2
≤C

(∫ ∞

−∞
‖g(·, t)‖q′

p′ dt

)1/q′

, (11)

(∫ ∞

−∞

∥∥Tj(t) f
∥∥q

p dt

)1/q

≤C‖ f‖2, (12)

where C=Cp,n is a constant that depends only on p and n.

Proof. First we will show (10). Using the Minkowski
integral inequality and previous proposition we have that

∥∥∥
∫ ∞

−∞
Tj(t − r)g(·, r)dr

∥∥∥
p

≤
∫ ∞

−∞

∥∥Tj(t − r)g(·, r)
∥∥

pdr

≤C
∫ ∞

−∞
|t − r|

−(n−1)
2

(
1
p′ −

1
p

)
‖g(·, r)‖p′dr.

From the Hardy-Littlewood-Sobolev inequality we obtain
(10) with

1
q
=

1
q′

−
[
1− n−1

2

(
1
p′

− 1
p

)]
.

This implies that

2
q
=

(n−1)
2

(
1− 2

p

)
.

Now, define h(x) =
∫ ∞
−∞ (Tj(t)g(·, t))(x)dt. Then we

obtain that

‖h‖2
L2(Rn)

=
∫

Rn

[
h(x)

(∫ ∞

−∞

(
Tj(−r)g(·, r)

)
(x)dr

)]
dx

=
∫ ∞

−∞

∫

Rn

[
g(x, t)

∫ ∞

−∞

(
Tj(t − r)g(·, r)

)
(x)dr

]
dxdt

≤
(∫ ∞

−∞

∥∥g(·, t)
∥∥q′

p′ dt

)1/q′

×

×
(∫ ∞

−∞

∥∥∥
∫ ∞

−∞
Tj(t − r)g(·, r)dr

∥∥∥
q

p
dt

)1/q

.

Hence, using (10) we find that

‖h‖2
L2(Rn) ≤C

(∫ ∞

−∞

∥∥g(·, t)
∥∥q′

p′ dt

)2/q′

,

which implies (11). To finish the proof we see that a duality
argument implies that

(∫ ∞

−∞
‖h(x, t)‖q

pdt

)1/q

= sup

{∣∣∣
∫ ∞

−∞

∫

Rn
h(x, t)w(x, t)dxdt

∣∣∣ : ‖w‖
Lq′

t (Lp′
x )

= 1

}
.

Then if‖w‖
Lq′

t (Lp′
x )

= 1,

∣∣∣
∫ ∞

−∞

∫

Rn
(Tj(t) f )(x)w(x, t)dxdt

∣∣∣

≤
∥∥ f‖2

∥∥∥
∫ ∞

−∞
(Tj(t)w(·, t))(x)dt

∥∥∥
2

≤ ‖ f‖2‖w‖
Lq′

t (Lp′
x )

≤ ‖ f‖2.

So that (12) follows, as desired.�

3.2Global estimates

Now, using the local estimates, we are position to obtain
Strichartz estimates for the semigroupsSk (k = 1,2,3),
given by the equation (3) with ϕk ∈ L∞(Rn) and the
function ρ : R → R satisfying the condition[H] . Our
argument is based on the Littlewood-Paley dyadic
ecomposition, the estimate (12) and Lemma6.

Theorem 1.Assume thatϕk ∈ L∞(Rn) for 1 ≤ k ≤ 3 and
thatρ satisfies the condition[H] . If (p,q) is an admissible
pair andα = n

2 − n
p − 1

q, then there exist Ck > 0 such that

1)‖S1(t) f‖Lq
t (Lp

x) ≤C1‖ f‖Ḣα (Rn),

2)‖S2(t) f‖Lq
t (Lp

x) ≤C2‖ f‖Ḣα+1(Rn),

3)‖S3(t) f‖Lq
t (Lp

x) ≤C3‖ f‖Ḣα−1(Rn).

Proof. First we consider the operatorU(t) defined in
Fourier space by

Û(t) f (ξ ) = eit |ξ |ρ(|ξ |) f̂ (ξ ),

and use the Littlewood-Paley decomposition{∆ j f} given
by

∆̂ j f (ξ ) = β
(

ξ
2 j

)
f̂ (ξ ), j ∈ Z,

where β ∈ C∞
0 (R

n) is a radial function supported away
from zero. Then we have thatf = ∑ j∈Z ∆ j f . Moreover,

U(t) f = ∑
j∈Z

∆ j(U(t) f ) = ∑
j∈Z

U(t)(∆ j f ).
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Now, we see that

(U(t)∆ j f )(x)

=
1

(2π) n
2

∫

Rn
eix·ξ eit |ξ |ρ(|ξ |)β

(
ξ
2 j

)
f̂ (ξ )dξ

=
1

(2π) n
2

∫

Rn
ei(2 j x)·ξ ei(2 j t)|ξ |ρ(2 j |ξ |)β (ξ )ĝ(ξ )dξ ,

whereg(·) = f
( ·

2 j

)
. Then we conclude that

(U(t)∆ j f )(x) = (Tj (g))(2
jx,2 j t), (x, t) ∈ R

n+1. (13)

Using this fact and inequality (12) for 2< p< ∞ and

2
q
=

n−1
2

(
1− 2

p

)
,

we find that

‖U(t)∆ j f‖Lq
t (L

p
x )
= 2 j(− n

p− 1
q )‖Tj(g)‖Lq

t (L
p
x )

(14)

≤C2 j(− n
p− 1

q )‖g‖2

≤C2 j( n
2− n

p− 1
q )‖ f‖2.

By orthogonality property (2), for fixed j we have that

∆ j f = ∆ j

(
∑
l∈Z

∆l f
)
= ∑

l∈Z, |l− j|≤3

∆ j∆l f .

Then if α = n
2 − n

p − 1
q we see from (14) and Bernstein’s

Lemma that

‖U(t)∆ j f‖Lq
t (L

p
x )
≤ ∑

|l− j|≤3

‖U(t)∆ j∆l f‖Lq
t (L

p
x )

≤C ∑
|l− j|≤3

2 jα‖∆l f‖2

≤Cα ∑
|l− j|≤3

‖∆l f‖Ḣα (Rn).

Hence, using Lemma2 and previous inequality we find
that

∥∥U(t) f
∥∥

Lq
t (L

p
x )
≤
∥∥∥
√

∑
j∈Z

‖U(t)∆ j f‖2
Lp

x

∥∥∥
Lq

t

(15)

≤
√

∑
j∈Z

‖U(t)∆ j f‖2
Lq

t (L
p
x )

≤Cα

√
∑
j∈Z

∑
|l− j|≤3

‖∆l f‖2
Ḣα (Rn)

≤Cα
√

∑
j∈Z

‖∆ j f‖2
Ḣα (Rn)

≤Cα‖ f‖Ḣα (Rn).

Now, if S1(t) is given by

Ŝ1(t) f (ξ ) = ϕ1(ξ )eit |ξ |ρ(|ξ |) f̂ (ξ ),

we setĝ1(ξ ) = ϕ1(ξ ) f̂ (ξ ). Then using (15) we have that

‖S1(t) f‖Lq
t (L

p
x )
= ‖U(t)g1‖Lq

t (L
p
x )

≤Cα‖g1‖Ḣα (Rn)

≤Cα‖ϕ‖∞‖ f‖Ḣα (Rn).

Recall that (14) holds for 2< p < ∞. We notice that if
p = 2, thenq = ∞, α = 0 andḢα(Rn) = L2(Rn). In this
case for allt ∈ R we see that

‖S1(t) f‖2 = ‖Ŝ1(t) f‖2 ≤ ‖ϕ1‖∞‖ f‖2.

Therefore
‖S1(t) f‖L∞

t (L2
x)
≤C‖ f‖2.

Usingĝ2(ξ ) = |ξ |ϕ2(ξ ) f̂ (ξ ) andĝ3(ξ ) = ϕ3(ξ ) f̂ (ξ )/|ξ |
we obtain the statements2) and3) of theorem.�

Corollary 1. Assume thatϕk ∈ L∞(Rn) for 1≤ k ≤ 3 and
that ρ satisfies the condition[H] . If s ∈ R, (p,q) is an
admissible pair andα = n

2 − n
p − 1

q, then there exist
Ck > 0 such that

1) ‖S1(t) f‖Lq
t (Ḣs,p(Rn)) ≤C1‖ f‖Ḣs+α (Rn),

2) ‖S2(t) f‖Lq
t (Ḣs,p(Rn)) ≤C2‖ f‖Ḣs+α+1(Rn),

3) ‖S3(t) f‖Lq
t (Ḣs,p(Rn)) ≤C3‖ f‖Ḣs+α−1(Rn).

Proof. Let s∈ R and definêg(ξ ) = |ξ |s f̂ (ξ ), then using
Theorem1 we have that
(∫ ∞

−∞
‖S1(t) f‖q

Ḣs,p(Rn)
dt

)1/q

=

(∫ ∞

−∞
‖S1(t)g‖q

pdt

)1/q

≤C‖g‖Ḣα (Rn)

=C‖ f‖Ḣs+α (Rn).

We use the obvious modification whenq = ∞. Similarly
follows 2) and3). �

Theorem 2.Assume thatϕk ∈ L∞(Rn) for 1 ≤ k ≤ 3 and
that ρ satisfies the condition[H] . If s∈ R, 2< p< ∞ and

γ = n+1
2

(
1
p′ − 1

p

)
, then there exist Ck > 0 such that

1)‖S1(t) f‖Ḣs,p(Rn) ≤C1|t|
−(n−1)

2

(
1
p′ −

1
p

)
‖ f‖Ḣs+γ,p′ (Rn)

.

2)‖S2(t) f‖Ḣs,p(Rn) ≤C2|t|
−(n−1)

2

(
1
p′ −

1
p

)
‖ f‖Ḣs+γ+1,p′ (Rn)

.

3)‖S3(t) f‖Ḣs,p(Rn) ≤C3|t|
−(n−1)

2

(
1
p′ −

1
p

)
‖ f‖Ḣs+γ−1,p′ (Rn)

.

Proof. For the proof of1) it is suffices to show that

‖S1(t) f‖p ≤C|t|
−(n−1)

2

(
1
p′ −

1
p

)
‖ f‖Ḣγ,p′ (Rn)

.

Using the same notation as in the proof of Theorem1 we
have that

(U(t)∆ j f )(x) = (Tj (g))(2
jx,2 j t), (x, t) ∈ R

n+1,

c© 2013 NSP
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whereg(·) = f ( ·
2 j ). Then using Lemma6 for 2< p < ∞

we find that

‖U(t)∆ j f‖p ≤C2 jγ |t|
−(n−1)

2

(
1
p′ −

1
p

)
‖ f‖p′ .

From this inequality and proceeding as in the proof of
Theorem1 the result follows.�

4 Strichartz estimates for some water wave
models

4.1The generalized Benney-Luke equation

In this section we establish Strichartz estimates for the
semigroup associated with the two–dimensional
generalized Benney-Luke (gBL) equation

Φtt −∆Φ +µ
(
a∆ 2Φ −b∆Φtt

)
(16)

+ ε
[
Φt

(
[(Φx)

m]x+[(Φy)
m]y

)

+2
(
(Φx)

mΦxt +(Φy)
mΦyt

)]
= 0,

wherea,b,ε ,µ > 0 andm= m1
m2

with (m1,m2) = 1 andm2

odd. J. Quintero and R. Pego in [14] showed that the
evolution of three-dimensional water waves with surface
tension can be reduced to studying the solutionΦ(x,y, t)
of the equation (16) with m= 1, whereε is the amplitude
parameter, µ is the long-wave parameter and
a− b = σ − 1

3, whereσ is the Bond number (associated
with the surface tension). The variableΦ is the rescale
nondimensional velocity potential on the bottomz= 0.

Hereafter we considerε = µ = 1, since the parameters
ε andµ can be scale from the equation by defining

Φ̃(x,y, t) =
√µ
ε

Φ
(

x√µ
,

y√µ
,

y√µ

)
.

Also, we will writteHs,p =Hs,p(R2), Ḣs,p = Ḣs,p(R2) and
V

s = V
s(R2).

We observe that the generalized Benney-Luke
equation can be written as a first-order system in the
variablesΦ andw= Φt ,

(
Φ
w

)

t
+M

(
Φ
w

)
+G

(
Φ
w

)
= 0, (17)

where

M =




0 I

∆B−1A 0


 ,

with A= I −a∆ , B= I −b∆ , whereG andF are given by

G




Φ

w


=




0

B−1F(Φx,Φy,w)


 ,

F(u,v,w) =
[
w
(
(um)x+(vm)y

)
+2
(

umwx+vmwy

)]
.

We see that the Fourier symbol associated with the
operatorsA andB are given by

Â= 1+a|ξ |2, B̂= 1+b|ξ |2.

We see directly that the linear operatorM is the
infinitesimal generator of aC0−semigroupS(t). In fact,
S(t) is defined as

S(t) =



F
−1 0

0 F
−1


 êtM



F 0

0 F




where we have that

êtM =




cos(|ξ |ρ(|ξ |)|t) sin(|ξ |ρ(|ξ |)t)
|ξ |ρ(|ξ |)

−|ξ |ρ(|ξ |)sin(|ξ |ρ(|ξ |)t) cos(|ξ |ρ(|ξ |)t)




with ρ being defined as

ρ(r) =

√
1+ar2

1+br2 .

Lemma 8.ρ satisfies the condition[H] .

Proof. Sincen= 2, we want to establish that

|h j(r)| ≥ c0, |h′j(r)| ≤ c1,

which implies the condition[H] . If ρ j(r) = ρ(2 j r), we
have that

h j(r) = ρ j(r)+ rρ ′
j(r)

=

√
1+4 jar2

1+4 jbr2 +
(a−b)4 j r2

(1+4 jbr2)2

√
1+4 jbr2

1+4 jar2

=
1+(2a+b)4 j r2+3ab42 j r4+ab243 j r6

(1+4 jbr2)2
√
(1+4 jar2)(1+4 jbr2)

.

Let I = [r1, r2] ⊂ R+, then for any( j, r) ∈ Z× I we have
the estimate

h j(r)≥
1+(2a+b)4 j r2

1+3ab42 j r4
1+ab243 j r6

1

(1+4 jbr2
2)

2
√
(1+4 jar2

2)(1+4 jbr2
2)

:= π j ,
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Now, we have that

lim
j→−∞

π j = 1, lim
j→∞

π j =

√
a
b

(
r1

r2

)6

.

Hence, we concluded that there existc0 > 0 such that for
all ( j, r) ∈ Z× I ,

|h j(r)| ≥ c0.

On the other hand, we have that

h′j(r) =
2(2a+b)4 j r +12ab42 j r3+6ab243 j r5

(1+b4 j r2)2
√
(1+a4 j r2)(1+b4 j r2)

− 4b
(
1+(2a+b)4 j r2+3ab42 j r4+ab243 j r6

)
4 j r

(1+b4 j r2)3
√
(1+a4 j r2)(1+b4 j r2)

−
(
(a+b)4 j r +2ab42 j r3

)

(1+a4 j r2)(1+b4 j r2)3 ×

×
(
1+(2a+b)4 j r2+3ab42 j r4+ab243 j r6

)
√
(1+a4 j r2)(1+b4 j r2)

.

Then for any( j, r) ∈ Z× I we find that

∣∣h′j(r)
∣∣≤ 2(2a+b)4 j r1+12ab42 j r3

1+6ab243 j r5
1

(1+b4 j r2
2)

2
√

(1+a4 j r2
2)(1+b4 j r2

2)

+
4b
(
1+(2a+b)4 j r2

1+3ab42 j r4
1+ab243 j r6

1

)
4 j r

(1+b4 j r2
2)

3
√

(1+a4 j r2
2)(1+b4 j r2

2)

+

(
(a+b)4 j r +2ab42 j r3

)

(1+a4 j r2)(1+b4 j r2)3 ×

×
(
1+(2a+b)4 j r2+3ab42 j r4+ab243 j r6

)
√
(1+a4 j r2)(1+b4 j r2)

.

Then we see that

lim
j→−∞

h′j(r) = lim
j→∞

h′j(r) = 0.

So that, there existc1 > 0 such that|h′j(r)| ≤ c1 for all
( j, r) ∈ Z× I . Hence, forc2 =

c1
c0

we conclude that

|h′j(r)|
|h j(r)|

≤ c2.

�

Next, we will state the Strichartz estimates for the
semigroupS(t) associated with the system (17).

Theorem 3.Suppose s∈ R, 2 ≤ p < ∞, 1
q = 1

4 − 1
2p and

α = 3
4− 3

2p. Then the semigroup S(t) satisfies the estimates

‖S(t)(Φ ,w)‖Lq
t (Ḣs,p×Ḣs−1,p) ≤C(‖Φ‖Ḣs+α +‖w‖Ḣs+α−1) .

Proof. From the previous lemma we have that±ρ(r)
satisfies the condition[H] . Moreover, the functions
ρ(|ξ |), 1/ρ(|ξ |) are bounded and the functions
sin(|ξ |ρ(|ξ |)t) and cos(|ξ |ρ(|ξ |)t) are linear
combinations ofe±i|ξ |ρ(|ξ |)t . Then using Corollary1 for
n= 2, we have that

‖F−1
(

cos(|ξ |ρ(|ξ |)t)Φ̂
)
‖Lq

t (Ḣs,p)

+
∥∥∥F−1

(sin(|ξ |ρ(|ξ |)t)
|ξ |ρ(|ξ |) ŵ

)∥∥∥
Lq

t (Ḣs,p)

≤C(‖Φ‖Ḣs+α +‖w‖Ḣs+α−1) ,

and also that
∥∥∥F−1

(
|ξ |ρ(|ξ |)sin(|ξ |ρ(|ξ |)t)Φ̂

)∥∥∥
Lq

t (Ḣs−1,p)

+
∥∥F−1 (cos(|ξ |ρ(|ξ |) t)ŵ)

∥∥
Lq

t (Ḣs−1,p)

≤C(‖Φ‖Ḣs+α +‖w‖Ḣs+α−1) .

Then we obtain that

‖S(t)(Φ ,w)‖Lq
t (Ḣs,p×Ḣs−1,p) ≤C(‖Φ‖Ḣs+α +‖w‖Ḣs+α−1) .

�

In a similar fashion, using Theorem2, also we have the
following estimates for the semigroupS(t).

Theorem 4. Suppose s∈ R, 2 < p < ∞, 1
p +

1
p′

= 1 and

γ = 3
2

(
1
p′ − 1

p

)
. Then there exist C> 0 such that

‖S(t)(Φ ,w)‖Ḣs,p×Ḣs−1,p

≤C|t|
−1
2 ( 1

p′ −
1
p)
(
‖Φ‖Ḣs+γ,p′ +‖w‖Ḣs+γ−1,p′

)
.

Now we have the following classical results for the
linear wave equation inRn.

Corollary 2. Suppose n≥ 2, s∈ R, (p,q) an admissible
pair and α = n

2 − 2
p − 1

q. If Φ0 ∈ Ḣs+α(Rn),

w0 ∈ Ḣs+α−1(Rn) andΦ is a solution to the initial value
problem inRn,

Φtt −∆Φ = 0 (18)

Φ(x,0) = Φ0(x), Φt(x,0) = w0(x).

Then the following estimate holds

‖Φ‖Lq
t (Ḣs,p(Rn))+‖Φt‖Lq

t (Ḣs−1,p(Rn))

≤C
(
‖Φ0‖Hs+α (Rn)+‖w0‖Hs+α−1(Rn)

)
.

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 6, 2159-2173 (2013) /www.naturalspublishing.com/Journals.asp 2167

Proof. The equation (18) can be written, in the variablesu
andut = v, as the first order system,

(
u
v

)

t
= M

(
u
v

)
, M =

(
0 I
∆ 0

)
. (19)

Then the semigroupS(t) associated with the problem (19)
is given by

S(t)=



F
−1 0

0 F
−1






cos(|ξ |t) sin(|ξ |t)
|ξ |

−|ξ |sin(|ξ |t) cos(|ξ |t)





F 0

0 F


 .

So that, the proof follows as in Theorem3 with a= b and
ρ ≡ 1.�

In a similar way we have the coming corollary.

Corollary 3. Suppose n≥ 2, s ∈ R, 2 < p < ∞,
1
p +

1
p′ = 1 and γ = n+1

2

(
1
p′ − 1

p

)
. If Φ0 ∈ Ḣs+α ,p′(Rn),

w0 ∈ Ḣs+α−1,p′(Rn) and Φ is a solution to the initial
value problem inRn,

Φtt −∆Φ = 0

Φ(x,0) = Φ0(x), Φt(x,0) = w0(x).

Then the following estimate holds

‖Φ‖Ḣs,p(Rn)+‖Φt‖Ḣs−1,p(Rn)

≤C|t|
−(n−1)

2 ( 1
p′ −

1
p )
(
‖Φ0‖Ḣs+γ,p′ (Rn)

+‖w0‖Ḣs+γ−1,p′ (Rn)

)
.

4.2A Boussinesq-Benney-Luke system

J. Quintero and A. Montes in [13] (see also [10]) reduced
the study of the evolution of long water waves with small
amplitude to studying solutions(Φ(x,y, t)),η(x,y, t) of the
2D-Boussinesq-Benney-Luke system,

{(
I − µ

2 ∆
)

ηt +∆Φ − 2µ
3 ∆ 2Φ + ε∇ · (η∇Φ)) = 0,(

I − µ
2 ∆
)

Φt +η −µσ∆η + ε
2 |∇Φ |2 = 0,

whereε is the amplitude parameter,µ is the long-wave
parameter andσ is the Bond number (associated with the
surface tension). The variableΦ is the rescale
nondimensional velocity potential on the bottomz = 0,
and the variableη is the rescaled free surface elevation.

We will show how Corollary1 and Theorem2 are
used to obtain Strichartz type estimates for the
Boussinesq system. We first note that operators
A = I − µ

2 ∆ , B = I − 2µ
3 ∆ andD = I − µσ∆ are defined

via the Fourier transform as

Â= 1+ µ
2 |ξ |

2, B̂= 1+ 2µ
3 |ξ |2, D̂ = 1+µσ |ξ |2.

Using this, we can written the Boussinesq system as
(

η
Φ

)

t
+M

(
η
Φ

)
+G

(
η
Φ

)
= 0, (20)

where M is a linear operator andG corresponds to the
nonlinear part,

M =

(
0 ∆A−1B

A−1D 0

)

and

G

(
η
Φ

)
= ε

(
A−1 (∇η ·∇Φ +η∆Φ)

1
2A−1

(
|∇Φ |2

)
)
.

Moreover, linear operatorM is the infinitesimal generator
of aC0-semigroupS(t) defined as

S(t) =



F
−1 0

0 F
−1


 êtM



F 0

0 F




where we have that

êtM =




cos(|ξ |ρ(|ξ |)t) |ξ |ϕ(ξ )sin(|ξ |ρ(|ξ |)t)

− sin(|ξ |ρ(|ξ |)t)
|ξ |ϕ(ξ ) cos(|ξ |ρ(|ξ |)t)




where the functionsϕ andρ are given by

ϕ(ξ ) =

√
1+β |ξ |2
1+ν |ξ |2 , ρ(r) =

√
(1+β r2)(1+νr2)

1+δ r2 ,

with δ = µ
2 , β = 2µ

3 and ν = µσ .

Lemma 9.ρ satisfies the condition[H] .

Proof. If ρ j(r) = ρ(2 j r), then we have that

h j(r) = ρ j(r)+ rρ ′
j(r)

=

√
(1+β4 j r2)(1+ν4 j r2)

1+δ4 j r2

+
β4 j r2

1+δ4 j r2

√
1+ν4 j r2

1+β4 j r2

+
ν4 j r2

1+δ4 j r2

√
1+β4 j r2

1+ν4 j r2

− 2δ4 j r2
√
(1+β4 j r2)(1+ν4 j r2)

(1+δ4 j r2)2

=
1+δ4 j r2+2(β −δ )4 j r2

(1+δ4 j r2)2
√
(1+β4 j r2)(1+ν4 j r2)

+
2ν4 j r2+3βν42 j r4+δβν43 j r6

(1+δ4 j r2)2
√
(1+β4 j r2)(1+ν4 j r2)

.
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Now, letI = [r1, r2]⊂R+. Using thatβ > δ > 0 andν > 0,
we see that for any(r, j) ∈ I ×Z holds the estimate

h j(r)≥
1+δ4 j r2

1+2(β −δ )4 j r2
1

(1+δ4 j r2
2)

2
√
(1+β4 j r2

2)(1+ν4 j r2
2)

+
2ν4 j r2

1+3βν42 j r4
1+δβν43 j r6

1

(1+δ4 j r2
2)

2
√
(1+β4 j r2

2)(1+ν4 j r2
2)

:= π j .

Note that

lim
j→−∞

π j = 1, lim
j→∞

π j =

√
βν
δ

(
r1

r2

)6

.

Hence, there existc0 > 0 such that for all(r, j) ∈ I ×Z,

|h j(r)| ≥ c0.

On the other hand, a calculation shows that

h′j(r)

=
2δ14 j r +12βν42 j r3+3δβν43 j r5

(1+δ4 j r2)2
√
(1+β4 j r2)(1+ν4 j r2)

− 4δ4 j r
(
1+δ14 j r2+3βν42 j r4+δβν43 j r6

)

(1+δ4 j r2)3
√
(1+β4 j r2)(1+ν4 j r2)

− 4 jβ r
(
1+δ14 j r2+3βν42 j r4+δβν43 j r6

)

(1+δ4 j r2)2(1+β4 j r2)
√

(1+β4 j r2)(1+ν4 j r2)

− ν4 j r
(
1+δ14 j r2+3βν42 j r4+δβν43 j r6

)

(1+δ4 j r2)2(1+ν4 j r2)
√

(1+β4 j r2)(1+ν4 j r2)
,

whereδ1 = 2(β + ν)− δ . Then for any(r, j) ∈ I ×Z we
have that

|h′j(r)|

≤ 2δ14 j r2+12βν42 j r3
2+3δβν43 j r5

2

(1+δ4 j r2
1)

2
√
(1+β4 j r2

1)(1+ν4 j r2
1)

+
4δ4 j r2

(
1+δ14 j r2

2+3βν42 j r4
2+δβν43 j r6

2

)

(1+δ4 j r2
1)

3
√
(1+β4 j r2

1)(1+ν4 j r2
1)

+
4 jβ r

(
1+δ14 j r2

2+3βν42 j r4
2+δβν43 j r6

2

)

(1+δ4 j r2
1)

2(1+β4 j r2
1)
√

(1+β4 j r2
1)(1+ν4 j r2

1)

+
ν4 j r2

(
1+δ14 j r2

2+3βν42 j r4
2+δβν43 j r6

2

)

(1+δ4 j r2
1)

2(1+ν4 j r2
1)
√

(1+β4 j r2
1)(1+ν4 j r2

1)
.

Then we find that

lim
j→−∞

h′j(r) = 0, lim
j→∞

∣∣h′j(r)
∣∣≤ 3

√
βν

δ
r5
2

r6
1

.

So, we conclude that there existc1 > 0 such that
|h′j(r)| ≤ c1 for all ( j, r) ∈ Z× I . Hence, forc2 = c1/c0
we concluded that

|h′j(r)|
|h j(r)|

≤ c2.

�

Next we will state the main results of this section.

Theorem 5.Suppose s∈ R, 2 ≤ p < ∞, 1
q = 1

4 − 1
2p and

α = 3
4 − 3

2p. Then the semigroup S(t) associated with
system Boussinesq-Benney-Luke (20) satisfies the
estimates

‖S(t)(η ,Φ)‖Lq
t (Ḣs−1,p×Ḣs,p) ≤C(‖η‖Ḣs+α−1 +‖Φ‖Ḣs+α ) .

Proof. From previous lemma we have that±ρ satisfies
the condition[H] . Now, note thatϕ and 1/ϕ are bounded
functions and functions sin(|ξ |ρ(|ξ |)t) and
cos(|ξ |ρ(|ξ |)t) are linear combinations ofe±i|ξ |ρ(|ξ |)t .
Then using the Corollary1 for n= 2, we have that

∥∥F−1 (cos(|ξ |ρ(|ξ |)t) η̂)
∥∥

Lq
t (Ḣs−1,p)

+
∥∥∥F−1

(
|ξ |ϕ(ξ )sin(|ξ |ρ(|ξ |)t)Φ̂

)∥∥∥
Lq

t (Ḣs−1,p)

≤C(‖η‖Ḣs+α−1 +‖Φ‖Ḣs+α ) ,

and also that
∥∥∥F−1

(sin(|ξ |ρ(|ξ |)t)
|ξ |ϕ(ξ ) η̂

)∥∥∥
Lq

t (Ḣs,p)

+
∥∥∥F−1

(
cos(|ξ |ρ(|ξ |) t)Φ̂

)∥∥∥
Lq

t (Ḣs,p)

≤C(‖η‖Ḣs+α−1 +‖Φ‖Ḣs+α ) .

Hence we obtain,

‖S(t)(η ,Φ)‖Lq
t (Ḣs−1,p×Ḣs,p) ≤C(‖η‖Ḣs+α−1 +‖Φ‖Ḣs+α ) .

�

In a similar fashion we have the following theorem.

Theorem 6. Suppose s∈ R, 2 < p < ∞, 1
p +

1
p′

= 1 and

γ = 3
2(

1
p′ − 1

p). Then there exist C> 0 such that

‖S(t)(η ,Φ)‖Ḣs−1,p×Ḣs,p

≤C|t|
−1
2 ( 1

p′ −
1
p )
(
‖η‖Ḣs+γ−1,p′ +‖Φ‖Ḣs+γ,p′

)
.

4.3A 2D Boussinesq Type System

In this section we show Strichartz type estimates for
solutions of associated linear problem with the
Boussinesq type system inR1+2





ηt +∆Φ − µ
6 ∆ 2Φ + ε∇ · (η∇Φ) = 0,

Φt +η −µ(σ − 1
2)∆η + ε

2 |∇Φ |2 = 0.
(21)
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with ε ,µ ,σ > 0. J. Quintero reduced the study of the
evolution of long water with small amplitude to studying
solutions(Φ ,η) of this 2D-Boussinesq system (see [15]).

If λ = µ
6 ,β = µ(σ − 1

2) > 0, u = ∂1Φ andv = ∂2Φ
then formally∂2u= ∂1vand the system (21) is transformed
into a first order system in the variablesη ,u,v of the form




η
u
v




t

+M




η
u
v


+G




η
u
v


= 0, (22)

where

M =




0 A∂1 A∂2
B∂1 0 0
B∂2 0 0




andG is given by

G




η
u
v


=−ε




∂1(ηu)+∂2(uv)
u∂1u+v∂1v
u∂2u+v∂2v


 ,

with A= I −λ∆ andB= I −β∆ . The linear operatorM is
the infinitesimal generator of aC0−semigroupS(t) given
by

S(t) =




F
−1 0 0

0 F
−1 0

0 0 F
−1


 êtM




F 0 0

0 F 0

0 0 F


 ,

whereêtM is defined as the matrix




C(ξ ) −iϕ1(ξ )S(ξ ) −iϕ2(ξ )S(ξ )

−iζ1(ξ )S(ξ ) φ1(ξ )C(ξ ) ψ(ξ )C(ξ )

−iζ2(ξ )S(ξ ) ψ(ξ )cos(|ξ |ρ(|ξ |)t) φ2(ξ )C(ξ )




whit

S(ξ ) = sin(|ξ |ρ(|ξ |)t) , C(ξ ) = cos(|ξ |ρ(|ξ |)t)

and the functionsϕk, ζk, φk, ψ (k = 1,2) are defined for
ξ = (ξ1,ξ2) by

ϕk(ξ ) =
ξk

|ξ |

√
1+λ |ξ |2
1+β |ξ |2 , ζk(ξ ) =

ξk

|ξ |

√
1+β |ξ |2
1+λ |ξ |2 ,

φk(ξ ) =
ξ 2

k

|ξ |2 , ψ(ξ ) =
ξ1ξ2

|ξ |2 ,

andρ is given by

ρ(r) =
√
(1+λ r2)(1+β r2).

We notice that fork= 1,2,

ϕk,ζk,φk,ψ ∈ L∞(R2).

Moreover,ρ satisfies the condition[H] . In fact,

h j(r) = ρ j(r)+ rρ ′
j(r)

=
√
(1+λ4 j r2)(1+β4 j r2)

+
(λ +β )4 j r2+2λβ42 j r4
√

(1+λ4 j r2)(1+β4 j r2)

=
1+2(λ +β )4 j r2+3λβ42 j r4
√

(1+λ4 j r2)(1+β4 j r2)
.

Then it is easy to see that for any intervalI = [r1, r2]⊂R+,
there existc1 > 0 such that for all( j, r) ∈ Z× I ,

|h j(r)| ≥ c1.

Now, we see that

h′j(r) =
3(λ +β )4 j r +2(λ +β )242 j r3+10λβ42 j r3

(1+λ4 j r2)(1+β4 j r2)
√
(1+λ4 j r2)(1+β4 j r2)

+
9λβ (λ +β )43 j r5+6(λβ )244 j r7

(1+λ4 j r2)(1+β4 j r2)
√
(1+λ4 j r2)(1+β4 j r2)

.

So that,

|h′j(r)|
|h j(r)|

=

3(λ +β )4 j r +2(λ +β )242 j r3+10λβ42 j r3

(1+λ4 j r2)(1+β4 j r2)(1+2(λ +β )4 j r2+3λβ42 j r4)

+
9λβ (λ +β )43 j r5+6(λβ )244 j r7

(1+λ4 j r2)(1+β4 j r2)(1+2(λ +β )4 j r2+3λβ42 j r4)
.

Then a simple calculation shows that there existc2 > 0
such that

|h′j(r)|
|h j(r)|2

≤ c2.

In a similar fashion as for the previous models we have
the following theorems. We use the notation

Ẏs,p = Ḣs,p× Ḣs,p× Ḣs,p.

Theorem 7.Suppose s∈ R, 2 ≤ p < ∞, 1
q = 1

4 − 1
2p and

α = 3
4− 3

2p. Then the semigroup S(t) satisfies the estimates

‖S(t)(η ,u,v)‖Lq
t (Ẏs,p)

≤C(‖η‖Ḣs+α +‖u‖Ḣs+α +‖v‖Ḣs+α ) .

Theorem 8.Suppose s∈R, 2< p<∞, 1
p+

1
p′ = 1 andγ =

3
2

(
1
p′ − 1

p

)
. Then the semigroup S(t) satisfies the estimates

‖S(t)(η ,u,v)‖Ẏs,p

≤C|t|
−1
2 ( 1

p′ −
1
p )
(
‖η‖Ḣs+γ,p′ +‖u‖Ḣs+γ,p′ +‖v‖Ḣs+γ,p′

)
.
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5 Asymptotic behavior of solutions in the
energy space of the (gBL)

In present section, form≥ 4 and the initial data small and
belongs to a suitable Sobolev space, we study the
asymptotic behavior of global solutions in the energy
space of the (gBL) equation ast → ±∞, Throughout this
section we use the following result concerning the global
well-posedness for the generalized Benney-Luke equation
in the energy spaceV2 ×H1 (see J. Quintero [17]). For
this particular problem, it is known that there exists a
energy functionale(t) = E(Φ ,Φt)(t) which is conserved
in time on solutionsΦ for the generalized Benney-Luke
equation. The energyE is given by

E(Φ ,w) =
1
2

∫

R2

(
|∇Φ |2+a|∆Φ |2+ |w|2+b|∇w|2

)
dxdy.

We note that there existC = C(a,b) such that for all
(Φ ,w) ∈ V

2×H1

C−1‖(Φ ,w)‖2
V2×H1 ≤ E(Φ ,w)≤C‖(Φ ,w)‖2

V2×H1. (23)

Theorem 9. ([17]) Let m ≥ 1 and (Φ0,w0) ∈ V
2 × H1.

Then the Cauchy problem associated with the (gBL)
equation has an unique global solutionΦ with

Φ ∈C
(
(−∞,∞) : V2)∩C1((−∞,∞) : H1) ,

that satisfies the initial condition

Φ(0, ·) = Φ0, Φt(0, ·) = w0.

Moreover,E(Φ ,Φt)(t) = E(Φ0,w0) for t ∈ R and we also
have that the following estimate holds

‖(Φ(t),Φt(t))‖V2×H1 ≤C‖(Φ0,w0)‖V2×H1. (24)

In order to obtain the result which describe the
asymptotic behavior of the solutions in the energy space
of the (gBL) equation we will use the following lemma.

Lemma 10.Let2< p< ∞, 1
p′ +

1
p = 1 andγ = 3

2(
1
p′ − 1

p).
Then there exist C> 0 such that

(1+ |t|)
1
2 (

1
p′ −

1
p )‖S(t)(Φ ,w)‖Ḣ1,p×Lp

≤C
(
‖(Φ ,w)‖Ḣ1+γ,p′×Ḣγ,p′ +‖(Φ ,w)‖

V2×H1

)
.

Proof. First we note that if(Φ ,w)∈V
2×H1 then we have

that

‖w‖H1 = ‖w‖L2 +‖w‖Ḣ1, ‖Φ‖
V2 = ‖Φ‖Ḣ1 +‖Φ‖Ḣ2.

Therefore

‖(Φ ,w)‖
V2×H1 = ‖Φ‖Ḣ1 +‖Φ‖Ḣ2 +‖w‖L2 +‖w‖Ḣ1.

Now, if (Φ ,w) ∈ V
2×H1 then using Theorem3 with p=

2, q = ∞, α = 0 ands= 1,2 we have that there isC > 0
such that for allt ∈ R,

‖S(t)(Φ ,w)‖Ḣ1×L2 ≤C‖(Φ ,w)‖Ḣ1×L2,

and

‖S(t)(Φ ,w)‖Ḣ2×Ḣ1 ≤C‖(Φ ,w)‖Ḣ2×H1

Then we find that

‖S(t)(Φ ,w)‖
V2×H1 ≤C‖(Φ ,w)‖

V2×H1.

Thus, sinceLp →֒ H1 we have that

‖S(t)(Φ ,w)‖Ḣ1,p×Lp ≤C‖S(t)(Φ ,w)‖
V2×H1

≤C‖(Φ ,w)‖
V2×H1.

On the other hand, by Theorem4 we see that

|t|
1
2 (

1
p′ −

1
p)‖S(t)(Φ ,w)‖Ḣ1,p×Lp

≤C‖(Φ ,w)‖Ḣ1+γ,p′×Ḣγ,p′ .

Hence, combining the previous inequalities yields the
result.�

We will need the following result.

Lemma 11.([19], [ 22]) If r 1, r2 > 0 andmax{r1, r2}> 1,
then
∫ ∞

−∞
(1+ |t − τ |)−r1

(
1+ |τ |)−r2 dτ ≤C(1+ |t|

)−min{r1,r2} .

Theorem 10. Let fixed m≥ 4. Suppose2m < p < ∞,
1
p′ +

1
p = 1 andγ = 3

2(
1
p′ − 1

p). Then there existδ > 0 and
R = R(δ ) > 0 such that if the initial condition
(Φ0,w0) ∈ Ḣ1+γ ,p′ × Ḣγ ,p′ ∩V

2×H1 with

‖(Φ0,w0)‖Ḣ1+γ,p′×Ḣγ,p′ +‖(Φ0,w0)‖V2×H1 < δ , (25)

then the corresponding solution of Cauchy problem
associated with the (gBL) equation provided by Theorem
(9) satisfies

sup
t∈R

(1+ |t|)
1
2 (

1
p′ −

1
p)‖(Φ(t),Φt(t))‖Ḣ1,p×Lp ≤ R. (26)

Proof. Note that the smallness condition (25) promptly
implies the existence global solutions in the space
V

2×H1. Without loss of generality we restrict ourselves
to the caset > 0. Recall that ifw = Φt then the (gBL)
equation can be written as the system (17). In which case,
the solution of Cauchy problem with initial condition
(Φ0,w0) is given by the expression

(Φ(t),w(t)) = S(t)(Φ0,w0)

−
∫ t

0
S(t − τ)G(Φ(τ),w(τ))dτ .
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Let β = 1
2(

1
p′ − 1

p), then using Lemma10we find that

‖(Φ ,w)‖Ḣ1,p×Lp

≤Cδ (1+ t)−β

+
∫ t

0
(1+ t − τ)−β×

×
(
‖G(Φ ,w)‖Ḣ1+γ,p′×Hγ,p′ +‖G(Φ ,w)‖

V2×H1

)
dτ .

Now, using Lemma1 and definition ofB we see that

‖G(Φ ,w)‖Ḣ1+γ,p′×Ḣγ,p′ +‖G(Φ ,w)‖
V2×H1

= ‖B−1F(w,Φx,Φy)‖Ḣγ,p′ +‖B−1F(w,Φx,Φy)‖H1

≤ 2C‖B−1F(w,ΦxΦy)‖H2,p′

≤C‖F(w,Φx,Φy)‖Lp′ .

Recall that

F(w,ΦxΦy) = mw
(
(Φx)

m−1Φxx

+(Φy)
m−1Φyy

)
+2
(
(Φx)

mwx+(Φy)
mwy

)
.

To illustrate the type computation we consider the terms
w(Φx)

m−1Φxx and(Φx)
mwx. In fact, if r = 2p

p−2m > 2, by
Hölder inequality we have that

‖w(Φx)
m−1Φxx‖Lp′ ≤ ‖Φx‖m−1

Lp ‖Φxx‖L2‖w‖Lr

≤C‖Φ‖m−1
Ḣ1,p‖Φ‖

V2‖w‖H1

≤C‖(Φ ,w)‖m−1
Ḣ1,p×Lp‖(Φ ,w)‖2

V2×H1.

Also we have that

‖(Φx)
mwx‖Lp′ ≤ ‖Φx‖m−1

Lp ‖wx‖L2‖Φx‖Lr

≤C‖Φ‖m−1
Ḣ1,p‖w‖H1‖Φ‖

V2

≤C‖(Φ ,w)‖m−1
Ḣ1,p×Lp‖(Φ ,w)‖2

V2×H1.

In a similar way we have the same type of estimate for the
other terms. Now, if forT > 0 we introduce the notation

K(T) = sup
t∈[0,T]

(1+ t)β‖(Φ(t),w(t))‖Ḣ1,p×Lp,

and using inequality (24) follows that

‖(Φ ,w)‖Ḣ1
p×Lp

≤Cδ (1+ t)−β

+C
∫ t

0
(1+ t − τ)−β×

×
(
‖(Φ(τ),w(τ))‖m−1

Ḣ1,p×Lp‖(Φ(τ),w(τ))‖2
V2×H1

)
dτ

≤Cδ (1+ t)−β

+Cδ 2K(T)m−1
∫ t

0
(1+ t − τ)−β (1+ τ)−β (m−1)dτ .

Then, multiplying the previous inequality by(1+ t)β and
using Lemma11we have that

K(T)≤Cδ +Cδ 2K(T)m−1(1+ t)β×

×
∫ t

0
(1+ t − τ)−β (1+ τ)−β (m−1)dτ

≤Cδ +Cδ 2K(T)m−1.

Note that the hypothesism≥ 4 guarantees that

m2−4m+1> 0

and sincep> 2m then we see that

β (m−1) = max{β ,β (m−1)}> 1. (27)

Next, Consider the functionfδ (x) = Cδ +Cδ 2xm−1 − x.
Since fδ (0) = Cδ and for anyx > 0, fδ (x) → −x as
δ → 0 then there existδ0 > 0 such that forδ ∈ (0,δ0), fδ
has a positive zero. LetR= R(δ ) be the first positive zero
of this function. The estimates just obtained imply that
fδ (K(T)) ≥ 0 and soK(T) ≤ R, since fδ changes its
monotonicity only once inR. �

Remark.From the condition (27) we see that it suffices to
takem> 2+

√
3 in Theorem10.

The decay in (26) allows us to study the asymptotic
behavior of such global solutions in the energy space as
t →±∞. We will show under the smallness condition (25)
that for the couple(Φ(t),Φt(t)) there are associated
elements(Φ+,w+), (Φ−,w−) such that

(Φ(t),Φt(t))∼ S(t)(Φ+,w+)

and

(Φ(t),Φt(t))∼ S(t)(Φ−,w−),

ast →∞ andt →−∞ respectively. More precisely we have
the following theorems.

Theorem 11. Let Φ(t) be the solution of the Cauchy
problem associated with the (gBL) equation introduced by
Theorem 10. If w = Φt , then there exist a unique
(Φ+,w+) ∈ V

2×H1 such that

‖(Φ(t),w(t))−S(t)(Φ+,w+)‖V2×H1 → 0 as t→ ∞.

Proof. The proof of this theorem is quite standard and it
follows similar arguments used to other Boussinesq type
models (see [5], [12]). Define

(Φ+,w+) = (Φ0,w0)

−
∫ ∞

0
S(−τ)G(Φ(τ),w(τ))dτ . (28)
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Then we have that
∥∥∥∥
∫ t

0
S(−τ)G(Φ(τ),w(τ))dτ

∥∥∥∥
V2×H1

≤C
∫ t

0
‖G(Φ(τ),w(τ))‖

V2×H1 dτ

≤C
∫ t

0

∥∥B−1F(w,Φx,Φy)
∥∥

H1 dτ

≤C
∫ t

0

∥∥B−1F(w,Φx,Φy)
∥∥

H2,p′ dτ

≤C
∫ t

0
‖(Φ(τ),w(τ))‖m−1

Ḣ1,p×Lp‖(Φ(τ),w(τ))‖
V2×H1dτ

≤C
∫ t

0
(1+ τ)−

1
2 (

1
p′ −

1
p )(m−1)

dτ ≤ const,

which proves that the integral in (28) converges inV2 ×
H1. A similar argument and the formula

S(−t)(Φ(t),w(t))− (Φ+,w+)

=
∫ ∞

t
S(−τ)G(Φ(τ),w(τ))dτ

show that

‖S(−t)(Φ(t),w(t))− (Φ+,w+)‖V2×H1 → 0 as t → ∞.

By (24) we see that‖(Φ(t),w(t))‖
V2×H1 is bounded, so

S(−t)(Φ(t),w(t)) converges weakly inV2 ×H1, and we
concluded that ast → ∞,

‖S(−t)(Φ(t),w(t))− (Φ+,w+)‖V2×H1

= ‖(Φ(t),w(t))−S(t)(Φ+,w+)‖V2×H1 → 0.

�

Theorem 12. Let Φ(t) be the solution of the Cauchy
problem associated with the (gBL) equation introduced by
Theorem 10. If w = Φt , then there exist a unique
(Φ−,w−) ∈ V

2×H1 such that

‖(Φ(t),w(t))−S(t)(Φ−,w−)‖V2×H1 → 0 as t→−∞.

Proof. The result is obtained by setting,

(Φ−,w−) = (Φ0,w0)−
∫ 0

−∞
S(−τ)G(Φ(τ),w(τ))dτ .

�
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