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Abstract: On-off scheduling of systems that have the ability to sleep can be usedetadesystem idle periods and enable greater
opportunities for energy savings from sleeping. In this paper, we \&lig¢heoretical understanding of the delay behavior of on-off
scheduling as it may apply to communications links and other systemsleagfatleeping. We consider a single-server coalescing
gueue with a scheduler that schedules on-off periods for the sereedén to extend idle periods of the downstream link. At the start
of an off period (duratioryf ;) the server stops serving jobs immediately if idle, or after processing aljeady in service. Service
of any queued and arriving jobs begins at the start of the next ondofdizrationTon). On and off periods are fixed. We solve for
the scheduling queue behavior as a functio@f, Ton, interarrival timet, service timex, and time of first arrivay for periodic job
arrivals. Our results are closed form and have both theoretical @atigal significance.
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1 Introduction awake bétgieepand from sleep to awake to bgae The

c o includi itch duration of an idle period;ge, must be longer than the
ommunication systems including switches, routers,g;;m Oftsioep ANGtayake (that IS, tie > toieep+ tawakd TOr

access points, links, an_d even entire sensor network ”Odeﬁeeping to be feasible (and for energy to be saved). This
often have the capability to be placed into a low-power ytivates the idea of scheduling by coalescing — called

sleep state during idle periods to conserve energypyffer and burstin1] and aggregation inifg] — to create
Computing equipment including data servers, desktopaytended idle periods for sleeping.

and laptop computers, and mobile computing devices can

all be placed into a low-power sleep state, for example  The basic idea in coalescing is to use an FCFS (First
using Microsoft Windows power management Come, First Served) queue to collect, or coalesce,
capabilities. An example of a communications link that multiple jobs before releasing them as a burst of
can be placed into a sleep state is XG-PON (10 Gb/scontiguous jobs. We call this queue the “coalescing
Passive Optical Network). The XG-PON standard queue” and are interested in its behavior as a means of
specifically describes a cyclic sleep mode to savescheduling on and off states of a system. Coalescing
energy B, 26]. Energy Efficient Ethernet (EEE) also effectively collects many short idle periods into a few
allows for idle links to be placed into a low-power long idle periods where the sum of the durations of the
idle (LPI) mode b]. Common to all sleep-based energy idle periods is unchanged. These extended idle periods
saving methods is that the transition time between sleegan allow for a system to sleep when otherwise it could
and awake states is non-zero. This transition time has tmot. Figure 1la shows the notion of arriving jobs with
be accounted for in schemes or policies that determinénterarrival times (idle periods between individual jobs)
when to enter and exit a sleep state. If we consider as atbo short for sleeping, but when the jobs are coalesced
example the case of packets arriving to a switch port to bgFigure 1b) the now fewer idle periods are of extended
transmitted on a link (this could equally be jobs arriving and sufficient duration for sleeping. In Figuta the time

to a server to be processed), these packet (or job) arrivalsetween job arrivals is less thdgleep + twake (Without
occur at intervals in time. Let the transition time from coalescing) and thus sleeping is not possible.
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results that illustrate interesting behaviors and theitgibil
to predict delay and sleep. Sectiéndescribes related
work in use of coalescing for energy savings and
modeling of interrupted service queues. Sectibis a
summary and outlines possible future work. Finally, the

(a) time appendices contain key proofs.
H= l pake
g mak arriving jobs (coalesced)
- eleep / 2 Scheduling by Coalescing
sleep sleep
e B S I /1 o L Coalescing can be used to aggregate individual arriving
(b) time jobs into bursts of jobs to reduce the overhead of sleep

and wake transitions. Scheduling of sleeping periods
— which directly determines the level of energy savings
and performance tradeoffs — is basically a decision of
when to start and end a coalescing period. The start and
end of a coalescing period for a coalescing queue can be
If the durations of the coalescing period (the off triggered by several conditions related to queue state
period) and serving period (the on period) are and/ortime duration:
predetermined, then it becomes possible to predict the
energy savings that can be achieved. The energy savingsl.Starting a coalescing period on the arrival of the first
is equal to the sum of all off periods less sleep and wake job to an empty coalescing queue and ending the
transition times. What is not, however, easily predicted is  coalescing period when a predetermined number of
the increase in delay of the coalesced jobs. It is critical to  jobs have been queued and/or a time period since the
have a deep understanding of the trade-off in energy arrival of the first job has expired.
savings and performance for systems that seek to be 2.Starting a coalescing period when the number of jobs
energy efficient. For example, coalescing may negatively in a coalescing queue drops below a predetermined
affect the Quality of Service (QoS) of a communications  threshold and ending the coalescing period when a
system or otherwise unacceptably increase the delay of predetermined number of jobs have been queued
job processing in a compute server. In this paper, we and/or time period since the arrival of the first job has
develop a deterministic model to predict the bounds and  expired.
mean delay for jobs in a system with periodic arrivals and 3.Starting and stopping the coalescing period based on
fixed service times with periodic on and off periods predetermined time periods.
modeling cyclic sleep. Video and voice encoding is often ]
constant bit rate resulting in periodically generated Each of the above approaches has been used in one or
packets. Traffic shaping also often results in packetMore existing communication techno!og|es,wh|ch will be
streams in networks having periodic packet arrivals.extensively reviewed in Sectiah of this paper. Namely,
Modeling periodic arrivals makes it possible to derive Methods studied in5 23] and deep sleep in EPON
exact solutions for the parameters of interest and gain th&NUs [3] use the first approach, the On/Off-1 algorithm
deep insights that we seek. We will show by simulationin [12] uses the second approach, and Synchronized
that numerical results from our model can closely coalescing20] and cyclic sleep in EPON ONUSS[ use

approximate those of the same system with stochasti¢he third approach. The first and the second approaches
arrivals for key cases of interest. The specific c@n only be used if coalescer queue state is known. But if

contributions of this paper are: the coalescer queue state cannot be known, then only
purely time-based approaches — such as the third
—A closed-form solution, as a function of the first approach above — can be implemented. Approaches based
arrival time, for the mean queue length in an interval solely on timers are especially useful in systems where
that includes one off and one on period. the service center is remotely turned on and off with no
—Upper and lower bounds for the long-term mean queus'nformation about the queue length (and other statistics of
length independent of the initial arrival time. the queue) available at the time of making on and off
—A closed-form exact solution for the long-term mean scheduling decisions. In this paper, we specifically
gueue length given reasonable assumptions. consider a time-based approach where the coalescing
period is of a predetermined duratioiysf, and starts
The remainder of this paper is organized as follows.periodically at times OTott + Ton, 2(Totf + Ton), and so
Section 2 describes scheduling of sleeping periods.on. At the start of an off period (duratiohy;¢) the server
Section3 presents a simple fluid-flow model for periodic stops serving immediately if idle, or when any in-service
on and off scheduling. Sectighdevelops our full model. job has completed if not idle. During an on
Section 5 contains numerical (model) and simulation period (durationT,,), jobs are not coalesced but will

Fig. 1: Arriving jobs (a) without and (b) with coalescing
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Fig. 2: Coalescing queue with scheduler ) ) o )
Fig. 3: Fluid flow model of periodic on and off coalescing

queue if the interarrival time between jobs is less than the

service time of the coalescer queue. During the off period, Toff+Ton
the service rate is zero, and during the on period, the . 1
. : ; s L=——— H(s)ds (3)
service rate igu with mean service time& = 1/u. Jobs Tott + Ton
arrive at a raté\ with mean interarrival timé=1/A. 0

Figure 2 shows a coalescing queue with on-off Definition 2.The long-term mean queue length is the mean
scheduling. The on-off scheduling in our case is based omumber of jobs in the coalescing queue over the long term
timer state. A stated above, it is assumed that a job irfor a long sequence of off and on periods.
service when an on period expires and the next off period
starts completes its service. It is thus possible that an off
period contains a maximum timeof service time. Thus, 3 A Fluid Flow Queue with Periodic On and
the system could sleep for a minimum duration of Off Service Periods
Toff — twake— tsieep— X in all off period cases. We define a
duty cycle as, Let us model our fluid flow queue with arrivals at a rate

and service at a ratg. On and off periods are periodic
_ Ton _ 1) with duration Ty, and Tytf, respectively. During on
Totf + Ton periods jobs are served. During off periods the server is
The offered load to the server is then forced to be idle (that is, it QOes not serve) and queueing
occurs. Here, performance is measured as mean d&lay,
1 A Figure 3 shows a fluid flow model of periodic on and off
p= D Ik (2) coalescing from which the mean delay can be determined.
In this model,rorf = A is the rate of increase in queue
wherep < 1 is required for stability. Ifyake tsieep andt  l€ngth during the off period, and, = i — A is the rate of
are small compared tdo¢f, then D models (from an decrease in queue length during the on period.
engineering perspective) the percentage of time the In the fluid-flow model described above, the
system is on. The direct energy savings can be calculatefaximum queue length iSmax = roffToff . The time to
from this known on time. The setting ob is an  empty the queue during an on perioddspty= Lmax/Ton-
engineering decision based on the desired energy savingd/so, H(s) is the fluid accumulation (queue length) of the
with trade-off in performance. As stated previously, the queue at times in the fluid-flow model. We seek to
setting ofD can only be done with a full understanding of compute the interval mean queue length for a given
the trade-off between increased energy savings andoff -+ Ton interval as the area undei(s) divided by the

decreased performance_ total time of an intel‘val,

Now we are ready to introduce the two averages that LT t ATaee2
we will study in this paper. We define thieterval mean L= m;X(TOH +Tempt) =5 I; _;_)” = @
queue length antbng-termmean queue length as follows (Tof f +Ton) (H=2)(Tott +Ton)

given periodic on and off periods of fixed durati&s and  with identical repeating on and off periods, the long-term
Totr, respectively. LeH (s) be the queue length or number mean queue length (as seen by a random outside
of jobs in the queue at time observer) is given by4). The criterion for stability is

o ) ) tempty < Ton. From Little’s Law we can trivially determine
Definition 1.The interval mean queue length is the meani e mean delay,

number of jobs in the coalescing queue for a given interval
defined from the start of an off period to the end of the W= L UTof 2
subsequent on period (or duratiogt + To) defined as, A 2 —A)(Tof + Ton)

(5)

© 2013 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2126

A. Roginsky et al: Delay Behavior of On-Off Scheduling: Extending...

The fluid flow model leads to our model of scheduling with
periodic on and off service periods.

4 Scheduling Periodic On and Off Service
Periods

Let us assume a queue where the first arrival ig @his

is from time 0, the system always starts at time 0 in an off
period) and the other parameters are as defined ir

Section 3. The natural assumption is that
0<g<t< Tors. We will assume that if a job arrives
exactly at timeTyst + Ton, it Will not be served until the

next service interval. Figuré shows the behavior of the

Queue length

I_l

| time

T T T

T of

off on on

Fig. 4: Graphical model of periodic on and off coalescing

queue length for periodic on and off periods. The figure is\y,e also define,
drawn to scale and schematically shows the queue length

behavior for two off-on cycles of an example where
Totf =5, Ton=2,9=0, A =1, andu = 4. Note the
repetitive pattern, which will be used later in our analysis
Let H(s) be the number of jobs in the queue at tim&Ve

w=max0,g—t+Xx), @)
and,

v=max0,(N—t+g-+x— (Tort+Ton)).  (8)

seek to find a good approximation or, if possible, a precise

solution for the mean queue length over a long time

Herew will be used to count the arrival overlap from the

period. Our construction is as follows. First, we produce previous interval and will be used to exclude the service
an exact closed-form solution for the mean queue lengttfime of theNth job that occurred aftefof + Ton, if its

in the most general case (arbitrafy,, Tott, t, X, andg)

over an interval that includes one off and one on period.

service ends aftéfy¢t + Ton. Let us also definég > 1 as
the number of the first job that arrives at time 0 or later,

Then we will show that the mean queue length on such arftér serving which the queue becomes empty (even if the

interval is a non-increasing function gfand derive the

next job arrives precisely at the same moment when the

upper and lower bounds for the mean queue length orf€"vice o thekth job ends). The service of theth job

these intervals that are independengdthe first arrival
time within the periodic interval). This will give us a close

ends at timély¢ 1 + KoX, since the server has no idle periods
between the time$,¢; and Tyt + kox. The o+ 1)th job

estimate for the mean queue length. Next, we will give garrives at timekt +g. Thusl§o is the smallest integer such
precise closed-form expression for the mean queue lengti1atkot +9 = Tor + kox. This means that

under the assumption that the ratiow is a rational
number. Finally, in the most general case (arbitragy,

Ton+T¢ . . .
Totf, t, X, andg; andM is not necessarily a rational

number), we derive another good estimate of the meanl_
d . . .
euéhls paper. This computation is performed under the most
¢ general assumptions on the system parameters and with

gueue length (in addition to the estimate describe
earlier) by making the assumption that the mean qu
length in a given periodic interval is a linear function o
the first arrival timeg. Therefore, the mean queue length
can be given precisely in closed-form or be very closely
approximated by the two methods that we present here.
With all other parameters fixed, fay in the interval
[0,t), denote asL(g) the interval mean queue length
within the interval [0, Tors + Ton) given that the first
arrival beginning at time O occurs at ting That is,

Te Ton
L(g) = ﬁ‘(fﬁ H(s)ds computed under the

assumption that the first arrival time within the interval
[0, Tosf + Ton) is @. In other words,L(g) is L from
Definition 1, given that the first arrival time ig.

We denote adN the total number of jobs arriving
during the[0, Tt + Ton) time interval,

Totf+Ton—0

t ®)

Totf—9
t—X

ko

_[ }

Here we are presenting our main theoretical results.
heoreml computes the interval mean defined earlier in

)

an arbitrary time of the first arrival during this interval.
The next two results play an auxiliary role in our goal to
estimate the long-term mean. TheorePn states an
intuitively obvious property that the interval mean in
increasing with the increase in the first arrival time within
one interval. This property and the demonstrated
continuity of the interval mean as a function of the first
arrival time allow us to derive, in TheoreB) the precise
upper and lower bounds for the interval mean. Finally,
Theorem 4 provides the precise expression for the
long-term mean when the fractiofilort + Ton)/t is a
rational number. In practical applications, it is always
possible to assume that this is the case. The smaller the
denominator in this rational fraction the fewer terms will
have to be added to compute the long-term mean. The
proofs for these theorems can be found in the appendices
of this paper.

N= [ ]
(© 2013 NSP
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Theorem 1. The interval mean queue length is

(ko+1)ko

L(g) >

<W+ koToff — (t—x)

B Toff +Ton

+kot—kog+(N—ko)x—v>. (10)

Proof. The proof is in7.

While the interval mean queue lendtlig) is defined
for g in the interval[0,t) only, we can formally define
function A(g) as the expression in the right hand side
of (10) with N andkg defined by 6) and @) respectively.
The introduction ofA(g) defined on the entire interval

[0,t] is necessary in order to state and prove some of the

results that follow.

Theorem 2. A(g) is a continuous non-increasing function
of g when g= [0, t].

Proof. The proof is in7.

Theorem 3. The interval mean value of the queugg],
satisfies &) < L(g) < L(0O) for g € [0,t], and the bounds
cannot be improved.

Proof. The proof is in7.

Finally, we solve for the interval mean queue length,
L(g), for the general case. L&t = Tott + Ton. If A/t is
rational, themA/t = m/n for some mutually prime integers
m andn. We also let{x} denote the fractional part of
that is, for instance{2.3} = 0.3, {5} =0, and so on. We
define the sequenagr, gy, ... by settingg; to

{Th

i—t .
9i291+( n) ;|

t

9= (11)

and

Theorem 4. The long-term mean queue length for
rational A/t is given by

LZiiiL(gi)-

Proof. The proof is in7.
We note that ifA/t is rational, an exact expression for
the long-term mearl,, is obtainable. 1fA/t is irrational,

(13)

Proof. If L(g) can be expressed ag+ b for somea andb,
then we write

t+b)

n P n
A3 (o ) = 1 3 (am s
= agl+nlzatii(i -1)+b

atn(n—1)
2n?
at(n—1)
2n
t(n—1)

2n >+b
t(in—

)

Corollary 2. Again assume that(lg) is a linear function
of g. Also assume that/Ais an irrational number, so there
are no m and n. Then the mean d@fl.is equal to

)

Proof. There are two ways to see that the statement of this
corollary holds true. First, iA is not a rational function
of t, then the shift ing between the off-on intervals is an
irrational number and over long time these irrational
numbers densely and uniformly cover the entire
interval [0,t). Hence, the linear functioh will average to

its value in the center of this interval, that is, &.
Another way to prove the corollary is to see that an
irrational A/t can be closely approximated by a rational
m/n, with the approximations1{) getting better and
better asn grows. Asn gets larger,g; tends to 0 and
therefore, the value inside the large parenthesisl#) (
tends tat /2. With the linear functiorL. being continuous,
the value in {4) tends toL ().

a(i—1)
n

ag: + +b

=ag+ +b

= a(gl+
1)

— Lo+ (15)

(16)

5 Numerical and Simulation Results

In this section, we numerically demonstrate thas)(
computes the long-term mean queue lendth,as a
function of g. For the case of irrationah/t we show
convergence to simulation results asis arbitrarily
increased in the computation of3). We also compare
results from {3) to that of the fluid flow model4) for the
case of rationaA/t. Using a simulation model, we also

an increasingly precise approximate result is achieved byhow that the long-term mean queue length resulting from

increasing.

Corollary 1. Assume again that/A = m/n with mutually
prime m and n is rational and (g) is a linear function

(13) approximates that of a similar queueing system with
stochastic arrivals.

of g (this is a reasonable approximation of the behavior of 5.1 Numerical results for long-term mean queue

L(g)). Then the mean of() can be expressed as

) . (14)

t(n—1)
2n

L(QH—

length

Table 1 shows a comparison of long-term mean queue
lengthL computed from 13) to a simulation model result

© 2013 NSP
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We used simulation to compare our model to that of a
similar system with exponentially distributed interaativ
—a— Toyr =200 ms times (Poisson arrivals). Figuieshows a comparison of
—a— Top =100 ms long-term mean queue length, computed from 13) to
—— T,y =50ms that obtained from the simulation with Poisson arrivals.
The parameters are the same as what was used in
—a—a—=—*4 generating Figuré with A being the mean arrival rate of
the packets. Relative error is shown as a percentage
for (a)D = 0.1, and (b = 0.5. As can be seen in the
¢ figure, the error is less than 10% for all valuesTgf¢
including the small values that is the primary region of
interest. The overall variability of the time between the
0 — r T T T T T T — arrival of subsequent jobs decreases in general when the

o 23 4 s 67 8 9 10 samples are taken in larger time spans which is likely to

Offered load (%) be the reason for the decrease in relative error whgp

increases. The relative error tends to zero B$s
increases making the approximation of our model
approach reality asTyss increases. An interesting
phenomenon that can happen in a system with stochastic
arrivals is that the coalescing queue does not always
. empty completely by the time when the next off period
for the following parametersn = 10, 100, and 1000, starF;sY Thepremginixg packets can be served eFi)ther in
Torf = 20 8, Ton = 10 8,9 =0, D = 13 1 = 1) the next on period following the next off period, or
V2 (irrational), andA computed from 2) such thatp = 2) the same on period by postponing the start of the next
0.1, 05, and 0.9. The simulation model was COﬂStrUCte(bff period until the queue empties_ We chose the second
using CSIM i] as a queueing model of a single-server policy for serving any remaining packets in our
queue with periodic on and off periods. The results insjmylation and instrumented the model to measure the
Tablel show that the computation fromd§) converges to  reduction in total off time that this policy induces. In our
the simulated result asincreases. This was also found to experiments, this reduction in time did not exceed 5% of
be true for cases wherg> 0 (results not shown here). the total off time (implying that the energy savings would
Even for smalln (n = 10), the result fromX3) was very  pe reduced by not more than 5% as well). The reduction

close to the simulated actual. For cases wh&fe is  increased, not surprisingly, as the load got higher where
rational, (L3) and the simulation model results were found the maximum reduction occurred when= 0.9.

to match exactly, as should be expected.
Figure 6a shows a comparison of long-term mean
queue lengthl, computed from 13) to the fluid flow 5.2 Numerical results for a 10 Gb/s Ethernet
model of @) for the following parametersD = 0.1,  pgssive Optical Network
U =1.0,Tes = 10, 15,..., 100 (that is, 10 to 100 times
greater than service timg), Ton computed from ), and  We evaluated the packet delay for a 10 Gb/s Ethernet
A computed from %) such thatp = 0.1, 0.5, and 0.9. Passive Optical Networks (EPON) with cyclic sleep (as
Relative error is shown as a percentage. Figilrshows  described in, 26]) for low utilization levels as would be
the same comparison f@ = 0.5. It can be seen that as typically expected in such a system. We used a 50% duty
Tot+ compared to increases, the relative error decreasescycle, D = 0.5, where the system sleeps for a timgs,
and the fluid flow model becomes a closer approximationwhich includes both wake and sleep transition overheads.
The region of small duty cycle, low offered load, and We conservatively assumed that the power draw during
small Tors compared tox may be the region of most transitions was the same as during on, or wake, periods.
interest for many practical applications of coalescing. InFor D = 0.50, Ton, = Totf. We assumed that the service
this region, the fluid flow model is a very poor time corresponded to the transmission of a maximum
approximation. length 1500-byte packet, which is 11%. The long-term
mean queue length was computed usihg) for Tois =
50 ms, 100 ms, and 200 ms, and the offered load ranged
from 1% to 10%. Figurés shows the results. It can be

W
S
L

ey
S

W
S
L

N3
S

Mean packet delay (ms)
]
]

p
4
R 4
4
L 4
R 4
L 4

—_
S
L

Fig. 5. Packet delay for 10 Gb/s EPON with cyclic
sleep D = 0.5)

Table 1: Effect of increasing in (13) for irrational A/t seen, not surprisingly, that the mean delay increases as
n Tofs increases and as offered load increases. For a 5%
P 10 100 1000 | Simulation offered load, the mean packet delay is about 25%,ef
0.10 | 0.382473| 0.350958| 0.347937|  0.348 in the three cases shown. This type of evaluation can be
0.50 | 2.028797| 1.993046| 1.989514|  1.989 used for determining an acceptable delay versus energy
0.90 | 4.247608| 4.205543| 4.201344| 4.201 use trade-off for systems that use coalescing.
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0 0
4
2 A 2
S 4 S 4
5 g
E 5
= 6 6 1
——p=0.90
-8 A -8 1 —a—p=0.50
——p=0.10
-10 -10

0 10 20 30 40 50 60 70 80 90
T, (time units)
(a)

100

0 10 20 30 40 50 60 70 80 90 100
T, (time units)
(b

Fig. 7: Relative error for {3) versus that of a similar M/D/1 queue for (a}= 0.10, and (blp = 0.50

6 Related Work

for conserving energy by reducing disk spinning
operations 24]. Coalescing is used in several wireless

In this section, we first review applications of coalescing protocols to reduce energy use. In Power Saving
and then review previous and related work in modeling ofMechanism (PSM) for the Distributed Coordination

gueues with service interruptions.

6.1 Use of coalescing to reduce energy
consumption

Coalescing of requests has long been used to eliminat
receive livelock (a situation that can occur under heaVyTransmissio
load in computer systems in which the processor spend
all its time processing interrupts and no time processing

Function (DCF) in IEEE 802.11 wireless networks (Wi-Fi
networks), packets destined for a wireless station are
coalesced in the preceding station (for example, in the
access point) during predefined beacon intervadk |
When a periodic beacon interval begins, a station listens
to announcement packets from any station which has a
acket to send. Upon receiving an announcement packet,
station remains powered on during the Data
n (DT) window in order to receive the
dnnounced packets. If the station does not receive any

actual jobs) 19]. Coalescing has been used in disk drives
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announcement packets, it can skip the DT interval andhat network utilization will always be low) coalescing
power down for the rest of the beacon time. can be a useful means of enabling energy savings in such
A recently developed scheme called Catnafyj [ systems. This paper addresses the energy savings and
reduces the energy consumption of a mobile device bydelay trade-offs for coalescing in the case of determiisti
combining small gaps between packet transmissions int@wn and off periods. These results provide a strong
larger intervals during which time the device can be put tofoundation upon which performance models of coalescing
sleep and save energy. Catnap introduces a proxy on thechemes can be built and a deeper understanding of this
wireless router connecting the mobile device and themeans of scheduling of jobs be gained.
Internet that performs this coalescing function for pasket
inbound to a wireless device. Catnap exploits the fact that
the wired link between the Internet and an access point i5.2 Queues with service interruptions
often higher speed than the wireless link between an
access point and wireless device. The speed mismatcQueues with service interruptions, modeled as service
causes idle periods between packets. These idle periodgze-emption, vacations, and breakdowns have been
are extended with coalescing in Catnap proxy in thestudied since the 1950s. This previous work gives us
access point. insights towards scheduling by coalescing. Service
Sleep schemes have also been adopted for opticahterruption can result frommnscheduledreakdown of a
networks. Deep sleep and Cyclic slee}) [n Ethernet  server (for instance, when the arrival of a high priority
Passive Optical Networks (EPONSs) allow the Optical customer temporarily stops service to other customers), or
Network Units (ONUs) to turn off their hardware ascheduledservice stop (for instance, between shifts in a
components in order to save energy. In deep sleep modgyroduct line). In both cases, typically, the duration of the
the ONU's transmitter and receiver are powered off wheninterruption is randomly distributed. In our scheme,
traffic is neither being received nor transmitted by the however, the start time and duration of off periods is
ONU. In cyclic sleep mode, the ONU periodically cycles known.
between active and sleep periods where its transceiver is The first work in queues with service interruptions
powered on and off, respectively. dates back to 1958 where priority classes for jobs with a
Recent work has focused on how packet coalescingpre-emptive resume service discipline were studied
policies for EEE can improve the energy efficiency of in [29]. From the perspective of a lower-priority job,
Ethernet ( 5, 20, 23]). At low link utilizations, EEE can  service pre-emption appears as if the server breaks down
be very inefficient when individual packets trigger wake and is repaired. Poisson arrivals and negative-exporentia
and sleep transitions that exceed the transmission time afepair times were assumed in this work and the expected
the packet. In order to decrease transition time (andime spent in the system and the generating function for
energy use) overhead, packets can be coalesced inthe delay distribution were derived. Preemptive-resume
bursts and then be sent as one burst of back-to-backnd non-resume disciplines were further studied
packets. In the coalescing scheme studied5Jp \Wwhen  in [11, 15 where an exponentially distributed time to the
either the coalescing timer expires or the number ofnext breakdown was assumed. Special cases of the same
buffered packets reaches a defined maximum, thesystem, such as when the server breaks down only when a
buffered packets were all transmitted in a single burst.,job wishes to receive improved service from the server, or
This work showed that there is a trade-off between energyvhen the server never breaks down while serving a job
savings and increased packet delay from coalescing. Amvere studied in4].
analytical model for EEE with packet coalescing with Server interruption is closely related to server
very general assumptions is recently developedli] [ vacations and breakdowns. A server takes a vacation after
based on the GI/G/1 queueing model with vacations.completing the service to all queued jobs and the queue is
Synchronized Coalescing for EER(], is a timer-based empty. The vacation model has a fundamental difference
packet coalescing policy for EEE which reduces thewith server breakdowns where the service can be
energy consumption of LAN switches. In synchronized interrupted while there are jobs in the queue or in service.
coalescing, a LAN switch stops incoming traffic to all Queuing systems with vacations were reviewedir2}].
connected ports by periodically sending a PAUSE MAC None of these previous works explicitly considered a
frame on all its ports to sending hosts and/or edge routersserver that independently of job arrivals cycles between
When this occurs, all connected ports can enter LPI modeserving (on) and not serving (off) jobs.
at the same time and internal switch components More recent work has addressed servers that
including the switching fabric can power down for this independently vary between on and off modes. 1@ fhe
duration. Packets generated at the connected hosts &1/G/1 decomposition property is used to model any
arriving at the edge routers during this pause duration aré/l/G/1 system with vacations. The mean waiting time in
coalesced in the interface buffers until the pause intervathe queue, the probability of delay, and the steady-state
is over. distribution of the number of jobs in the system for a
As long as utilization of communication and FCFS queue with Poisson arrivals and general service
computing systems remains low (and it is argued2®][ process for a variety of distributions for the on and off
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periods (where the distribution of either the on or off andg. Therefore,

period length is not periodic) were approximated9h A g

queuing system with server interruptions in which the

interruptions were semi-Markovian was studied ][ /H(w)ds: 1T.w=w 17)
The case where the on and off periods were governed by 0

an alternating renewal process was considere@%h A
queuing system with Markovian Arrival Process (MAP)
and a very general random interruption distribution was
solved (including numerical results) in2§. The
probability distribution of jobs in the system for the
M(t)/M(t)/1 queue is solved in 6] using numerical
methods. Additional recent work has addressed the s—g

characteristics of queues with fluctuation of loads (where F(s)= {tJ +1 (18)
server breakdowns are a special case where server service

time is set to infinity) to determine fundamental Forg<s< Ty¢f, G(S) =0, and forToss < S < Totf + KoX,
results L3]. This work, as all previous work, also

assumes stochastic on and/or off periods, which do not G(s) — {S—toffJ (19)

wherew is defined in 7).

We now evaluatéd (s) whens > g. Let us define two
functionsF (s) andG(s), whereF (s) is the number of jobs
that have arrived by timeandG(s) is the number of jobs
that have been completed by timéNVhens > g,

map to the case of timer-based coalescing as critically X

considered in our work. ] i ) ]
wherekg is defined in §). The above expression f@(s)

does not hold fors > Tyt¢ + koX since the server might
have some idle periods after that time. We can see that
7 Summary and Future Work H(s)=F(s)—G(s) for all s. We further note that
H(s) =0 forse (Torf + kox, kot + @), since this interval
Our work is, we believe, the first to develop a model for starts after the completion of service to jepand ends
timer-based on-off scheduling in the context of a before job numberlkg+ 1) arrives. After that, when the
coalescing queue. Our work has direct relevance tdob number j arrives ( = ko +1,...,N), the service
understanding increased delay in systems that uséueue length is 1 between the time¢s— 1)t +g and
coalescing to extend idle periods in order to increasel] —1)t+g-+Xx, and O between the timé$ — 1)t +g+x
opportunties for the system to sleep. Theoretical result@nd jt +g. For theNth job, it is not known if its service
are important for deeper understanding of real systemsgets completed befof®+ ¢ + Ton. If it does not, we cannot
The model we have developed produces a result that igiclude the part of service that occurs affgkt + Ton in
easily computable. Exact results are possible for manythe calculation of the interval mean queue length in the
cases, approximate results are possible for all cases0: Toff + Ton) interval, so we will subtract iv = v from
Comparison to simulation shows that the approximationsthe total, wherev is defined in 8).
are very good. Numerical results show that coalescing To compute the average size of the queue we need to
converges to a fluid flow case &gt increases relative to  integrateH (s) over the interval from O tdo + Ton and
x and asTo, increases relative tb An interesting case is then divide the result ovellot 1 + Ton. We have,
where the on period is of duration equal to the time to 1.+ To, To 1+kox
serve all packets in the queue and the next off period '
begins at the time of the first arrival immediately after the / H(s)ds=w+ / H(s)ds+

queue becomes empty. Future work should consider 1) © 9

modeling the M/G/1 queue with periodic on and off kot+g Toff+Ton

periods, 2) the analysis of on and off policies other than / H(s) ds+ / HEds @0
periodic (for example, as described in Sect®)nand 3) . .

studying the effects of the output process from one (or Tot r-+kox kot+g

more) coalescing queue(s) on a downstream queue. The second integral in the right hand side is 0, since, as we

saw earlier, there are no jobs in the queue at this time. The
third integral is equal tdN — kg)x — v, since the value of
H(s) is 1 during the(N — ko) intervals of lengthx (each
interval corresponding to serving a job beginning with job
numberky+ 1), and O at other times, except that the service
To computelL(g), we assume that the process beginsof the last job may end outside this interval and thus the
before the interval where we are computing the intervaladjustment by. Now,
mean queue length, and there may be an overlap from the
previous interval. The last arrival before time 0 was at 'k Torr-Hkox Torr-tox
time g—t and it took timex to process this job. Hence, / H(s)ds= / F(s)ds— / G(s)ds (21)

9 9 g

Appendix A Proof of Theorem 1

H(s) = 1 between time 0 and, andH (s) = 0 betweenv
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We can see thét(s) = 1 betweerg andg+t, it is equal
to 2 betweeng+t andg+ 2t,..., and equal tokg — 1
betweeng + (ko — 2)t andg+ (ko — 1)t. It is equal tokg
between the timeg+ (ko — 1)t and Tyt ¢ + kox. Note that
by our definition ofkg, the next job, ko + 1), arrives at or
after the timeTytt + koX. Therefore, the first integral in
the right hand side ofX1) can be calculated as

Tof f+kox
(ko—1)ko

| Fe S
+ko(Toff +kox— (ko —1)t—g). (22)

G(s) is equal to 0 between the times 0 ahd+ + x, equal
to 1 between the time$ot + X and Tort + 2X%,..., and
equal tokgp — 1 between the time3y¢s + (ko — 1)x and
Toff + Kox. Therefore,

Tof f+kox
/ G(s)ds= (kogl)kox (23)
g
Hence
Tot +kKox Tof f+kox Tof f+kKox
/ H( / s)ds— / G(s
g g
_ o=l
+Ko(Totf +Kox— (ko — 1)t — Q)
= koToff — @(t—x) + kot — kog.
(24)

Combining @0) and @4) we calculate the interval mean

gueue length as,

L(g) = Torr+Ton (W+ KoTott — @(t —X)
-Wd—%wHN—%V—O- (25)
This is @0). O

Appendix B Proof of Theorem 2

We will demonstrate that for everye [0, Ton+ Tof ], the
functionA(g) is non-increasing and continuousgafrom
the definition ofA(t), it follows, thatA(g) is a continuous
function of g, w, v, ko and N. Note that the other
parameters,Torf, Ton, t and x are independent of.
From @) and Q), it follows that N and ky are both
right-continuous functions ofl. From Lemmal stated
below in this appendix it follows thatA(g) is a
right-continuous function ofj. Now, we need to prove

that A(g) is also left-continuous and non-increasing. We —d < w(g— 9)

divide our proof into four cases based upon the continuity
of N andkg atg.

Case 1.Suppose that neitheﬁ‘% nor is
an integer. From this it follows thatis such that there is
no discontinuity of eitheky or N (as functions ofg) at
this value ofg. ThenA(g) is continuous at thig asky and
N are the same when evaluated at points 1gedio prove
the non-increasing property #{g) in this case, it would
suffice to show thatw — kog — v is a non-increasing
function ofg. Note that all other terms in the parentheses
in (10) remain unchanged neay. Since —v can only
decrease or remain the samegdacreases, it is sufficient
to show thatw — kog does not increase. Indeed, whgn
increases by somé > 0, w increases by at mosd,
while —kog decreases bykgd > 4. Thus, A(g) is
non-increasing at thig.

Case 2.Let g be such that is an integer

while 2= °” 9 is not. To prove the Ieft -continuity o&(g) at

thisg, We decrease the value @to g— &. This causes the
value of N, when evaluated aj— o to change taN + 1.
SinceN is only present in théN — kg)x term and inv
inside the parentheses ihQ), and the value ok remains

the same i® is sufficiently small, we should only look at
the effect of the change on these two terms, as other terms
are continuous iy. Clearly, the(N — ko)x term increases

by x when N increases to N + 1. Using

Nt = Ton+ Toff — g We obtain the value of atg as

Tott+Ton—9

Toff+ on—9

max(0, Nt —t +g-+X— (Ton+Torf)) =max0, —t+x) =0.

(26)

So,v(g) =
max(0,Nt+g—&-+X— (Ton+ Torf)) = max0,x—J)

=X, (27)

therefore,v(g— d) = x— 4. Then, replacingv(g), v(g),
w(g—d) andv(g— ) with w andv evaluated ag and
g— o correspondingly, we obtain

(Tott + Ton) (A(g— o) — A(g)) =
(W(g— 0) +koTotf — kolko+1) t

0. The value ofratg— d is (N becomedN + 1)

-

+kot—ko(g—6)+(N+1—ko)x—v(g—6))

ko(ko+ 1)

(w0 +oTore - 25" 1

+«d—%qHN—%W—W®>

= (W(g—8) —w(g)) +kod +x— (V(g— &) —v(g))

= (W(g— ) —w(g)) + kod +Xx— (x—d)

= (W(g—98) —w(g)) + (ko +1)0. (28)
This shows, using the fact that

—w(g) < 0, that at this value of the
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function A(g) is left-continuous therefore,

continuous) and non-increasing.

Tofi—9
Case 3. Suppose that-5—
Tott+Ton—g
t

(and

is an integer while

is not. We will show thatA(g) is continuous
and non-increasing at this value af. Noting that
ko(t —X) — Totf +9 = 0 in this case, we have

(Tott + Ton) (A(g_ 0) _A(g))
(W(g—5)+(ko+1)Toff - W(t—x}
+(ko+ Dt — (ko +1)(g— )+ (N—ko — 1)x

~v(g-8)) - (wig) +koTors - LY 1

+ kot —kog+ (N — ko)X—V(g))

= (W(g—8) ~w(g)) + Tort — (ko+1)(t —x)

+t—g+(ko+1)0 —x— (V(g— ) —v(g))
= (W(g—3) —w(g)) + (ko +1)3 — (V(g— ) — V(g))-

(29)

From @9, it immediately follows that A(g) is
left-continuous at this value aj and hence continuous.
Also, since (Ww(g—0) —w(g)) > -0 and
—(v(g— ) —v(g)) > 0, the value in the right hand side

of (29) is no smaller tharkgd > 0. Therefore,A(g) is
non-increasing at this value gf

Case 4. Finally, suppose that bothn’L%g and
DorrtTon=9  4re integers. Noting that in this case

ko(t —X) — Totf +9 = 0, and thatv(g— 6) = x— & and

v(g) =0, we have

(Tot 1+ Ton) (A(g— 8) — A(9))
(W(g—5)+(ko+1)Toff—(k0m2(kO+2)(t—x)
+(ko+ 1)t — (ko+1)(g— )+ (N+1—ko— 1)x

—Vv(g— 5)) - (W(9)+koToff _ kolkot1)

— 7 (=X

+kot—kog+(N—k0)X—V(9))

= (W(g—8) —w(g)) + Tort — (Ko +1)(t —x)
+t—g+(ko+1)8— (V(g— ) —Vv(9))
= (W(g—3) —wW(g)) + (ko +2)3 > (ko+1)3.
(30)
This shows tha#\(g) is continuous and non-increasing at

this value ofg as well, and completes the proof of
Theorem2. O

Proof. We need to show that for ang > 0 there exists
0 > 0 such that for anyi whereF(f) is defined (and
hence, wheref is defined), ify satisfies the inequalities
<y — X < 9, the following holds:
[F(f(y)) —F(f(x))| < €. SinceF is continuous aff (x),
for this specific € there existsé >0 such that if
[f(y)— f(x)| < & then|F(f(y)) —F(f(x))| < €. Sincef
is right-continuous atx, there existsd > 0 such that
[f(y) — f(x)| < & for anyy such that O0< y—x < d. This
J hence satisfies the conditions of the lemma for the
chosere > 0.

Appendix C Proof of Theorem 3

Since, according to TheoreXL(g) is non-increasing, it is
bounded byA(t) below andL(0) above. The upper bound
is reached afj = 0 and therefore cannot be improved.
The variableg is allowed to take all real values as it
increases towards This means thdt(g) can be any value
betweenL(0) and limy L(g). This latter limit exists and
is equal toA(t). Due to the property of the limit, the lower
bound in this theorem cannot be improved. O

Appendix D Proof of Theorem4

We seek the mean &f(g). The mean is,

.
1
L=lim = [L(gs)ds (31)

0

whereL(g,s) is the queue length at timeof the process
with the very first arrival time ag, for an arbitrary set of
parameterd.(g, s) is the same ald (s) in 7 exceptg is now
not fixed.

In the usual notation, we are assuming that = m/n
for some mutually prime integera andn and we seek to
find the precise value for

! (32)

ml

-
/L(g,s)dsasT — 00,
0

wherelL(g,s) is the queue length at timeof the process
with the very first arrival time ag), for an arbitrary set of
parameters (here, as befo®,= Tois + Ton). We will
denote bygV the first g upon the beginning of the
process, byg® the g at the beginning of the second
interval, that is, the first arrival time in the interval that
starts atA, by g® the g at the beginning of the third
off-on interval and so on.

Lemmal. If F is a continuous function and f is a _
right-continuous function (both are functions of one real Lemma 2. For each i> 1, g¥) — g = Mit for some
variable) then K f) is a right-continuous function. integer M.
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Proof. When computingg) we need to add tg'¥) some

integer multiple of (one for each new arrival) and subtract

(i—1)A, that is, subtracf every time we go over the end
of the previous off-on interval. Hence, for some intedérs
andM;,

g =gV +Kt—(i—1A
=g+ @t _ wt
n n
M.
=g+t (33)
whereM; = Kn— (i —1)m.
Letm,i=12, ... be the integer between 0 and- 1
such that 1
%t <gh <« MT2y (34)
anda; € [0,1) be such that
(i Mta, (35)
n
Lemma 3. For each i> 1, the g@’s are all equal.
Proof. For each > 1,
gl g _M—M, & _alt. (36)

Since |a—a| <1, it follows from Lemma 2 that

g —a; =0.
Denote bya the common value of.

Lemma 4. The following is true:

a= {9”}
t
where g is the same asgand {} denotes the fractional
part.

(37)

Proof.

m+a
{gin}:{ ttn}:{m1+a}:a. (38)

It is now clear that the only difference in the valuesgyf

is the value ofm. Sincem; can take no more than
different valueq0,1,..., (n—1)), there are no more than
n possible different values @f.

Lemmab. For each pair of distinct i and j such that
li—jl<n, d)#gW. If [i—j|is a multiple of n, then
g() =g J

Proof Supposdi — j| < nandi > j. Getting fromg(®
to g\) takes some numbe (integer, obviously) of new
arrivals, that cause a total ¢f— j) overlaps over the end
of an off-on interval. Hence,

=gl Mt—(i—JjA.

g¥ (39)

Therefore,

g — gl = Mt — @‘t (40)
If gi) =g, then@1 must be an integer. Howeven
and n are mutually prime and & (i—j)<n.
Contradiction. This proves the first part of the lemma.
Further, from 40) it is clear that ifi — j is a mult|ple
of n, theng®) — g\ is the multiple ot. However, eaciy’
is non-negative and less thanTherefore the difference
in (40) should be 0.
We can now see that?.g?, ..., g™ take all possible
values?t, H2t, ..., "=1tat whereais derived in 87). We
denote ag); the smallest of these values. So,

t n
(5 (41)
We denote the other values, in ascending order as
t n—1t
gz=91+ﬁ7-~~,gn=gl+( ; r (42)

Now, to prove Theorerd we break an interval0, T)
for large T, that is a multiple ofAn, into M intervals of
lengthAn. Then, we can write

T Anf
O/ s)ds= Ilmwmz / A L(g,9)
(43)
Further,
Anf n(f—1)-+iA 1
/ L(g,s ds—Z / fL(g,s)ds (44)
An(f—1)

Each integral in the sum in the rlght hand side #4)(is
the mean queue length in an off-on interval from
An(f—1)+ (i—1)Ato An(f —1)+iA. Theg in (44) is
equal to one of thg(!)'s computed above and hence equal
to one of theg;’s in (42).

Changing between 1 and with f fixed, we will run,
as shown in Lemmab, through all possible values of
g, g?,...,g™ and hence through all possible values
of 91,02, ...,0n. Each integral in the right-hand side
of (44) becomes by Theorerhequal toL(g;) for somei,
and the right hand side i) becomesy | ; L(gi) and is
independent of thé andM in (43). Thus the right hand
side in @3) is equal to 5", L(gj). o

Disclaimer

Certain commercial equipment, instruments, or materials
are identified in this paper in order to specify the
experimental procedure adequately. Such identification is
not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is
it intended to imply that the materials or equipment
identified are necessarily the best available for the
purpose.
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