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Abstract: On-off scheduling of systems that have the ability to sleep can be used to extend system idle periods and enable greater
opportunities for energy savings from sleeping. In this paper, we achieve a theoretical understanding of the delay behavior of on-off
scheduling as it may apply to communications links and other systems capable of sleeping. We consider a single-server coalescing
queue with a scheduler that schedules on-off periods for the server inorder to extend idle periods of the downstream link. At the start
of an off period (durationTo f f ) the server stops serving jobs immediately if idle, or after processing a jobalready in service. Service
of any queued and arriving jobs begins at the start of the next on period (durationTon). On and off periods are fixed. We solve for
the scheduling queue behavior as a function ofTo f f , Ton, interarrival timet, service timex, and time of first arrivalg for periodic job
arrivals. Our results are closed form and have both theoretical and practical significance.
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1 Introduction

Communication systems including switches, routers,
access points, links, and even entire sensor network nodes
often have the capability to be placed into a low-power
sleep state during idle periods to conserve energy.
Computing equipment including data servers, desktop
and laptop computers, and mobile computing devices can
all be placed into a low-power sleep state, for example
using Microsoft Windows power management
capabilities. An example of a communications link that
can be placed into a sleep state is XG-PON (10 Gb/s
Passive Optical Network). The XG-PON standard
specifically describes a cyclic sleep mode to save
energy [6, 26]. Energy Efficient Ethernet (EEE) also
allows for idle links to be placed into a low-power
idle (LPI) mode [5]. Common to all sleep-based energy
saving methods is that the transition time between sleep
and awake states is non-zero. This transition time has to
be accounted for in schemes or policies that determine
when to enter and exit a sleep state. If we consider as an
example the case of packets arriving to a switch port to be
transmitted on a link (this could equally be jobs arriving
to a server to be processed), these packet (or job) arrivals
occur at intervals in time. Let the transition time from

awake betsleep and from sleep to awake to betwake. The
duration of an idle period,tidle, must be longer than the
sum of tsleep and tawake (that is,tidle > tsleep+ tawake) for
sleeping to be feasible (and for energy to be saved). This
motivates the idea of scheduling by coalescing – called
buffer and burst in [21] and aggregation in [18] – to create
extended idle periods for sleeping.

The basic idea in coalescing is to use an FCFS (First
Come, First Served) queue to collect, or coalesce,
multiple jobs before releasing them as a burst of
contiguous jobs. We call this queue the “coalescing
queue” and are interested in its behavior as a means of
scheduling on and off states of a system. Coalescing
effectively collects many short idle periods into a few
long idle periods where the sum of the durations of the
idle periods is unchanged. These extended idle periods
can allow for a system to sleep when otherwise it could
not. Figure1a shows the notion of arriving jobs with
interarrival times (idle periods between individual jobs)
too short for sleeping, but when the jobs are coalesced
(Figure 1b) the now fewer idle periods are of extended
and sufficient duration for sleeping. In Figure1a the time
between job arrivals is less thantsleep + twake (without
coalescing) and thus sleeping is not possible.
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Fig. 1: Arriving jobs (a) without and (b) with coalescing

If the durations of the coalescing period (the off
period) and serving period (the on period) are
predetermined, then it becomes possible to predict the
energy savings that can be achieved. The energy savings
is equal to the sum of all off periods less sleep and wake
transition times. What is not, however, easily predicted is
the increase in delay of the coalesced jobs. It is critical to
have a deep understanding of the trade-off in energy
savings and performance for systems that seek to be
energy efficient. For example, coalescing may negatively
affect the Quality of Service (QoS) of a communications
system or otherwise unacceptably increase the delay of
job processing in a compute server. In this paper, we
develop a deterministic model to predict the bounds and
mean delay for jobs in a system with periodic arrivals and
fixed service times with periodic on and off periods
modeling cyclic sleep. Video and voice encoding is often
constant bit rate resulting in periodically generated
packets. Traffic shaping also often results in packet
streams in networks having periodic packet arrivals.
Modeling periodic arrivals makes it possible to derive
exact solutions for the parameters of interest and gain the
deep insights that we seek. We will show by simulation
that numerical results from our model can closely
approximate those of the same system with stochastic
arrivals for key cases of interest. The specific
contributions of this paper are:

–A closed-form solution, as a function of the first
arrival time, for the mean queue length in an interval
that includes one off and one on period.

–Upper and lower bounds for the long-term mean queue
length independent of the initial arrival time.

–A closed-form exact solution for the long-term mean
queue length given reasonable assumptions.

The remainder of this paper is organized as follows.
Section 2 describes scheduling of sleeping periods.
Section3 presents a simple fluid-flow model for periodic
on and off scheduling. Section4 develops our full model.
Section 5 contains numerical (model) and simulation

results that illustrate interesting behaviors and the ability
to predict delay and sleep. Section6 describes related
work in use of coalescing for energy savings and
modeling of interrupted service queues. Section7 is a
summary and outlines possible future work. Finally, the
appendices contain key proofs.

2 Scheduling by Coalescing

Coalescing can be used to aggregate individual arriving
jobs into bursts of jobs to reduce the overhead of sleep
and wake transitions. Scheduling of sleeping periods
– which directly determines the level of energy savings
and performance tradeoffs – is basically a decision of
when to start and end a coalescing period. The start and
end of a coalescing period for a coalescing queue can be
triggered by several conditions related to queue state
and/or time duration:

1.Starting a coalescing period on the arrival of the first
job to an empty coalescing queue and ending the
coalescing period when a predetermined number of
jobs have been queued and/or a time period since the
arrival of the first job has expired.

2.Starting a coalescing period when the number of jobs
in a coalescing queue drops below a predetermined
threshold and ending the coalescing period when a
predetermined number of jobs have been queued
and/or time period since the arrival of the first job has
expired.

3.Starting and stopping the coalescing period based on
predetermined time periods.

Each of the above approaches has been used in one or
more existing communication technologies, which will be
extensively reviewed in Section6 of this paper. Namely,
methods studied in [5, 23] and deep sleep in EPON
ONUs [3] use the first approach, the On/Off-1 algorithm
in [12] uses the second approach, and Synchronized
coalescing [20] and cyclic sleep in EPON ONUs [3] use
the third approach. The first and the second approaches
can only be used if coalescer queue state is known. But if
the coalescer queue state cannot be known, then only
purely time-based approaches – such as the third
approach above – can be implemented. Approaches based
solely on timers are especially useful in systems where
the service center is remotely turned on and off with no
information about the queue length (and other statistics of
the queue) available at the time of making on and off
scheduling decisions. In this paper, we specifically
consider a time-based approach where the coalescing
period is of a predetermined durationTo f f , and starts
periodically at times 0,To f f + Ton,2(To f f + Ton), and so
on. At the start of an off period (durationTo f f ) the server
stops serving immediately if idle, or when any in-service
job has completed if not idle. During an on
period (durationTon), jobs are not coalesced but will
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Fig. 2: Coalescing queue with scheduler

queue if the interarrival time between jobs is less than the
service time of the coalescer queue. During the off period,
the service rate is zero, and during the on period, the
service rate isµ with mean service timex = 1/µ . Jobs
arrive at a rateλ with mean interarrival timet = 1/λ .

Figure 2 shows a coalescing queue with on-off
scheduling. The on-off scheduling in our case is based on
timer state. A stated above, it is assumed that a job in
service when an on period expires and the next off period
starts completes its service. It is thus possible that an off
period contains a maximum timex of service time. Thus,
the system could sleep for a minimum duration of
To f f − twake− tsleep−x in all off period cases. We define a
duty cycle as,

D =
Ton

To f f +Ton
. (1)

The offered load to the server is then

ρ =
1
D
· λ

µ
, (2)

whereρ < 1 is required for stability. Iftwake, tsleep, andt
are small compared toTo f f , then D models (from an
engineering perspective) the percentage of time the
system is on. The direct energy savings can be calculated
from this known on time. The setting ofD is an
engineering decision based on the desired energy savings
with trade-off in performance. As stated previously, the
setting ofD can only be done with a full understanding of
the trade-off between increased energy savings and
decreased performance.

Now we are ready to introduce the two averages that
we will study in this paper. We define theinterval mean
queue length andlong-termmean queue length as follows
given periodic on and off periods of fixed durationTon and
To f f , respectively. LetH(s) be the queue length or number
of jobs in the queue at times.

Definition 1.The interval mean queue length is the mean
number of jobs in the coalescing queue for a given interval
defined from the start of an off period to the end of the
subsequent on period (or duration To f f + Ton) defined as,

tempty
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Fig. 3: Fluid flow model of periodic on and off coalescing

L =
1

To f f +Ton

To f f+Ton
∫

0

H(s)ds. (3)

Definition 2.The long-term mean queue length is the mean
number of jobs in the coalescing queue over the long term
for a long sequence of off and on periods.

3 A Fluid Flow Queue with Periodic On and
Off Service Periods

Let us model our fluid flow queue with arrivals at a rateλ
and service at a rateµ . On and off periods are periodic
with duration Ton and To f f , respectively. During on
periods jobs are served. During off periods the server is
forced to be idle (that is, it does not serve) and queueing
occurs. Here, performance is measured as mean delay,W.
Figure3 shows a fluid flow model of periodic on and off
coalescing from which the mean delay can be determined.
In this model,ro f f = λ is the rate of increase in queue
length during the off period, andron = µ −λ is the rate of
decrease in queue length during the on period.

In the fluid-flow model described above, the
maximum queue length isLmax= ro f fTo f f . The time to
empty the queue during an on period istempty= Lmax/ron.
Also, H(s) is the fluid accumulation (queue length) of the
queue at times in the fluid-flow model. We seek to
compute the interval mean queue length for a given
To f f +Ton interval as the area underH(s) divided by the
total time of an interval,

L =
Lmax(To f f + tempty)

2(To f f +Ton)
=

µλTo f f
2

2(µ −λ )(To f f +Ton)
. (4)

With identical repeating on and off periods, the long-term
mean queue length (as seen by a random outside
observer) is given by (4). The criterion for stability is
tempty≤ Ton. From Little’s Law we can trivially determine
the mean delay,

W =
L
λ

=
µTo f f

2

2(µ −λ )(To f f +Ton)
. (5)
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The fluid flow model leads to our model of scheduling with
periodic on and off service periods.

4 Scheduling Periodic On and Off Service
Periods

Let us assume a queue where the first arrival is atg (this
is from time 0, the system always starts at time 0 in an off
period) and the other parameters are as defined in
Section 3. The natural assumption is that
0 ≤ g < t < To f f . We will assume that if a job arrives
exactly at timeTo f f +Ton, it will not be served until the
next service interval. Figure4 shows the behavior of the
queue length for periodic on and off periods. The figure is
drawn to scale and schematically shows the queue length
behavior for two off-on cycles of an example where
To f f = 5, Ton = 2, g = 0, λ = 1, and µ = 4. Note the
repetitive pattern, which will be used later in our analysis.
Let H(s) be the number of jobs in the queue at times. We
seek to find a good approximation or, if possible, a precise
solution for the mean queue length over a long time
period. Our construction is as follows. First, we produce
an exact closed-form solution for the mean queue length
in the most general case (arbitraryTon, To f f , t, x, andg)
over an interval that includes one off and one on period.
Then we will show that the mean queue length on such an
interval is a non-increasing function ofg and derive the
upper and lower bounds for the mean queue length on
these intervals that are independent ofg (the first arrival
time within the periodic interval). This will give us a close
estimate for the mean queue length. Next, we will give a
precise closed-form expression for the mean queue length
under the assumption that the ratio of

Ton+To f f
t is a rational

number. Finally, in the most general case (arbitraryTon,
To f f , t, x, andg; and

Ton+To f f
t is not necessarily a rational

number), we derive another good estimate of the mean
queue length (in addition to the estimate described
earlier) by making the assumption that the mean queue
length in a given periodic interval is a linear function of
the first arrival timeg. Therefore, the mean queue length
can be given precisely in closed-form or be very closely
approximated by the two methods that we present here.

With all other parameters fixed, forg in the interval
[0, t), denote asL(g) the interval mean queue length
within the interval [0,To f f + Ton) given that the first
arrival beginning at time 0 occurs at timeg. That is,

L(g) = 1
To f f+Ton

∫ To f f+Ton
0 H(s)ds, computed under the

assumption that the first arrival time within the interval
[0,To f f + Ton) is g. In other words,L(g) is L from
Definition1, given that the first arrival time isg.

We denote asN the total number of jobs arriving
during the[0,To f f +Ton) time interval,

N =

⌈

To f f +Ton−g

t

⌉

. (6)
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Fig. 4: Graphical model of periodic on and off coalescing

We also define,

w= max(0,g− t +x), (7)

and,

v= max
(

0,(N−1)t +g+x− (To f f +Ton)
)

. (8)

Herew will be used to count the arrival overlap from the
previous interval andv will be used to exclude the service
time of theNth job that occurred afterTo f f + Ton, if its
service ends afterTo f f +Ton. Let us also definek0 ≥ 1 as
the number of the first job that arrives at time 0 or later,
after serving which the queue becomes empty (even if the
next job arrives precisely at the same moment when the
service to thek0th job ends). The service of thek0th job
ends at timeTo f f +k0x, since the server has no idle periods
between the timesTo f f andTo f f +k0x. The (k0+1)th job
arrives at timek0t +g. Thusk0 is the smallest integer such
thatk0t +g≥ To f f +k0x. This means that

k0 =

⌈

To f f −g

t −x

⌉

. (9)

Here we are presenting our main theoretical results.
Theorem1 computes the interval mean defined earlier in
this paper. This computation is performed under the most
general assumptions on the system parameters and with
an arbitrary time of the first arrival during this interval.
The next two results play an auxiliary role in our goal to
estimate the long-term mean. Theorem2 states an
intuitively obvious property that the interval mean in
increasing with the increase in the first arrival time within
one interval. This property and the demonstrated
continuity of the interval mean as a function of the first
arrival time allow us to derive, in Theorem3, the precise
upper and lower bounds for the interval mean. Finally,
Theorem 4 provides the precise expression for the
long-term mean when the fraction(To f f + Ton)/t is a
rational number. In practical applications, it is always
possible to assume that this is the case. The smaller the
denominator in this rational fraction the fewer terms will
have to be added to compute the long-term mean. The
proofs for these theorems can be found in the appendices
of this paper.
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Theorem 1. The interval mean queue length is

L(g) =
1

To f f +Ton

(

w+k0To f f −
(k0+1)k0

2
(t −x)

+k0t −k0g+(N−k0)x−v

)

. (10)

Proof. The proof is in7.
While the interval mean queue lengthL(g) is defined

for g in the interval [0, t) only, we can formally define
function A(g) as the expression in the right hand side
of (10) with N andk0 defined by (6) and (9) respectively.
The introduction ofA(g) defined on the entire interval
[0, t] is necessary in order to state and prove some of the
results that follow.

Theorem 2. A(g) is a continuous non-increasing function
of g when g∈ [0, t].

Proof. The proof is in7.

Theorem 3. The interval mean value of the queue, L(g),
satisfies A(t) ≤ L(g) ≤ L(0) for g∈ [0, t], and the bounds
cannot be improved.

Proof. The proof is in7.
Finally, we solve for the interval mean queue length,

L(g), for the general case. LetA = To f f + Ton. If A/t is
rational, thenA/t = m/n for some mutually prime integers
m andn. We also let{x} denote the fractional part ofx;
that is, for instance,{2.3} = 0.3, {5} = 0, and so on. We
define the sequenceg1,g2, . . . by settingg1 to

g1 =
t
n

{gn
t

}

, (11)

and

gi = g1+
(i −1)t

n
, i = 2,3, · · · . (12)

Theorem 4. The long-term mean queue length for
rational A/t is given by

L =
1
n

n

∑
i=1

L(gi). (13)

Proof. The proof is in7.
We note that ifA/t is rational, an exact expression for

the long-term mean,L, is obtainable. IfA/t is irrational,
an increasingly precise approximate result is achieved by
increasingn.

Corollary 1. Assume again that A/t = m/n with mutually
prime m and n is rational and L(g) is a linear function
of g (this is a reasonable approximation of the behavior of
L(g)). Then the mean of L(g) can be expressed as

L
(

g1+
t(n−1)

2n

)

. (14)

Proof. If L(g) can be expressed asag+b for somea andb,
then we write
1
n

n

∑
i=1

L
(

g1+
i −1

n
t
)

=
1
n

n

∑
i=1

(

ag1+
a(i −1)

n
t +b

)

= ag1+
1
n2 at

n

∑
i=1

(i −1)+b

= ag1+
atn(n−1)

2n2 +b

= ag1+
at(n−1)

2n
+b

= a
(

g1+
t(n−1)

2n

)

+b

= L
(

g1+
t(n−1)

2n

)

. (15)

Corollary 2. Again assume that L(g) is a linear function
of g. Also assume that A/t is an irrational number, so there
are no m and n. Then the mean of L(g) is equal to

L

(

t
2

)

. (16)

Proof. There are two ways to see that the statement of this
corollary holds true. First, ifA is not a rational function
of t, then the shift ing between the off-on intervals is an
irrational number and over long time these irrational
numbers densely and uniformly cover the entire
interval [0, t). Hence, the linear functionL will average to
its value in the center of this interval, that is, att/2.
Another way to prove the corollary is to see that an
irrational A/t can be closely approximated by a rational
m/n, with the approximations (14) getting better and
better asn grows. As n gets larger,g1 tends to 0 and
therefore, the value inside the large parenthesis in (14)
tends tot/2. With the linear functionL being continuous,
the value in (14) tends toL

(

t
2

)

.

5 Numerical and Simulation Results

In this section, we numerically demonstrate that (13)
computes the long-term mean queue length,L, as a
function of g. For the case of irrationalA/t we show
convergence to simulation results asn is arbitrarily
increased in the computation of (13). We also compare
results from (13) to that of the fluid flow model (4) for the
case of rationalA/t. Using a simulation model, we also
show that the long-term mean queue length resulting from
(13) approximates that of a similar queueing system with
stochastic arrivals.

5.1 Numerical results for long-term mean queue
length

Table 1 shows a comparison of long-term mean queue
lengthL computed from (13) to a simulation model result
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Fig. 5: Packet delay for 10 Gb/s EPON with cyclic
sleep (D = 0.5)

for the following parameters:n = 10, 100, and 1000,
To f f = 20 s, Ton = 10 s, g = 0, D = 1/3, µ =√

2 (irrational), andλ computed from (2) such thatρ =
0.1, 0.5, and 0.9. The simulation model was constructed
using CSIM [1] as a queueing model of a single-server
queue with periodic on and off periods. The results in
Table1 show that the computation from (13) converges to
the simulated result asn increases. This was also found to
be true for cases whereg > 0 (results not shown here).
Even for smalln (n = 10), the result from (13) was very
close to the simulated actual. For cases whereA/t is
rational, (13) and the simulation model results were found
to match exactly, as should be expected.

Figure 6a shows a comparison of long-term mean
queue length,L, computed from (13) to the fluid flow
model of (4) for the following parameters:D = 0.1,
µ = 1.0,To f f = 10, 15,. . . , 100 (that is, 10 to 100 times
greater than service time,x), Ton computed from (1), and
λ computed from (2) such thatρ = 0.1, 0.5, and 0.9.
Relative error is shown as a percentage. Figure6b shows
the same comparison forD = 0.5. It can be seen that as
To f f compared tox increases, the relative error decreases
and the fluid flow model becomes a closer approximation.
The region of small duty cycle, low offered load, and
small To f f compared tox may be the region of most
interest for many practical applications of coalescing. In
this region, the fluid flow model is a very poor
approximation.

Table 1: Effect of increasingn in (13) for irrationalA/t
n

ρ 10 100 1000 Simulation
0.10 0.382473 0.350958 0.347937 0.348
0.50 2.028797 1.993046 1.989514 1.989
0.90 4.247608 4.205543 4.201344 4.201

We used simulation to compare our model to that of a
similar system with exponentially distributed interarrival
times (Poisson arrivals). Figure7 shows a comparison of
long-term mean queue length,L, computed from (13) to
that obtained from the simulation with Poisson arrivals.
The parameters are the same as what was used in
generating Figure6 with λ being the mean arrival rate of
the packets. Relative error is shown as a percentage
for (a)D = 0.1, and (b)D = 0.5. As can be seen in the
figure, the error is less than 10% for all values ofTo f f
including the small values that is the primary region of
interest. The overall variability of the time between the
arrival of subsequent jobs decreases in general when the
samples are taken in larger time spans which is likely to
be the reason for the decrease in relative error whenTo f f
increases. The relative error tends to zero asTo f f
increases making the approximation of our model
approach reality asTo f f increases. An interesting
phenomenon that can happen in a system with stochastic
arrivals is that the coalescing queue does not always
empty completely by the time when the next off period
starts. The remaining packets can be served either in
1) the next on period following the next off period, or
2) the same on period by postponing the start of the next
off period until the queue empties. We chose the second
policy for serving any remaining packets in our
simulation and instrumented the model to measure the
reduction in total off time that this policy induces. In our
experiments, this reduction in time did not exceed 5% of
the total off time (implying that the energy savings would
be reduced by not more than 5% as well). The reduction
increased, not surprisingly, as the load got higher where
the maximum reduction occurred whenρ = 0.9.

5.2 Numerical results for a 10 Gb/s Ethernet
Passive Optical Network

We evaluated the packet delay for a 10 Gb/s Ethernet
Passive Optical Networks (EPON) with cyclic sleep (as
described in [6,26]) for low utilization levels as would be
typically expected in such a system. We used a 50% duty
cycle, D = 0.5, where the system sleeps for a timeTo f f ,
which includes both wake and sleep transition overheads.
We conservatively assumed that the power draw during
transitions was the same as during on, or wake, periods.
For D = 0.50, Ton = To f f . We assumed that the service
time corresponded to the transmission of a maximum
length 1500-byte packet, which is 1.2µs. The long-term
mean queue length was computed using (13) for To f f =
50 ms, 100 ms, and 200 ms, and the offered load ranged
from 1% to 10%. Figure5 shows the results. It can be
seen, not surprisingly, that the mean delay increases as
To f f increases and as offered load increases. For a 5%
offered load, the mean packet delay is about 25% ofTo f f
in the three cases shown. This type of evaluation can be
used for determining an acceptable delay versus energy
use trade-off for systems that use coalescing.
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Fig. 6: Relative error for (13) versus (4) for (a)D = 0.10, and (b)D = 0.50
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Fig. 7: Relative error for (13) versus that of a similar M/D/1 queue for (a)D = 0.10, and (b)D = 0.50

6 Related Work

In this section, we first review applications of coalescing
and then review previous and related work in modeling of
queues with service interruptions.

6.1 Use of coalescing to reduce energy
consumption

Coalescing of requests has long been used to eliminate
receive livelock (a situation that can occur under heavy
load in computer systems in which the processor spends
all its time processing interrupts and no time processing
actual jobs) [19]. Coalescing has been used in disk drives

for conserving energy by reducing disk spinning
operations [24]. Coalescing is used in several wireless
protocols to reduce energy use. In Power Saving
Mechanism (PSM) for the Distributed Coordination
Function (DCF) in IEEE 802.11 wireless networks (Wi-Fi
networks), packets destined for a wireless station are
coalesced in the preceding station (for example, in the
access point) during predefined beacon intervals [2].
When a periodic beacon interval begins, a station listens
to announcement packets from any station which has a
packet to send. Upon receiving an announcement packet,
a station remains powered on during the Data
Transmission (DT) window in order to receive the
announced packets. If the station does not receive any
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announcement packets, it can skip the DT interval and
power down for the rest of the beacon time.

A recently developed scheme called Catnap [7]
reduces the energy consumption of a mobile device by
combining small gaps between packet transmissions into
larger intervals during which time the device can be put to
sleep and save energy. Catnap introduces a proxy on the
wireless router connecting the mobile device and the
Internet that performs this coalescing function for packets
inbound to a wireless device. Catnap exploits the fact that
the wired link between the Internet and an access point is
often higher speed than the wireless link between an
access point and wireless device. The speed mismatch
causes idle periods between packets. These idle periods
are extended with coalescing in Catnap proxy in the
access point.

Sleep schemes have also been adopted for optical
networks. Deep sleep and Cyclic sleep [3] in Ethernet
Passive Optical Networks (EPONs) allow the Optical
Network Units (ONUs) to turn off their hardware
components in order to save energy. In deep sleep mode,
the ONU’s transmitter and receiver are powered off when
traffic is neither being received nor transmitted by the
ONU. In cyclic sleep mode, the ONU periodically cycles
between active and sleep periods where its transceiver is
powered on and off, respectively.

Recent work has focused on how packet coalescing
policies for EEE can improve the energy efficiency of
Ethernet ( [5, 20, 23]). At low link utilizations, EEE can
be very inefficient when individual packets trigger wake
and sleep transitions that exceed the transmission time of
the packet. In order to decrease transition time (and
energy use) overhead, packets can be coalesced into
bursts and then be sent as one burst of back-to-back
packets. In the coalescing scheme studied in [5], when
either the coalescing timer expires or the number of
buffered packets reaches a defined maximum, the
buffered packets were all transmitted in a single burst.
This work showed that there is a trade-off between energy
savings and increased packet delay from coalescing. An
analytical model for EEE with packet coalescing with
very general assumptions is recently developed in [14]
based on the GI/G/1 queueing model with vacations.
Synchronized Coalescing for EEE [20], is a timer-based
packet coalescing policy for EEE which reduces the
energy consumption of LAN switches. In synchronized
coalescing, a LAN switch stops incoming traffic to all
connected ports by periodically sending a PAUSE MAC
frame on all its ports to sending hosts and/or edge routers.
When this occurs, all connected ports can enter LPI mode
at the same time and internal switch components
including the switching fabric can power down for this
duration. Packets generated at the connected hosts or
arriving at the edge routers during this pause duration are
coalesced in the interface buffers until the pause interval
is over.

As long as utilization of communication and
computing systems remains low (and it is argued in [22]

that network utilization will always be low) coalescing
can be a useful means of enabling energy savings in such
systems. This paper addresses the energy savings and
delay trade-offs for coalescing in the case of deterministic
on and off periods. These results provide a strong
foundation upon which performance models of coalescing
schemes can be built and a deeper understanding of this
means of scheduling of jobs be gained.

6.2 Queues with service interruptions

Queues with service interruptions, modeled as service
pre-emption, vacations, and breakdowns have been
studied since the 1950s. This previous work gives us
insights towards scheduling by coalescing. Service
interruption can result fromunscheduledbreakdown of a
server (for instance, when the arrival of a high priority
customer temporarily stops service to other customers), or
a scheduledservice stop (for instance, between shifts in a
product line). In both cases, typically, the duration of the
interruption is randomly distributed. In our scheme,
however, the start time and duration of off periods is
known.

The first work in queues with service interruptions
dates back to 1958 where priority classes for jobs with a
pre-emptive resume service discipline were studied
in [29]. From the perspective of a lower-priority job,
service pre-emption appears as if the server breaks down
and is repaired. Poisson arrivals and negative-exponential
repair times were assumed in this work and the expected
time spent in the system and the generating function for
the delay distribution were derived. Preemptive-resume
and non-resume disciplines were further studied
in [11, 15] where an exponentially distributed time to the
next breakdown was assumed. Special cases of the same
system, such as when the server breaks down only when a
job wishes to receive improved service from the server, or
when the server never breaks down while serving a job
were studied in [4].

Server interruption is closely related to server
vacations and breakdowns. A server takes a vacation after
completing the service to all queued jobs and the queue is
empty. The vacation model has a fundamental difference
with server breakdowns where the service can be
interrupted while there are jobs in the queue or in service.
Queuing systems with vacations were reviewed in [8,27].
None of these previous works explicitly considered a
server that independently of job arrivals cycles between
serving (on) and not serving (off) jobs.

More recent work has addressed servers that
independently vary between on and off modes. In [10] the
M/G/1 decomposition property is used to model any
M/G/1 system with vacations. The mean waiting time in
the queue, the probability of delay, and the steady-state
distribution of the number of jobs in the system for a
FCFS queue with Poisson arrivals and general service
process for a variety of distributions for the on and off
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periods (where the distribution of either the on or off
period length is not periodic) were approximated in [9]. A
queuing system with server interruptions in which the
interruptions were semi-Markovian was studied in [17].
The case where the on and off periods were governed by
an alternating renewal process was considered in [25]. A
queuing system with Markovian Arrival Process (MAP)
and a very general random interruption distribution was
solved (including numerical results) in [28]. The
probability distribution of jobs in the system for the
M(t)/M(t)/1 queue is solved in [16] using numerical
methods. Additional recent work has addressed the
characteristics of queues with fluctuation of loads (where
server breakdowns are a special case where server service
time is set to infinity) to determine fundamental
results [13]. This work, as all previous work, also
assumes stochastic on and/or off periods, which do not
map to the case of timer-based coalescing as critically
considered in our work.

7 Summary and Future Work

Our work is, we believe, the first to develop a model for
timer-based on-off scheduling in the context of a
coalescing queue. Our work has direct relevance to
understanding increased delay in systems that use
coalescing to extend idle periods in order to increase
opportunties for the system to sleep. Theoretical results
are important for deeper understanding of real systems.
The model we have developed produces a result that is
easily computable. Exact results are possible for many
cases, approximate results are possible for all cases.
Comparison to simulation shows that the approximations
are very good. Numerical results show that coalescing
converges to a fluid flow case asTo f f increases relative to
x and asTon increases relative tot. An interesting case is
where the on period is of duration equal to the time to
serve all packets in the queue and the next off period
begins at the time of the first arrival immediately after the
queue becomes empty. Future work should consider 1)
modeling the M/G/1 queue with periodic on and off
periods, 2) the analysis of on and off policies other than
periodic (for example, as described in Section2), and 3)
studying the effects of the output process from one (or
more) coalescing queue(s) on a downstream queue.

Appendix A Proof of Theorem 1

To computeL(g), we assume that the process begins
before the interval where we are computing the interval
mean queue length, and there may be an overlap from the
previous interval. The last arrival before time 0 was at
time g− t and it took timex to process this job. Hence,
H(s) = 1 between time 0 andw, andH(s) = 0 betweenw

andg. Therefore,

g
∫

0

H(w)ds= 1·w= w. (17)

wherew is defined in (7).
We now evaluateH(s) whens≥ g. Let us define two

functionsF(s) andG(s), whereF(s) is the number of jobs
that have arrived by times andG(s) is the number of jobs
that have been completed by times. Whens≥ g,

F(s) =

⌊

s−g
t

⌋

+1. (18)

Forg≤ s≤ To f f , G(s) = 0, and forTo f f < s≤ To f f +k0x,

G(s) =

⌊

s− to f f

x

⌋

, (19)

wherek0 is defined in (9). The above expression forG(s)
does not hold fors> To f f + k0x since the server might
have some idle periods after that time. We can see that
H(s) = F(s)−G(s) for all s. We further note that
H(s) = 0 for s∈ (To f f + k0x,k0t +g), since this interval
starts after the completion of service to jobk0 and ends
before job number (k0 + 1) arrives. After that, when the
job number j arrives (j = k0 + 1, . . . ,N), the service
queue length is 1 between the times( j − 1)t + g and
( j −1)t +g+ x, and 0 between the times( j −1)t +g+ x
and jt + g. For theNth job, it is not known if its service
gets completed beforeTo f f +Ton. If it does not, we cannot
include the part of service that occurs afterTo f f +Ton in
the calculation of the interval mean queue length in the
[0,To f f +Ton) interval, so we will subtract 1· v = v from
the total, wherev is defined in (8).

To compute the average size of the queue we need to
integrateH(s) over the interval from 0 toTo f f +Ton and
then divide the result overTo f f +Ton. We have,

To f f+Ton
∫

0

H(s)ds= w+

To f f+k0x
∫

g

H(s)ds+

k0t+g
∫

To f f+k0x

H(s)ds+

To f f+Ton
∫

k0t+g

H(s)ds. (20)

The second integral in the right hand side is 0, since, as we
saw earlier, there are no jobs in the queue at this time. The
third integral is equal to(N− k0)x− v, since the value of
H(s) is 1 during the(N− k0) intervals of lengthx (each
interval corresponding to serving a job beginning with job
numberk0+1), and 0 at other times, except that the service
of the last job may end outside this interval and thus the
adjustment byv. Now,

To f f+k0x
∫

g

H(s)ds=

To f f+k0x
∫

g

F(s)ds−
To f f+k0x
∫

g

G(s)ds. (21)
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We can see thatF(s) = 1 betweeng andg+ t, it is equal
to 2 betweeng+ t and g+ 2t, . . . , and equal tok0 − 1
betweeng+(k0 − 2)t andg+(k0 − 1)t. It is equal tok0
between the timesg+(k0−1)t andTo f f + k0x. Note that
by our definition ofk0, the next job, (k0+1), arrives at or
after the timeTo f f + k0x. Therefore, the first integral in
the right hand side of (21) can be calculated as

To f f+k0x
∫

g

F(s)ds=
(k0−1)k0

2
t

+k0
(

To f f +k0x− (k0−1)t −g
)

. (22)

G(s) is equal to 0 between the times 0 andTo f f +x, equal
to 1 between the timesTo f f + x and To f f + 2x, . . . , and
equal tok0 − 1 between the timesTo f f + (k0 − 1)x and
To f f +k0x. Therefore,

To f f+k0x
∫

g

G(s)ds=
(k0−1)k0

2
x. (23)

Hence,

To f f+k0x
∫

g

H(s)ds=

To f f+k0x
∫

g

F(s)ds−
To f f+k0x
∫

g

G(s)ds

=
(k0−1)k0

2
(t −x)

+k0(To f f +k0x− (k0−1)t −g)

= k0To f f −
(k0+1)k0

2
(t −x)+k0t −k0g.

(24)

Combining (20) and (24) we calculate the interval mean
queue length as,

L(g) =
1

To f f +Ton

(

w+k0To f f −
(k0+1)k0

2
(t −x)

+k0t −k0g+(N−k0)x−v

)

. (25)

This is (10). ⊓⊔

Appendix B Proof of Theorem2

We will demonstrate that for everyg∈ [0,Ton+To f f ], the
functionA(g) is non-increasing and continuous atg. From
the definition ofA(t), it follows, thatA(g) is a continuous
function of g, w, v, k0 and N. Note that the other
parameters,To f f , Ton, t and x are independent ofg.
From (6) and (9), it follows that N and k0 are both
right-continuous functions ofg. From Lemma1 stated
below in this appendix it follows thatA(g) is a
right-continuous function ofg. Now, we need to prove
that A(g) is also left-continuous and non-increasing. We

divide our proof into four cases based upon the continuity
of N andk0 atg.

Case 1.Suppose that neither
To f f−g

t−x nor
To f f+Ton−g

t is
an integer. From this it follows thatg is such that there is
no discontinuity of eitherk0 or N (as functions ofg) at
this value ofg. ThenA(g) is continuous at thisg ask0 and
N are the same when evaluated at points nearg. To prove
the non-increasing property ofA(g) in this case, it would
suffice to show thatw − k0g − v is a non-increasing
function ofg. Note that all other terms in the parentheses
in (10) remain unchanged nearg. Since −v can only
decrease or remain the same asg increases, it is sufficient
to show thatw− k0g does not increase. Indeed, wheng
increases by someδ > 0, w increases by at mostδ ,
while −k0g decreases byk0δ ≥ δ . Thus, A(g) is
non-increasing at thisg.

Case 2.Let g be such that
To f f+Ton−g

t is an integer

while
To f f−g

t−x is not. To prove the left-continuity ofA(g) at
thisg, we decrease the value ofg to g−δ . This causes the
value ofN, when evaluated atg− δ to change toN+ 1.
SinceN is only present in the(N − k0)x term and inv
inside the parentheses in (10), and the value ofk0 remains
the same ifδ is sufficiently small, we should only look at
the effect of the change on these two terms, as other terms
are continuous ing. Clearly, the(N− k0)x term increases
by x when N increases to N + 1. Using
Nt = Ton+To f f −g we obtain the value ofv atg as

max
(

0,Nt−t+g+x−(Ton+To f f)
)

=max
(

0,−t+x
)

= 0.
(26)

So,v(g) = 0. The value ofv atg−δ is (N becomesN+1)

max
(

0,Nt+g−δ +x− (Ton+To f f)
)

= max
(

0,x−δ
)

= x−δ , (27)

therefore,v(g− δ ) = x− δ . Then, replacingw(g), v(g),
w(g− δ ) and v(g− δ ) with w and v evaluated atg and
g−δ correspondingly, we obtain

(To f f +Ton)
(

A(g−δ )−A(g)
)

=
(

w(g−δ )+k0To f f −
k0(k0+1)

2
(t −x)

+k0t −k0(g−δ )+(N+1−k0)x−v(g−δ )
)

−
(

w(g)+k0To f f −
k0(k0+1)

2
(t −x)

+k0t −k0g+(N−k0)x−v(g)

)

=
(

w(g−δ )−w(g)
)

+k0δ +x−
(

v(g−δ )−v(g)
)

=
(

w(g−δ )−w(g)
)

+k0δ +x− (x−δ )
=

(

w(g−δ )−w(g)
)

+(k0+1)δ . (28)

This shows, using the fact that
−δ ≤ w(g− δ )− w(g) ≤ 0, that at this value ofg the
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function A(g) is left-continuous (and therefore,
continuous) and non-increasing.

Case 3. Suppose that
To f f−g

t−x is an integer while
To f f+Ton−g

t is not. We will show thatA(g) is continuous
and non-increasing at this value ofg. Noting that
k0(t −x)−To f f +g= 0 in this case, we have

(To f f +Ton)
(

A(g−δ )−A(g)
)

=
(

w(g−δ )+(k0+1)To f f −
(k0+1)(k0+2)

2
(t −x)

+(k0+1)t − (k0+1)(g−δ )+(N−k0−1)x

−v(g−δ )
)

−
(

w(g)+k0To f f −
k0(k0+1)

2
(t −x)

+k0t −k0g+(N−k0)x−v(g)

)

=
(

w(g−δ )−w(g)
)

+To f f − (k0+1)(t −x)

+ t −g+(k0+1)δ −x−
(

v(g−δ )−v(g)
)

=
(

w(g−δ )−w(g)
)

+(k0+1)δ −
(

v(g−δ )−v(g)
)

.

(29)

From (29), it immediately follows that A(g) is
left-continuous at this value ofg and hence continuous.
Also, since

(

w(g−δ )−w(g)
)

≥−δ and
−
(

v(g− δ )− v(g)
)

≥ 0, the value in the right hand side
of (29) is no smaller thank0δ > 0. Therefore,A(g) is
non-increasing at this value ofg.

Case 4. Finally, suppose that both
To f f−g

t−x and
To f f+Ton−g

t are integers. Noting that in this case
k0(t − x)− To f f + g = 0, and thatv(g− δ ) = x− δ and
v(g) = 0, we have

(To f f +Ton)
(

A(g−δ )−A(g)
)

=
(

w(g−δ )+(k0+1)To f f −
(k0+1)(k0+2)

2
(t −x)

+(k0+1)t − (k0+1)(g−δ )+(N+1−k0−1)x

−v(g−δ )
)

−
(

w(g)+k0To f f −
k0(k0+1)

2
(t −x)

+k0t −k0g+(N−k0)x−v(g)

)

=
(

w(g−δ )−w(g)
)

+To f f − (k0+1)(t −x)

+ t −g+(k0+1)δ −
(

v(g−δ )−v(g)
)

=
(

w(g−δ )−w(g)
)

+(k0+2)δ ≥ (k0+1)δ .
(30)

This shows thatA(g) is continuous and non-increasing at
this value of g as well, and completes the proof of
Theorem2. ⊓⊔

Lemma 1. If F is a continuous function and f is a
right-continuous function (both are functions of one real
variable) then F( f ) is a right-continuous function.

Proof. We need to show that for anyε > 0 there exists
δ > 0 such that for anyx where F( f ) is defined (and
hence, wheref is defined), ify satisfies the inequalities
0 < y − x < δ , the following holds:
|F( f (y))−F( f (x))| < ε. SinceF is continuous atf (x),
for this specific ε there exists ξ > 0 such that if
| f (y)− f (x)| < ξ then |F( f (y))−F( f (x))|< ε. Since f
is right-continuous atx, there existsδ > 0 such that
| f (y)− f (x)| < ξ for anyy such that 0< y− x< δ . This
δ hence satisfies the conditions of the lemma for the
chosenε > 0.

Appendix C Proof of Theorem3

Since, according to Theorem2, L(g) is non-increasing, it is
bounded byA(t) below andL(0) above. The upper bound
is reached atg= 0 and therefore cannot be improved.

The variableg is allowed to take all real values as it
increases towardst. This means thatL(g) can be any value
betweenL(0) and limg↑t L(g). This latter limit exists and
is equal toA(t). Due to the property of the limit, the lower
bound in this theorem cannot be improved. ⊓⊔

Appendix D Proof of Theorem4

We seek the mean ofL(g). The mean is,

L = lim
T→∞

1
T

T
∫

0

L(g,s)ds, (31)

whereL(g,s) is the queue length at times of the process
with the very first arrival time atg, for an arbitrary set of
parameters.L(g,s) is the same asH(s) in 7 exceptg is now
not fixed.

In the usual notation, we are assuming thatA/t = m/n
for some mutually prime integersm andn and we seek to
find the precise value for

1
T

T
∫

0

L(g,s)dsasT → ∞, (32)

whereL(g,s) is the queue length at times of the process
with the very first arrival time atg, for an arbitrary set of
parameters (here, as before,A = To f f + Ton). We will
denote byg(1) the first g upon the beginning of the
process, byg(2) the g at the beginning of the second
interval, that is, the first arrival time in the interval that
starts atA, by g(3) the g at the beginning of the third
off-on interval and so on.

Lemma 2. For each i> 1, g(i) − g(1) = Mi
n t for some

integer Mi .
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Proof. When computingg(i) we need to add tog(1) some
integer multiple oft (one for each new arrival) and subtract
(i −1)A, that is, subtractA every time we go over the end
of the previous off-on interval. Hence, for some integersK
andMi ,

g(i) = g(1)+Kt − (i −1)A

= g(1)+
Kn
n

t − (i −1)m
n

t

= g(1)+
Mi

n
t, (33)

whereMi = Kn− (i −1)m.
Let mi , i = 1,2, . . . be the integer between 0 andn−1

such that
mi

n
t ≤ g(i) <

mi +1
n

t, (34)

andai ∈ [0,1) be such that

g(i) =
mi +ai

n
t. (35)

Lemma 3. For each i> 1, the ai ’s are all equal.

Proof. For eachi > 1,

g(i)−g(1) =
mi −m1

n
t +

ai −a1

n
t. (36)

Since |ai −a1|< 1, it follows from Lemma 2 that
ai −a1 = 0.

Denote bya the common value ofai .

Lemma 4. The following is true:

a=

{

gn
t

}

. (37)

where g is the same as g(1) and{} denotes the fractional
part.

Proof.
{

gn
t

}

=

{

m1+a
n tn

t

}

=
{

m1+a
}

= a. (38)

It is now clear that the only difference in the values ofg(i)

is the value ofmi . Since mi can take no more thann
different values(0,1, . . . , (n−1)), there are no more than
n possible different values ofg(i).

Lemma 5. For each pair of distinct i and j such that
|i − j|< n, g(i) 6= g( j). If |i − j| is a multiple of n, then
g(i) = g( j).

Proof. Suppose|i − j| < n and i > j. Getting fromg(i)

to g( j) takes some numberM (integer, obviously) of new
arrivals, that cause a total of(i − j) overlaps over the end
of an off-on interval. Hence,

g(i) = g( j)+Mt − (i − j)A. (39)

Therefore,

g(i)−g( j) = Mt − (i − j)m
n

t. (40)

If g(i) = g( j), then (i− j)m
n must be an integer. However,m

and n are mutually prime and 0< (i − j)< n.
Contradiction. This proves the first part of the lemma.

Further, from (40) it is clear that ifi − j is a multiple
of n, theng(i)−g( j) is the multiple oft. However, eachg(i)

is non-negative and less thant. Therefore the difference
in (40) should be 0.

We can now see thatg(1),g(2), . . . ,g(n) take all possible
valuesa

nt, 1+a
n t, . . . , n−1+a

n t, wherea is derived in (37). We
denote asg1 the smallest of these values. So,

g1 =
t
n
{gn

t
}. (41)

We denote the other values, in ascending order as

g2 = g1+
t
n
, · · · ,gn = g1+

(n−1)t
n

. (42)

Now, to prove Theorem4 we break an interval[0,T)
for largeT, that is a multiple ofAn, into M intervals of
lengthAn. Then, we can write

lim
T→∞

1
T

T
∫

0

L(g,s)ds= lim
M→∞

1
Mn

M

∑
f=1

An f
∫

An( f−1)

1
A

L(g,s)ds.

(43)
Further,

An f
∫

An( f−1)

1
A

L(g,s)ds=
n

∑
i=1

An( f−1)+iA
∫

An( f−1)+(i−1)A

1
A

L(g,s)ds. (44)

Each integral in the sum in the right hand side of (44) is
the mean queue length in an off-on interval from
An( f −1)+(i −1)A to An( f −1)+ iA. The g in (44) is
equal to one of theg(i)’s computed above and hence equal
to one of thegi ’s in (42).

Changingi between 1 andn with f fixed, we will run,
as shown in Lemma5, through all possible values of
g(1), g(2), . . . ,g(n) and hence through all possible values
of g1, g2, . . . ,gn. Each integral in the right-hand side
of (44) becomes by Theorem1 equal toL(gi) for somei,
and the right hand side in (44) becomes∑n

i=1L(gi) and is
independent of thef andM in (43). Thus the right hand
side in (43) is equal to1

n ∑n
i=1L(gi). ⊓⊔

Disclaimer
Certain commercial equipment, instruments, or materials
are identified in this paper in order to specify the
experimental procedure adequately. Such identification is
not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is
it intended to imply that the materials or equipment
identified are necessarily the best available for the
purpose.
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