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Abstract: The aim of the present paper is to study the periodic auto–oscillations of an electric circuit with periodic imperfections on
its variables composed by three condensers, one of them without charge, and two bobbins. We model this system by the Lagrangian
approach using the morphology of the Hill problem and the main tool used for proving the results is the averaging theory of dynamical
systems.
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1 Introduction and statement of the main
results

We consider a dynamical systems consistent in an electric
circuit composed by by three condensers and two bobbins
such that its variables have periodic imperfections, i.e. our
model is a perturbation of the ideal circuit, see Fig. 1. The
aim of our work is to study the periodic orbits, i.e.
auto–oscillations, produced by the system. For doing this
we shall use the averaging theory of dynamical systems,
see Appendix for more details on it. We have been
inspired by other works where these techniques have been
used for studying other perturbed dynamics problems, see
for instance [2,3,4,5,6,7,8,9,10].

We consider the Lagrangian formulation of the circuit,
using the morphology of the Hill problem,

L =
1
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(
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1+L2 q̇2
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whereqi are the charges andci are the capacities of the
condensers,i ∈ {1,2}. The variablesLi , i ∈ {1,2},
represent the the auto–inductions of the bobbins.c
represents the capacity of a third condenser without
charge.

If we make the change of variable:
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√
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Fig. 1: Circuit

Using the Legendre transformation, we obtain the
Hamiltonian:

H =
1
2

(

ẋ2+ ẏ2)+
1
c1

x2+
1
c2

y2+
1
c

xy

∗ Corresponding author e-mail:mangel.lopez@uclm.es

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070601


2106 M. T. de Bustos et al: On the Periodic Auto–Oscillations of an Electric...

Thus, our perturbed model has the following form:

ẋ= p1

ẍ+
2
c1

x+
1
c

y= εF1(t,x, ẋ,y, ẏ)

ẏ= p2

ÿ+
1
c

x+
2
c2

y= εF2(t,x, ẋ,y, ẏ)

(1)

where p1 = ∂L

∂ ẋ and p2 = ∂L

∂ ẏ . The dot denotes the
derivative with respect to the timet, the parameterε is
small and the smooth functionsF1 andF2, in general, are
periodic functions in the variablet and in resonancep : q
with some of the periodic solutions forε = 0, beingp and
q positive integers relatively prime.

The objective of this paper is to provide, using the
averaging theory, a system of nonlinear equations whose
simple zeros provide periodic solutions of the differential
system (1). In order to present our results we need some
preliminary definitions and notation.

The unperturbed system with four differential
equations of second order

ẋ= p1

ẍ=− 2
c1

x− 1
c

y

ẏ= p2

ÿ=−1
c

x− 2
c2

y

(2)

written as a differential system of first order in the four
variables(X1 = x, X2 = ẋ, X3 = y, X4 = ẏ),

Ẋ1 = X2

Ẋ2 =− 2
c1

X1−
1
c

X3

Ẋ3 = X4

Ẋ4 =−1
c

X1−
2
c2

X3

has a unique singular point at the origin with eigenvalues

±ω1i, ±ω2i

which are the roots of the polynomial

4c2−c1c2+2c2c1ω2+2c2c2ω2+c2c1c2ω4

wherec, c1andc2 ∈ R
+ andc1c2 < 4c2.

The frequenciesωi are given by

ω1 =

√

cc1c2

(

c(c1+c2)+
√

c2(c1−c2)2+c2
1c2

2

)

cc1c2
,

ω2 =

√

cc1c2

(

c(c1+c2)−
√

c2(c1−c2)2+c2
1c2

2

)

cc1c2

Note thatω2
1 −ω2

2 =
2
√

c2(c1−c2)2+c2
1c2

2
cc1c2

.

As usual we define that the ratio of the two
frequenciesωi andω j is non-resonantwith π if ωiπ/ω j
is not a rational number,i 6= j.

System (2) in the phase space(x, ẋ,y, ẏ) has two
planes passing through the origin filled of periodic
solutions with the exception of the origin. These periodic
solutions have periodsT1 = 2π/ω1 and T2 = 2π/ω2,
according they belong to the plane associated to the
eigenvectors with eigenvalues±ω1i or ±ω2i,
respectively. We shall study which of these periodic
solutions persist for the perturbed system (1) when the
parameter ε is sufficiently small and the perturbed
functions Fi , for i = 1,2, have period eitherpT1/q or
pT2/q, where p and q are positive integers relatively
prime.

We define the constantsφ andρ by

φ =
c2−c1

c1c2
, ρ = ω2

1 −ω2
2 ,

and the functions:
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(3)

where

F∗
1 (t) =

1
4cρ
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4
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A zero(X0∗
1 , X0∗

2 ) of the nonlinear system
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such that
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0
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∣

(X0
1 ,X

0
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6= 0,

is called asimple zeroof system (4).
The statement of our main result on the periodic

solutions of the differential system (1) which bifurcate
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from the periodic solutions of periodT1 of the
unperturbed system traveledp times is the following.

Theorem 1.1.Let p andq be positive integers relatively
prime and assume that the smooth functionsF1 andF2 of
the equations of motion of (1) are periodic in the variable
t of period pT1/q. We assume that the ratio of the
frequenciesω2/ω1 is not resonant withπ. Then forε 6= 0
sufficiently small and for every simple zero
(X0∗

1 ,X0∗
2 ) 6= (0,0) of the nonlinear system (4), the

perturbed system (1) has a periodic solution
(x(t,ε),y(t,ε)) tending to the periodic solution
(x(t),y(t)) = (σ1

1(t),σ3
1(t))|(X0

1 ,X
0
2 )=(X0∗

1 ,X0∗
2 ) of the

unperturbed system (2) traveledp times.

Theorem 1.1 is proved in section 2. Its proof is based
in the averaging theory for computing periodic solutions,
see Appendix I for more details on this technique.

An application of Theorem 1.1 is presented in the
following corollary, which will be proved in section 3.

Corollary 1.2. Let F1(t,x, ẋ,y, ẏ) = ẋ2 + ẏ2 and
F2(t,x, ẋ,y, ẏ) = sin(ω1t)(1 − ẋ2) + cos(ω1t)(x − ẏ) be
perturbed functions and that the ratio of the frequencies
ω2/ω1 is not resonant withπ. Then the system (1) for
ε 6= 0 sufficiently small has two periodic solutions
(x(t,ε),y(t,ε)) tending to the two periodic solutions
(x(t),y(t)) = (σ1

1 (t),σ3
1(t))|(X0

1 ,X
0
2 )=(X∗

1 ,X
∗
2 )

and

(x(t),y(t)) = (σ1
1(t),σ3

1(t))|(X0
1 ,X

0
2 )=(X∗

3 ,X
∗
4 )

of (2) when
ε → 0, where

(X∗
1 ,X

∗
2 ) =

(

0,±
√

1−c2φ(ρ −2φ)
3

)

and

(X∗
3 ,X

∗
4 ) =

(

±
√

1−c2φ(ρ −2φ),0
)

.

Corollary 1.2 will be proved in section 3.

Now we define the functions:

G
1
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0
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0
6 ) =

1
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where
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1
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with
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2(t),σ2

2(t),σ3
2(t),σ

4
2(t)), i = 1,2,

and
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−2cc2ω2

c2−c2 (ρ −2φ)
(X0

6 cos(ω2t)−X0
5 sin(ω2t))

σ2
2 (t) =−c(ρ −2φ)(X0

5 cos(ω2t)+X0
6 sin(ω2t))

σ3
2 (t) =

−2
ω2

(X0
6 cos(ω2t)−X0

5 sin(ω2t))

σ4
2 (t) = 2(X0

5 cos(ω2t)+X0
6 sin(ω2t))

Consider the nonlinear system

G
1
2 (X

0
5 ,X

0
6 ) = 0, G

2
2 (X

0
5 ,X

0
6 ) = 0. (5)

The statement of our main result on the periodic
solutions of the differential system (1) which bifurcate
from the periodic solutions of periodT2 of the
unperturbed system traveledp times is the following.

Theorem 1.3.Let p andq be positive integers relatively
prime and assume that the smooth functionsF1 andF2 of
the equations of motion of (1) are periodic in the variable
t of period pT2/q. We assume that the ratio of the
frequenciesω2/ω1 is not resonant withπ. Then forε 6= 0
sufficiently small and for every simple zero
(X0∗

5 ,X0∗
6 ) 6= (0,0) of the nonlinear system (5), the

perturbed system (1) has a periodic solution
(x(t,ε),y(t,ε)) tending to the periodic solution
(x(t),y(t)) = (σ1

2 (t),σ3
2(t))|(X0

5 ,X
0
6 )=(X0∗

5 ,X0∗
6 ) of the

unperturbed system (2) traveledp times.

Theorem 1.3 is proved in section 2.
In the next corollary an application of Theorem 1.3 is

given.

Corollary 1.4. Let F1(t,x, ẋ,y, ẏ) = sin(ω2t)(1+ x+ y)
andF2(t,x, ẋ,y, ẏ) = 1+ ẋ be perturbed functions and that
the ratio of the frequenciesω2/ω1 is not resonant withπ.
Then the system (1) for ε 6= 0 sufficiently small has one
periodic solution(x(t,ε),y(t,ε)) tending to the periodic
solution (x(t),y(t)) = (σ1

2(t),σ3
2(t))|(X0

5 ,X
0
6 )=(X0∗

5 ,X0∗
6 ) of

(2) whenε → 0, given by(X0∗
5 ,X0∗

6 ) =
(

0, −1
2

)

.

Corollary 1.4 will be proved in section 3.

2 Proof of the Theorems 1.1 and 1.3

Introducing the variables(X1,X2,X3,X4) = (x, ẋ,y, ẏ) we
can write the differential system (1) as a first-order
differential system defined inR4 in the following form

Ẋ1 = X2

Ẋ2 =− 2
c1

X1−
1
c

X3+ εF1(X1,X2,X3,X4)

Ẋ3 = X4

Ẋ4 =−1
c

X1−
2
c2

X3+ εF2(X1,X2,X3,X4)

(6)
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Note that the differential system (6) when ε = 0 is
equivalent to the differential system (2), called simply in
what follows theunperturbed system. When ε 6= 0 we
called it theperturbed system.

The change of variables

x = (x1,x2,x3,x4)→ X = (X1,X2,X3,X4)

given by
X = Bx, (7)

with

B=









0 −2cc2ω1
c2+c2(ρ−2φ) 0 −2cc2ω2

c2−c2(ρ+2φ)
c(ρ +2φ) 0 −c(ρ −2φ) 0

0 −2
ω1

0 −2
ω2

2 0 2 0









writes the linear part of the differential system (6) in its
real Jordan normal form, and this system in the new
variables(x1,x2,x3,x4) becomes

ẋ1 = ω1x2+ εF∗
1

ẋ2 =−ω1x1+ εF∗
2

ẋ3 = ω2x4+ εF∗
3

ẋ4 =−ω2x3+ εF∗
4

(8)

where

F∗
1 =

1
4cρ

[2F1+c(ρ −2φ)F2]

F∗
2 = 0

F∗
3 =

1
4cρ

[−2F1+c(ρ +2φ)F2]

F∗
4 = 0

with Fi = Fi(σ1,σ2,σ3,σ4), and

σ1 =− 2cc2ω1

c2+c2 (ρ −2φ)
x2−

2cc2ω2

c2−c2 (ρ +2φ)
x4

σ2 = c(ρ +2φ)x1−c(ρ −2φ)x3

σ3 =− 2
ω1

x2−
2

ω2
x4

σ4 = 2x1+2x3

Now, in the following lemma we characterize the
periodic orbits of the unperturbed system as a first step
for proving Theorems 1.1 and 1.3.

Lemma 2.1. The periodic solutions
(x1(t),x2(t),x3(t),x4(t)) of the differential system (8)
with ε = 0 are

(X0
1 cos(ω1t)+X0

2 sin(ω1t),X
0
2 cos(ω1t)−X0

1 sin(ω1t),0,0),
(9)

of periodT1,

(0,0,X0
5 cos(ω2t)+X0

6 sin(ω2t),X
0
6 cos(ω2t)−X0

5 sin(ω2t)),

of periodT2.

Proof. Since (8) for ε = 0 is a linear differential system
the proof follows easily. �

Proof of Theorem 1.1.Assume that the functionsF1 and
F2 of (1) are periodic int of period pT1/q with p andq
positive integers relatively prime. Then, we can consider
that the differential system (8) and the periodic solutions
(9) have the same periodpT1.

We apply Theorem 4.1 of Appendix I to the differential
system (8), and we use the notation introduced there. Note
that system (8) can be written in the form of system (10)
taking

x =







x1
x2
x3
x4






,G0(t,x) =







ω1x2
−ω1x1
ω2x4
−ω2x3






,

G1(t,x) =







F∗
1

F∗
2

F∗
3

F∗
4






,G2(t,x,ε) =







0
0
0
0







Now we shall study what periodic solutions of the
unperturbed system (8) with ε = 0 of the type (9) persist
as periodic solutions for the perturbed one forε 6= 0
sufficiently small.

We start with the description of the different elements
which appear in the statement of Theorem 4.1 for the
particular case of the differential system (8). Thus, we
have thatΩ = R

4, k = 2 andn = 4. Now, let r1 > 0 be
arbitrarily small and letr2 > 0 be arbitrarily large. LetV
be the open and bounded subset of the planex3 = x4 = 0
of the form

V = {(X0
1 ,X

0
2 ,0,0) ∈ R

4 : r1 <
√

(X0
1 )

2+(X0
2 )

2 < r2}.

As usual Cl(V) denotes the closure ofV. If α = (X0
1 ,X

0
2 ),

then we identify V with the set
{α ∈ R

2 : r1 < ||α|| < r2}, being || · || the Euclidean
norm in R

2. The function β : Cl(V) → R
2 is

β (α) = (0,0). Therefore, for our system we have

Z = {zα = (α, β (α)), α ∈ Cl(V)}=

= {(X0
1 ,X

0
2 ,0,0) ∈ R

4 : r1 ≤
√

(X0
1 )

2+(X0
2 )

2 ≤ r2}.

We are going to consider now, for each zα ∈ Z , the
periodic solution x(t,zα) = (X1(t),X2(t),0,0) given by (9)
of periodpT1.

Computing the fundamental matrixMzα (t) of the
linear differential system (8) with ε = 0 associated to the
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pT1−periodic solution zα = (X0
1 ,X

0
2 ,0,0) such that

Mzα (0) be the identity ofR4, we get

Mzα (t) = M(t) =

=







cos(ω1t) sin(ω1t) 0 0
−sin(ω1t) cos(ω1t) 0 0

0 0 cos(ω2t) sin(ω2t)
0 0 −sin(ω2t) cos(ω2t)






.

Note that the matrixMzα (t) does not depend on the
particular periodic solution x(t,zα , 0). Since the matrix

M−1(0)−M−1(pT1) =

=











0 0 0 0
0 0 0 0

0 0 2sin2
(

pπω2
ω1

)

sin
(

2pπω2
ω1

)

0 0−sin
(

2pπω2
ω1

)

2sin2
(

pπω2
ω1

)











satisfies the assumptions of statement (ii) of Theorem 4.1
because the determinant
∣

∣

∣

∣

∣

∣

2sin2
(

pπω2
ω1

)

sin
(

2pπω2
ω1

)

−sin
(

2pπω2
ω1

)

2sin2
(

pπω2
ω1

)

∣

∣

∣

∣

∣

∣

= 4sin2
(

pπω2

ω1

)

6= 0,

because the ratio of the frequencies is non-resonant withπ.
In short, all the assumptions of Theorem 4.1 are satisfied
by the system (8).

For our system the mapξ : R4 → R
2 has the form

ξ (x1,x2,x3,x4) = (x1,x2). Calculating the function

G1(X
0
1 ,X

0
2 ) = G (α) =

= ξ
(

1
pT1

∫ pT1

0
M−1

zα (t)G1
1(t, x(t,zα ,0))dt

)

,

we obtain that

G1(X
0
1 ,X

0
2 ) = (G 1

1 (X
0
1 ,X

0
2 ),G

2
1 (X

0
1 ,X

0
2 )),

where the functionsG k
1 , for k= 1,2, are the ones given in

(3). Then, by Theorem 4.1 we have that for every simple
zero(X0∗

1 ,X0∗
2 ) ∈ V of the system of nonlinear functions

(4) we have a periodic solution(x1,x2,x3,x4)(t,ε) of
system (8) such that

(x1,x2,x3,x4)(0,ε)→ (X0∗
1 ,X0∗

2 ,0,0) whenε → 0.

Going back through the change of coordinates (7) we
get a periodic solution(x1,x2,x3,x4)(t,ε) of system (8)
such that







x1(t,ε)
x2(t,ε)
x3(t,ε)
x4(t,ε)






→











−2cc2ω1
c2+c2(ρ−2φ) (X

0∗
2 cos(ω1t)−X0∗

1 sin(ω1t))

c(ρ +2φ)(X0∗
1 cos(ω1t)+X0∗

2 sin(ω1t))
−2
ω1

(X0∗
2 cos(ω1t)−X0∗

1 sin(ω1t))
2(X0∗

1 cos(ω1t)+X0∗
2 sin(ω1t))











whenε → 0.

Consequently we obtain a periodic solution(x,y)(t,ε)
of system (1) such that

(x,y)(t,ε)→
( −2cc2ω1

c2+c2(ρ−2φ) (X
0∗
2 cos(ω1t)−X0∗

1 sin(ω1t))
−2
ω1

(X0∗
2 cos(ω1t)−X0∗

1 sin(ω1t))

)

whenε → 0. This completes the proof of the theorem.�
Proof of Theorem 1.3.The proof is analogous to the proof
of Theorem 1.1 changing the roles ofT1 for T2. �

3 Proof of the two corollaries

Proof of Corollary 1.2. Under the assumptions of
Corollary 1.2, the nonlinear system (4) becomes

G
1
1 (X

0
1 ,X

0
2 ) =

−X0
1 X0

2 (ρ +2φ)
4ρ

G
2
1 (X

0
1 ,X

0
2 ) =

−2(1+(X0
1 )

2+3(X0
2 )

2)φ
8ρ

−

− (X0
1 )

2+3(X0
2 )

2−1
8

.

This system has the following four solutions

(X0∗
1 ,X0∗

2 ) =

(

0,±
√

1−c2φ(ρ −2φ)
3

)

,

(X0∗
3 ,X0∗

4 ) =

(

±
√

1−c2φ(ρ −2φ),0
)

.

Note that the solutions which differs in a sign are
different initial conditions of the same periodic solution
of the system (2). Moreover, since

det

(

∂ (G 1
1 ,G

2
1 )

∂ (X0
1 ,X

0
2 )

)∣

∣

∣

∣

(X0∗
1 ,X0∗

2 )

=
1

4c2ρ2 6= 0,

and

det

(

∂ (G 1
1 ,G

2
1 )

∂ (X0
1 ,X

0
2 )

)∣

∣

∣

∣

(X0∗
3 ,X0∗

4 )

=
−1

4c2ρ2 6= 0,

these solutions are simple. Finally, by Theorem 1.1 we
only have two periodic solutions for the system of this
corollary. �

Proof of Corollary 1.4. Under the assumptions of
Corollary 1.4, the nonlinear system (5) becomes

G
1
2 (X

0
5 ,X

0
6 ) =− X0

5

2cρ
,

G
2
2 (X

0
5 ,X

0
6 ) =−1+2X0

6

4cρ
.

This system has the following solution

(X0∗
5 ,X0∗

6 ) = (0,
−1
2

).
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Moreover, since

det

(

∂ (G 1
2 ,G

2
2 )

∂ (X0
5 ,X

0
6 )

)∣

∣

∣

∣

(X0∗
5 ,X0∗

6 )

=
1

4c2ρ2 6= 0

this solution is simple. Finally, by Theorem 1.3 we only
have one periodic solution for the system of this corollary.
�

4 Appendix: Basic results on averaging
theory

In this appendix we present the basic result from the
averaging theory that we shall need for proving the main
results of this paper.

We consider the problem of the bifurcation of
T−periodic solutions from a differential system of the
form

ẋ(t) = G0(t,x)+ εG1(t,x)+ ε2G2(t,x,ε), (10)

with ε 6= 0 sufficiently small. Here the functions
G0,G1 : R×Ω → R

n and G2 : R×Ω × (−ε0,ε0) → R
n

areC 2 functions,T−periodic in the first variable, andΩ
is an open subset ofRn. The main assumption is that the
unperturbed system

ẋ(t) = G0(t,x), (11)

has a submanifold of periodic solutions. A solution of this
problem is given using the averaging theory.

Let x(t,z,ε) be the solution of the system (11) such
that x(0,z,ε) = z. We write the linearization of the
unperturbed system along a periodic solution x(t,z,0) as

ẏ = DxG0(t,x(t,z,0))y. (12)

In what follows we denote by Mz(t) some
fundamental matrix of the linear differential system (12),
and byξ : Rk ×R

n−k → R
k the projection ofRn onto its

first k coordinates; i.e.ξ (x1, . . . ,xn) = (x1, . . . ,xk).
We assume that there exists ak-dimensional

submanifoldZ of Ω filled with T−periodic solutions of
(11). Then an answer to the problem of bifurcation of
T−periodic solutions from the periodic solutions
contained inZ for system (10) is given in the following
result.

Theorem 4.1.LetV be an open and bounded subset ofR
k,

and letβ : Cl(V) → R
n−k be aC 2 function. We assume

that

(i) Z = {zα = (α,β (α)),α ∈Cl(V)}⊂Ω and that for
each zα ∈Z the solution x(t,zα) of (11) is T-periodic;

(ii) for each zα ∈ Z there is a fundamental matrix
Mzα (t) of (12) such that the matrixM−1

zα (0)−M−1
zα (T)

has in the upper right corner thek × (n− k) zero
matrix, and in the lower right corner a
(n−k)× (n−k) matrix ∆α with det(∆α) 6= 0.

We consider the functionG : Cl(V)→ R
k

G (α) = ξ
(

1
T

∫ T

0
M−1

zα (t)G1(t,x(t,zα ,0))dt

)

.

If there exists a ∈ V with G (a) = 0 and
det((dG /dα)(a)) 6= 0, then there is aT−periodic
solution x(t,ε) of system (10) such that x(0,ε) → za as
ε → 0.

For a proof of Theorem 4.1 see Malkin [11] and
Roseau [12], or [1] for shorter proof.
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