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Abstract: The aim of the present paper is to study the periodic auto—oscillations déemi@circuit with periodic imperfections on

its variables composed by three condensers, one of them withouteglzend) two bobbins. We model this system by the Lagrangian
approach using the morphology of the Hill problem and the main tool wwgardving the results is the averaging theory of dynamical
systems.
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1 Introduction and statement of the main we obtain:

results $:}(X2+y2)—1x2—£y2—}xy
We consider a dynamical systems consistent in an electric 2 G C2 ¢
circuit composed by by three condensers and two bobbinbeing, fori = 1,2,
such that its variables have periodic imperfections, iue. o

model is a perturbation of the ideal circuit, see Fig. 1. The L = i_ + i_
aim of our work is to study the periodic orbits, i.e. ¢ Lc o Lic
auto—oscillations, produced by the system. For doing thisgnd
we shall use the averaging theory of dynamical systems, 1 2
see Appendix for more details on it. We have been c c¢/Lil
inspired by other works where these techniques have been
used for studying other perturbed dynamics problems, see
for instance 2,3,4,5,6,7,8,9,10].
We consider the Lagrangian formulation of the circuit, L, L,
using the morphology of the Hill problem, m
Cq C C,
1 o o @ @& (+g)’ T T T
z:E(quhqu%)—g:i—g:;—(q Eq) |

whereq; are the charges ang are the capacities of the Fig. 1: Circuit
condensers,j € {1,2}. The variablesL;, i € {1,2},
represent the the auto—inductions of the bobbios.

represents the capacity of a third condenser without Using the Legendre transformation, we obtain the

charge. iltonian:
If we make the change of variable: Hamiltonian: 1 1 1 1
— (w2 T2 = =
x=vLiaq, y=vLlp, %_2()( +y2)+clx +C2yz+cxy
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Thus, our perturbed model has the following form:

X=p1

L2 1 o

X+ —X+ Y= gFl(tvxaxvyﬂy)

C1 C (1)
y=p2
L1 2 oo
y+ —X+ —y= EFZ(I7X7X7Y7Y>
C Co

0.7

where p; = %2 and p = %7, The dot denotes the
derivative with respect to the timg the parametee is
small and the smooth functiog andF,, in general, are
periodic functions in the variableand in resonance: q
with some of the periodic solutions fer= 0, beingp and

g positive integers relatively prime.

Note thato)f _ (",22 — 2—\/(:2((470%%

CC1C

As usual we define that the ratio of the two
frequenciesy and wj is non-resonantvith 1T if w 77/ w
is not a rational number# |.

System ®) in the phase spacéx,x,y,y) has two
planes passing through the origin filled of periodic
solutions with the exception of the origin. These periodic
solutions have periodd; = 2m/w; and T, = 211/ wy,
according they belong to the plane associated to the
eigenvectors with eigenvalues+wi or +wpi,
respectively. We shall study which of these periodic
solutions persist for the perturbed systet) when the
parametere is sufficiently small and the perturbed
functions F, for i = 1,2, have period eithepT;/q or
pT2/q, where p and q are positive integers relatively

The objective of this paper is to provide, using the ime.

averaging theory, a system of nonlinear equations whos
simple zeros provide periodic solutions of the differelntia
system L). In order to present our results we need some

preliminary definitions and notation.

The unperturbed system with four differential
equations of second order
X=p1
o 2, L,
- C c
Lt 2)
y=p2
12
y=-c czy

written as a differential system of first order in the four

variables(Xy = X, Xo =X, Xz =Y, X4 =),

X1:X2

- 2 1

Xo = — X — =X
2 A

X3=X4

- 1 2
:——X——

X4 K cz)%

has a unique singular point at the origin with eigenvalues

+wi, Twpi
which are the roots of the polynomial

4¢? — c1Cp + 262017 + 2C°Crw? + C2CiCow”

We define the constanigandp by

-G
C1C2

) p= OJf - (’0227
and the functions:

130 w0 1 /Ph

GOEX) = — [ cosentFy (1,
pT1 Jo 3)

.pT

7009 = = [ sin(winFy (tdt,
pTL Jo

where 1
Fi(t) = acp [2F1+c(p—2¢9) R

with
R =FR(ai(t),07(t), 0(t), 07 (t)),i = 1,2,
and
—2CC .
ai(t) 29 (xQcog it) — XPsin(ent))

T2+ (p - 29)
of(t) = c(p+29) (XY cosat) + XJsin(awnt))

03(t) = —2(xcoseant) - XPsin(et)
0 (t) = 2(X cog{wnt) + X sin(ant))

A zero (X%, X0%) of the nonlinear system

wherec, ¢; andc, € Rt ande;c, < 4¢2. GLHXP, X)) =0, GR(X,X3) =0, (4)
The frequenciesy are given by such that
\/cclcz (c(cl +C2) + \/cz(cl — )%+ cfc%) det (a(gll, 42) ) L0
= 0 ywO ’
“ caicy ’ O X2) /1 x0,x0)~(x0", x9")
2 2. 22 is called asimple zermf system §).
ce1C2 (C(Cl +Co) — \/C (CL—Co)*+Cf 2) The statement of our main result on the periodic
W = CC1Co solutions of the differential systeni)( which bifurcate
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from the periodic solutions of periodl; of the
unperturbed system travel@dimes is the following.

Theorem 1.1.Let p andq be positive integers relatively
prime and assume that the smooth functiBpsindF, of
the equations of motion oflf are periodic in the variable
t of period pTi/g. We assume that the ratio of the
frequenciesw/wy is not resonant withit. Then fore # 0
sufficiently small and for every simple zero
(X%, X) # (0,0) of the nonlinear system4), the

perturbed system 1f has a periodic solution
(x(t,€),y(t,e)) tending to the periodic solution
(XOY1) = (1), 00| xo x0-x0 xo-) Of  the

unperturbed systen2) traveledp times.

Theorem 1.1 is proved in section 2. Its proof is based
in the averaging theory for computing periodic solutions,

see Appendix | for more details on this technique.

An application of Theorem 1.1 is presented in the

following corollary, which will be proved in section 3.

Corollary 1.2. Let Fi(t,x,xy,y) = % + y? and
Fa(t,x,%,y,y) = sin(wit)(1 — x%) + cogawit)(x — y) be

perturbed functions and that the ratio of the frequenciessufficiently

w/wy is not resonant withit. Then the systemlj for

€ # 0 sufficiently small has two periodic solutions
(x(t,€),y(t,€)) tending to the two periodic solutions
(x(t),y(D)) (010, 05)) | x0 x0)-xi xg)  and
(X():Y(1) = (92(1), G3() | (x0 x0)—xx;) OF (2) when

€ — 0, where

—c2 _
(X, X5) = (O,i 1-Cop-29) C‘pép 2"”) and

(X3, %) = (i\/m,o>.

Corollary 1.2 will be proved in section 3.

Now we define the functions:
130 0 1 (PR .
BOGXE) = — [ codwFs (et
pT2 Jo
2/v0 0 1 (PR %
G008 X8) = — [ sinwtFs Ot
pT2 Jo
where

[—2F1+c(p+29)F)]
with

F= I:I(O-Zl(t)aog(t)’ag(t)’o-g(t))7 =12

and
—2CCr .
a3 (t) = m(xé)cos(@t) —Xg'sin(at))
03 (t) = —c(p — 2) (X cogwpt) + Xg sin(awt))
G3(t) = - (xgcoswnt) — XEsin(a)
03 (t) = 2(X cogwat) + Xg sin(cupt) )

Consider the nonlinear system

gzl(xg,xg)zo, gZZ(xgaxg):O )

The statement of our main result on the periodic
solutions of the differential systeni)( which bifurcate
from the periodic solutions of periodl, of the
unperturbed system travelgdimes is the following.

Theorem 1.3.Let p andq be positive integers relatively
prime and assume that the smooth functibpsind, of
the equations of motion ofl] are periodic in the variable
t of period pT,/q. We assume that the ratio of the
frequenciesw,/w; is not resonant witht. Then fore # 0
small and for every simple zero
(X9 X&) # (0,0) of the nonlinear system5), the

perturbed system 1f has a periodic solution
(x(t,€),y(t,e)) tending to the periodic solution
(x(t),y() = (07(1), 03(1)|x0 x0)—xo+ x¢) Of the

unperturbed systen2) traveledp times.

Theorem 1.3 is proved in section 2.

In the next corollary an application of Theorem 1.3 is
given.
Corollary 1.4. Let Fi(t,x,X,Y,y) = sin(wpt)(1L+ x+Y)
andR(t,x,X,y,y) = 1+ x be perturbed functions and that
the ratio of the frequencies,/w; is not resonant withr.
Then the systemlf for € # 0 sufficiently small has one
periodic solution(x(t, €),y(t,€)) tending to the periodic
solution (x(t),y(t)) = (azl(t),og’(t))|(xg3xg):(xggxg*> of
(2) whene — 0, given by(X2*, X¥) = (0,5}).

Corollary 1.4 will be proved in section 3.

2 Proof of the Theorems 1.1 and 1.3

Introducing the variable$Xi, Xp, X3, X4) = (X,X,Y,y) we
can write the differential systeml) as a first-order
differential system defined iR* in the following form

XJ_ = X2

. 2 1

X2 — _ixl — 7X3—|—£F1(X1,X23X3ax4)

. ] ¢ (6)
X = Xa

. 1 2
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Note that the differential systen6)(whene =0 is
equivalent to the differential systerl)( called simply in
what follows theunperturbed systemWhen e # 0 we
called it theperturbed system

The change of variables

X = (Xl,Xg,Xg,X4) - X = (Xl,Xz,Xg,XzL)

given by
X = Bx, @
with
—2CCw —2CCo
C2+c2(p—20) c2—C?(p+20)
B— | clP+29) 0 —c(p—29)
0 =2 0 =2
W W
2 0 2 0

writes the linear part of the differential syste®) {n its

of periodTy,

(0,0,X5 cos{yt) +Xg sin(wt ), Xg cog wat) —Xg sin(awst)),

of periodTs,.
Proof. Since @) for ¢ = 0 is a linear differential system
the proof follows easily. |

Proof of Theorem 1.1.Assume that the functiors, and

F, of (1) are periodic int of period pTy/q with p andq
positive integers relatively prime. Then, we can consider
that the differential systenB) and the periodic solutions
(9) have the same periaall;.

We apply Theorem 4.1 of Appendix | to the differential
system 8), and we use the notation introduced there. Note
that system&) can be written in the form of systemi (@)
taking

real Jordan normal form, and this system in the new

variables(x, X2, X3, X4) becomes

X1 = wiXo + €F
Xo = —wiX1 + €F;
X3 = WpXq + €F3
X4 = — X3+ EF;

(8)

where

1
Fl = [2FL+c(p—29) )]

4cp
FF=0
y 1
Fs =@[—2F1+C(p+2<p)Fz]
=0

with F = F(agt, 02 0% 0%), and

1 2CCo Wy 2Ccup

T ot (p—20) 2 - (p+29)
0’ =c(p+29)x1—c(p—29)x

X1 W1 X2
X = 2 ,Go(t,X) = ‘a‘;’lxi‘l :
X4 — X3
! 0
Gi(t,x) = E;; ,Ga(t,x, &) = 8

Now we shall study what periodic solutions of the
unperturbed systen8) with € = 0 of the type 9) persist
as periodic solutions for the perturbed one et 0
sufficiently small.

We start with the description of the different elements
which appear in the statement of Theorem 4.1 for the
particular case of the differential syster®).(Thus, we
have thatQ = R*, k=2 andn = 4. Now, letr; > 0 be
arbitrarily small and let, > 0 be arbitrarily large. LeV
be the open and bounded subset of the plane x4 =0
of the form
V = {(X2,%9,0,0) e R* : r1 < 1/(X?)2 4+ (X9)2 < rp}.
As usual C[V) denotes the closure . If a = (X?,XJ),
then we identify V with the set
{a € R? : ry < ||a|| <z}, being|| - || the Euclidean
norm in R2  The function B: CI(V) — R? s
B(a) = (0,0). Therefore, for our system we have

Now, in the following lemma we characterize the 2 ={zq = (a, B(a)), a € CI(V)} =

periodic orbits of the unperturbed system as a first step

for proving Theorems 1.1 and 1.3.
Lemma 2.1 The periodic
(x1(t),x2(t),x3(t),xa(t)) of the differential system 8}
with € =0 are

(XP cog wnt) +X2sin(ct), X2 cog wrt) — XY sin(ct), 0,0),

9)

solutions

={(XP,X2,0,0) € R* : 1y <1/ (X9)2+ (X9)2 < rp}.

We are going to consider now, for each ¢ 2, the
periodic solution Xt,zq ) = (X1(t), X2(t),0,0) given by Q)
of period pT;.

Computing the fundamental matrik,, (t) of the
linear differential system8) with € = 0 associated to the

© 2013 NSP
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pTi—periodic solution z = (X?,X9,0,0) such that Consequently we obtain a periodic solutioqgy)(t, €)
Mg, (0) be the identity ofR*, we get of system {) such that
- = 2000 (O« _ X0 gj
Mz, (t) = M(t) = ()6 (Fip g (X cosent) - X sinwt)
cogwit) sin(wit) 0 0 o, (X" cogant) — X7" sin(t))
—sin(nt) coq wit) 0 0 )
= 0 0 cogawst) sin(awst) |- whene — 0. This completes the proof of the theorernl
0 0  —sin(wpt) coqwyt) Proof of Theorem 1.3.The proof is analogous to the proof

of Theorem 1.1 changing the rolesTffor T. O
Note that the matriXM,, (t) does not depend on the
particular periodic solution(x,zy, 0). Since the matrix

1 . 3 Proof of the two corollaries
M™(0) —M™"(pTa) =

00 0 0 Proof of Corollary 1.2. Under the assumptions of
00 0 0 Corollary 1.2, the nonlinear syster) becomes
= Py 2priap
00 2siff (252 sin( 252 G1(x0.x9) = XX (P +29)
OO—sm(Zp’T’*’Z) 25|r?(p"‘*’2) 1A 72 4p
—2(1+ (X9)2 +3(X9)?

satisfies the assumptions of statement (ii) of Theorem 4.1 GEHXP,X3) = Gl 1; o)
because the determinant P

(XD H3(X9)* -1
_ Y@ 8 '
4SII’12< o >7é0,

This system has the following four solutions

25|r12(p"“’2) sin(Zp"‘*&>
—sm(z""“’Z) 2sirf (?’?T“’Z)

because the ratio of the frequencies is non-resonantwith (X9 x9) = [ 0,+ 1—c?o(p —2¢)
In short, all the assumptions of Theorem 4.1 are satisfied 172 ’ 3 ’
by the system@).

For our system the map : R* — R? has the form (XQ*, X9%) = (i« /1—02(p(p—2(p),0> .

&(X1,%2,X3,Xa) = (X1, X%2). Calculating the function

& (X0 X9) — @ () — Note that the solutions which differs in a sign are
1(X3,Xz) =¥ (a) = different initial conditions of the same periodic solution

1 [PT: .
s </ 1M;al(t)Gi(t, x(t,za,O))dt> 7 of the systemZ). Moreover, since

T
pliJo | (1, 92) 1 o
we obtain that a(x9,x9) X0 ) T acp2 T
gl(Xf,Xg) = (gll(vaxé)%glz(xfaxé]))» and
where the function&¥, for k = 1,2, are the ones given in . (9L, 92) - 0
(3). Then, by Theorem 4.1 we have that for every simple € d(Xf,Xg) (X0 X0 ~ 4c2p? #0,
3

zero (X%, X9*) € V of the system of nonlinear functions

(4) we have a periodic solutiorix;, Xz, X3, Xa)(t,€) of  these solutions are simple. Finally, by Theorem 1.1 we
system §) such that only have two periodic solutions for the system of this

0 %% %% 0.0) wh 0 corollary. O
(x1,%2,%3,%) (0, €) = (%17, %", 0,0) whene — 0. Proof of Corollary 1.4. Under the assumptions of

Going back through the change of coordina®swe Corollary 1.4, the nonlinear systers) (becomes
get a periodic solutior{xy, X2, X3,Xa)(t, &) of system 8)

X
such that 73X, x9) = ~505"
—2CC Wy O Ok of
xa(t,€) G Ly (X codant) — X{ s_m(wlt)) G2(x0 X8)=—1+2Xg
ngt,fg R c(p+2qo) (Xl*cos(wlt)érxg* sin(ct)) 7275 4cp
x3(t, € X3* coqant) — X{* sin( ot
X4(t, €) ( & qeat) o (b)) This system has the following solution
’ (X1 cog wrt) + X9* sin(ant))
s s _1
whene — 0. (X87Xg)=( ,7)-
© 2013 NSP
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Moreover, since We consider the functio : CI(V) — Rk
0(94+,92) 1 1T
det (22) -1 o Y(a) =& ( [ M e 2 ,o>>dt) .
0(X507X60) (Xg*Xg*) 4C2p2 T 0 Zq a
this solution is simple. Finally, by Theorem 1.3 we only If there exists a € V with ¢(a) = 0 and
have one periodic solution for the system of this corollary. det((d¥/da)(a)) # O, then there is aT—periodic
O solution Xt,€) of system 10) such that X0,¢) — z5 as
e—0.
theory Roseau12], or [1] for shorter proof.

In this appendix we present the basic result from the
averaging theory that we shall need for proving the mainACknowledgements
results of this paper.
We consider the problem of the bifurcation of This work has been partially supported by MCYT/FEDER
T—periodic solutions from a differential system of the grant number MTM2011-22587.
form The authors want to express their acknowledgment to
Prof. Juan Luis Gafa Guirao and Prof. Juan Antonio Vera
X(t) = Go(t,X) + £Gy(t,X) + £°Ga(t, X, £), (10)  for their encouragement and guidance during the present

: - . research.
with ¢ # 0 sufficiently small. Here the functions

Gop,G1: RxQ - R"andG;: R x Q x (—&,&) — R"
are%? functions, T —periodic in the first variable, an@

is an open subset &". The main assumption is that the
unperturbed system
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