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Abstract: We presenta certaingeometricalinterpretation of the natural numbers, where these numbers appear asjoint products of 5-
and 3-multipleslocated at specified positions in arevolving chamber. Numbers without factors 2, 3 or 5 appear at one ofeight such
positions, after a specified amount of rotations of the chamber. Our approach determines the sets of rotations constitutingprimesat the
respective eight positions, as thecomplementsof the sets of rotations constitutingcomposite numbersat the respective eight positions.
These sets of rotations constituting composite numbers are exhibited instrict rotation regularitiesfrom a basic 8×8-matrix of the
mutual productsoriginating from the eight prime numbers located at the eight positions in theoriginal chamber. These regularities
are expressed in relation to the multiple112 as an anchoringreference point. Thecompleteset of composite numbers located at the
eight positions is exposed aseight such sets of eight series. Each of the series iscompletelycharacterized byfour simple variables
when compared to a reference series anchored in112. Ad negativothis also represents anexactandcompletegeneration of allprime
numbersas the union of the eight complement sets for these eight non-prime sets of eight series. By this an exact and completepattern
in composite numbers, as well as in prime numbers, are exhibited in themaximumsense of a pattern.
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1. Intr oduction

Thequest of finding patterns in order to generate and pre-
dict the occurrences of prime numbers has represented a
mathematical riddle from ancient times and is still much
cloaked in mystery. Leonhard Euler believed possible or-
der in the sequence of prime numbers to remain ”a mys-
tery into which the mind will never penetrate”. Paul Erdos
commented that ”it will be another million years, at least,
before we understand the primes”. Marcus du Sautoy has
stated that ”if the Riemann Hypothesis is true, it explains
why there are no strong patterns in the primes”. In some
distinction to these more pessimistic opinions, Don Zagier
in 1975 noted the paradox of prime numbers ”seeming to
obey no other law than that of chance” while at the same
time to ”exhibit stunning regularity, that there are laws
governing their behavior, and that they obey these laws
with almost military precision” (Havil 2003:171).

A significant contribution towards discovering a pat-
tern in distribution of prime numbers was made in 1795

by Karl Friedrich Gauss who proved that the amount of
primes p(n) until a natural number n followed the approx-
imation law p(n)≈n/ln(n), reaching equality as limit from
infinite increase in n. This implied a quite regular logarith-
mic distribution of prime numbers. Wolf (1997) found that
the number of primes in successive intervals of length216

was distributed according to the self-similar 1/f behaviour
known from complexity science. Some general discussion
of fractal patterns in prime distributions was offered by
Carlo (2010). Some elaboration of Gauss’ discovery, con-
gruent with global scaling theory, was presented by Müller
(2000,2009). Luque and Lacasa (2009) further found that
the statistical distribution of leading digits of prime num-
bers followed a first-digit Benfords law with striking pre-
cision.

Stretching beyond probability patterns of prime distri-
butions Balog (1990) proved that there are infinitely many
3-by-3 squares of distinct primes where each row and each
column forms an arithmetic progression, as well as anal-
ogous aritmethic progression for infinitely many 3-by-3-
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224 SteinE. Johansen : Unveiling of Geometric Generation of Composite Numbers

by-3 cubesof distinct primes where each row and each
column and each vertical line forms an arithmetic progres-
sion. Green and Tao (2007,2008) expanded Balog’s ap-
proach and found certain finite sequences of primes. They
showed that there are infinitely many k-term arithmetic
progressions of primes, i.e. that there exist infinitely many
distinct pairs of nonzero integers and such that a, a + d,..., a
+ (k -1)d are all primes. Granville (2008) presented some
generalizing contemplation of these results, and this was
offered some further discussion by Sorensen (2008).

The presentation of the Ulam spiral (Stein et al. 1964,1967)
indicated a curious tendency for prime numbers to dis-
tribute in a diagonal pattern when arranged in a rectan-
gular grid spiraling out. From later inspection of different
gaps between consecutive prime numbers, the most fre-
quent gap was found to be of size 6, the so-calledjumping
champion, and an even more striking probability regular-
ity was found formultiplesof 6 (Wolf 1996; Odlyzko et al.
1999). Kumar et al. (2003) found from statistic-empirical
examinations of prime numbers that gapsbetweengaps (by
them called ”increments”) followed an exponential distri-
bution with superposed periodic behavior of period three,
similar to previously reported period six oscillations for
first- order gaps, with the frequency of the increases sig-
nificantly lower for multiples of 6 than for 6±k2. Szpiro
(2004) investigated also gaps of higher order than sec-
ond, and found related and striking statistical regularities
at such orders as well.

Boeyens (2004) arranged natural numbers along a spi-
ral with period 24. All prime numbers larger than 3 are in-
cluded in the form 6n±1, and thus can be connected by ra-
dial lines to form eight arms (the so-calledprime-number
cross) in the spiral. Boyens demonstrated that this strong
tendency to symmetric periodicity in the prime distribution
was remarkably similar to a hidden symmetry in the peri-
odicities of nuclear synthesis, of chemical elements, and of
DNA. This indicated that said pattern in prime number dis-
tribution expressed a ”generalized, closed periodic law” of
nature, which might suggest the existence of a still hidden
prime number pattern of even stricter regularity closing the
possibility space for occurrences of primes considered ran-
dom.

The studies and results referred above proved or sug-
gested different kinds of prime number patterns in cer-
tain combinations between probability distributions and
non-random algorithmic determinations, with a tendency
to also increase insights into the last aspect. In this per-
spective the study of Hibbs (2008) may be of special inter-
est. Hibbs studied the development of second-order gaps
between primes, and found this distribution to develop in
a spiraling manner, as well as fractally and recursively,
more specifically as indicating a certain double-helix pat-
tern. On the one hand Hibbs’ study thus was in agreement
with some other crucial results from research into prime
number patterns, while on the other hand his study did not
have to apply probability mathematics. Therefore, Hibbs’
study might be interpreted as a step towards the possible

discovery of an exact pattern generating the complete set
of prime numbers.

A step in the same direction was also provided by Khu-
rana and Koul (2005) who proved, by a quite simple ap-
proach, that strictly regular patterns of prime numbers also
exist absolutely forsmall intervals (including coverage of
some large primes), and presented a novel deterministic
(and quite computer efficient) primality test for such. In
2002 Agrawal et al. (2004) had established, as the first,
a polynomial time deterministic algorithm to decide with
certainty whether a number is prime. They also had proved
that thisAKS primalitytest vas universally valid. Johansen
(2006) presented another deterministic primality test, re-
lated to Fibonacci reformulation of number theory (Jo-
hansen 2011), the so-calledFibonacci neighbour primality
test, but without providing any proof for the universal va-
lidity of the test.

These developments indicated the possible existence
of an exact and complete pattern of prime numbers exlud-
ing all uncertainties connected to probability treatments.
A possible approach to achieve such a result was argued
in Johansen (2006). A complete treatment and deductive
proof establishing said achievement was presented in Jo-
hansen (2010), referred to in Rapoport (2011) as a ”re-
markable work”. We will present some key points in this
approach, followed by some discussion of the implied prime
number pattern in relation to informatics.

2. Revolving generation of complete and
exact pattern of composite numbers vs.
prime numbers

We start out from a rewrite of natural numbers as com-
bined multiples of the numbers 5 and 3:

(1) N = m5 + n3; m>0, n>0

Obviously, this split code 5:3 can be performed to cover
any sequence of whole numbers by simply lowering the
bottom values of m and n.

The profound significance of the split code 5:3 in ”Na-
ture’s code” is acknowledged and argued in the pioneering
monumental work of Peter Rowlands (2007), and also with
some stated connection (Rowlands 2007: 530, 550) to the
contribution in Johansen (2006). Johansen (2011), with re-
lated references, including Strand (2011), presents further
results and contemplations reinforcing and clarifying this
significance.

From (1) we construct the following matrix:
There exist three possibilities to make a cut in the ma-

trix in such a way that every number shows up only once.
We denote these three bands of numbers by means of colour
terms:

1.The Blue Band, corresponding to the five upper rows.
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Figure1 The Revolving Chamber

2.The Red Band, corresponding to the three left columns.
3.The Violet Band, corresponding to a double diagonal

field unfolding from first six columns of The Blue Band,
or from first ten rows of The Red Band.

There can not be any prime numbers in the row for
n=5, nor in the columns that are multiples of m=3. Ignor-
ing these rows and columns (illustrated by the black grid in
fig. 1), prime candidates can only appear in the remaining
”chambers” of the bands. Further, prime candidates can
only appear at spots in the chambers where odd numbers
are located (illustrated with the colours blue, red and vio-
let, respectively). We notice that these spots are distributed
in a zigzag pattern inside each chamber, and that this pat-
tern alternates with its mirror pattern when progressing
horizontally or vertically along a band. In the present con-
text we will only study The Blue Band.

We apply the notionoriginal chamberto denote the lo-
cation of the first eight prime numbers in The Blue Band,
not situated at black frames, at the (upper) left segment
of fig. 1, i.e. the eight primes from 11 to 37. This origi-
nal chamber is divided into itsleft (sub-)chamber, primes
11,13,17,19; and itsright (sub-)chamber, primes 23,29,31,37.
Then we imagine this left chamberrevolving in 3Daround
the black vertical axis made up of the numbers 18,21,24,27,30.
After half a rotation the four positions of the primes in the
left chamber will cover the four positions of their respec-
tive enantimorphs in the right chamber, i.e. as 13 onto 23,
11 onto 31, 19 onto 29, and 17 onto 37. After awholero-
tation, the four positions of the primes in theleft chamber
will cover the four positions of the corresponding num-
bers in theleft (sub-)chamber of thesecondchamber in
The Blue Band, the chamber to theright of the original
chamber, i.e. as 13 onto 43, 11 onto 41, 19 onto 49, and
17 onto 47. After a whole rotation of the four positions of
the primes in theright (original) (sub-)chamber, these po-
sitions will cover the four positions of the corresponding
numbers in theright (sub-)chamber of the second chamber

in The Blue Band, i.e. as 23 onto 53, 31 onto 61, 29 onto
59, and 37 onto 67. Hence, taken together, after a whole
rotation of theeightpositions of the primes in the original
chamber, these eight positions will cover the eight posi-
tions of the corresponding numbers in the second chamber,
and each of these last eight numbers is determined as the
number at the corresponding position in the original cham-
ber,added with 30. Obviously, aftermultiple rotations of
the original chamber, the number in the arrival chamber is
determined as the number at the corresponding position in
the original chamber, added with thesame multiple of 30.
Also obviously,anyodd number in The Blue Band is de-
termined uniquely and can be written uniquely as the cor-
responding position in the original chamber, undergoing a
certain multiple of whole rotations, which corresponds to
the original number being added with the same multiple
of 30. Hence, the eight positions of primes in the origi-
nal chamber determinesuniquely and exhaustively allodd
numbers in chambers of The Blue Band when undergo-
ing all possible integer multiples of whole rotations, which
is equivalent to each of the original eight numbers being
added with all corresponding integer multiples of 30.

To easily get a picture of the underlying prime num-
ber generator, we first imagineall remaining odd (blue)
numbers in The Blue Band as being prime numbers. This
is the case for the first two chambers of The Blue Band.
However, in the third chamber, which can be imagined as
constituted from the first (whole)rotation of the left, first
chamber, the number of 49, i.e. 7×7, shows up as the first
anomaly not being any prime number. Analogous anoma-
lies will be the case for all powers of 7, as well as for
all ”clean multiples” of 7 (meaning those having a fac-
tor in a preceding chamber) located in chambers further to
the right on The Blue Band. 7 is the only lower number
outsideandbeforeour matrix, that acts as a ”bullet” and
”shoots out” odd numbers in The Blue Band, removing
their prime number candidature. For example, the number
of 77 is shot out (displayed by the colour green) from the
prime number universe in chamber no. 5 after two rota-
tions of chamber no. 1, being a multiple of the bullets 7
and 11. Prime numbers from the first chamber will deliver
the same ”ammunition” when exposed for sufficient rota-
tions to manifest multiples made up as internalproducts
of these prime numbers. Such multiples occur at corre-
sponding ”arrival spots” in upcoming chambers after fur-
ther rotations. For example, the number of 143 is shot out
from the prime number universe in chamber no. 10 af-
ter four rotations of chamber no. 2, being a multiple of
the factor ”bullets” 11 and 13. Quite obviously,all mul-
tiples of primes will expose the same pattern of shooting
out corresponding prime number candidates occurring in
proceeding chambers, without regard to the number of ro-
tations of chamber no. 1 or no. 2 manifesting the prime fac-
tor bullets of the multiple. Hence, the over-all process of
shooting out prime candidates can be imagined as succes-
sive out-shooting during consecutive rotation of chambers
no. 1 and 2, due to more and more multiples from prime
bullets, located in preceding chambers, becoming mani-
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fest along with further chamber rotations. This elimina-
tion process of prime candidates is obviouslyexhaustive.
All prime candidates which isnot shot out from the multi-
ples of prime bullets occurring at preceding chambershave
to be primes. Therefore, a complete mathematical descrip-
tion of this successive out-shooting of prime candidates
will automaticallyad negativoimplicate also a complete,
successive description of the generation of prime numbers.
Here the prime numbers appear as the numbersremaining
in chambers of The Blue Bandafter the shoot-out proce-
dure has passed through the chamber where the prime can-
didate is located.

The model of fig.1, as well as the general procedure of
shooting out prime candidates, was presented in Johansen
(2006: 127-9). The deduction of complete formulas to per-
form the out- shooting, according to this approach, in or-
der to generate prime numbers exactly and completely was
presented in Johansen (2010). Here we will recapitulate
some crucial steps, notions and figures from this deduc-
tion.

We apply the following notation of the blue (odd) num-
bers’ positions inside a chamber, using their positions in-
side the first two chambers as illustration:

Left chamber:a1: position of 13;a2: position of 11;a3:
position of 19;a4: position of 17. Right chamber:b1: po-
sition of 23;b2: position of 31;b3: position of 29;b4: po-
sition of 37.

Then, all odd numbers in The Blue Band can be written
as one of these positions combined with a specific number
of rotations. As an example, 71 can be written as [2,a2],
meaning that 71 emerges at the positiona2 after 2 rota-
tions of the original (left) chamber. Accordingly, 67 will
be written as [1,b4], etc.

Figure 2 The basic 8×8-matrix of the non-primes generator in
the revolving chamber

Fig. 2 describes the basic distributive structure of po-
sitions (illustrated as columns) in the chambers, manifest-
ing from the specific numbers of rotations (illustrated in
red) of the eight initial position numbers (illustrated in
bold black) of the original chamber (i.e. chamber no.1, the
left, and chamber no.2, the right, taken together), insofar
as these rotations correspond to stepwisemultiplications
of the respective original position numbers with progres-
sively larger multiplicators (illustrated in blue). The suc-
cession of multiplications, resulting in composite numbers
(displayed in green if fig. 1), goes as follows, taking as
example 11 as multiplicand:

Table 1: Self-referential generation of products with
according positions and rotations

multiplicator product - position - rotations
1. row: R1. 11×11 at b2 after 3 rotations
2. row: R2. 11×13 at b1 after 4 rotations
3. row: R3. 11×17 at b4 after 5 rotations
4. row: the 3. “ 11×19 at b3 after 6 rotations
5. row: the 4. “ 11×23 at a1 after 8 rotations
6. row: the 5. “ 11×29 at a3 after 10 rotations
7. row: the 6. “ 11×31 at a2 after 11 rotations
8. row: the 7. “ 11×37 at a4 after 13 rotations
9. row: the 8. “ M1

10.row: the 9. “ M2

11.row: the 10. “ M3

... ... ...

... ... ...

whereR1 means ” the multiplicand number itself ”,
R2, means ” the closest blue number larger than itself” and
R3 means ” the 2. closest number larger than itself ”. Also,
M1 refers to ”11×(11+30) at b2 after (3+11) rotations”,
M2, refers to ” 11×(13+30) at b1 after (4+11) rotations”
andM3 means ”11×(17+30) at b4 after (5+11) rotations
”.

As an example we can look at the number in the box
[8,b3] that manifests at positionb3, i.e. the same position
as 29 in the original chamber, after the original number 31
is multiplied with the multiplicator 59 which is situated at
the 8. row, i.e. 7 steps after the number 31 itself acts as
multiplicator on itself. This box is reached after 60 rota-
tions of the original chamber.

For each of the eight different position numbers in the
original chamber, the position of the multiplicands product
in the 9. row (i.e. after 8 steps of the succession) is iden-
tical with the original position, the position of the multi-
plicands product in the 10. row (i.e. after 8+1 steps of the
succession) is identical with the original position, etc.

This means that with respect toposition, the 8 sequence
of positions characteristic for the products progressing in
steps from the original position for the smallest consid-
ered product of the respective multiplicands, just repeats
in 8 steps cycles along with increasing additions of 30s to
the multiplicator. (From now on we denote the number of
such 30- additions with the symbolm.)

With regard to the number ofrotations, we always have
that after 8 steps the number of rotations added to the ro-
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tationsin the productin row 1, required to manifest the
product for the same multiplicand in row 9, is identical to
the size of the multiplicand. Thus, as an example, for the
multiplicand 11, the product in row 9 is reached as the 3
added rotations of its initial product in row 1, added with
11 new rotations, which gives 14 rotations. And the same
must be the case with respect to the added numbers of ro-
tations stepping from row 2 to 10, from row 3 to row 11,
etc.

The same homology with respect to position and ro-
tations occur for additions of 30s to themultiplicand(de-
noted with the symboln).

Thus, all thinkable products (besides the trivial prod-
ucts of 2, 3 and 5, and the not so trivial products of 7) can
be written uniquely as the square of one of the multipli-
cands located in the original chamber, successively added
with increases in m and increases in n. Any of these prod-
ucts arrives in one of the 64 boxes of fig. 2, after a specified
number of rotations, completely determined by the posi-
tion and number of rotations of the initial squared product,
and the sizes of m and n. If we, as an example, consider
products arriving in box [3,b4], the non-primes entering
this box from the total11-path, are given by the set:

(2) (11+n30) [(17+n30) +m30]
alternatively expressed as:
(2b) 37 + 30[5+ n(11+17) +m11 +n30(n+m)]

Non-primes entering this box from the total13-path,
are given by the set:
(3) (13+n30) [(19+n30) +m30]
alternatively expressed as:
(3b) 37 + 30[7+ n(13+19) +m13 +n30(n+m)]

Products generated from the multiplicand 7 constitutes
a special case that is covered by being represented by n=-1
in analogous expressions for boxes reached from the total
37- path. With regard topositionsthe path from 7 is identi-
cal to the path from 37; thus the two paths only differ with
respect to the number ofrotations. 37 is chosen in stead of
7 as original position number due to completing the origi-
nal chamber in fig. 1 with a symmetrical structure between
left and right chamber.

The expressions for the 64 boxes of products, devel-
oped in analogy to (2) and (2b), can be rewritten asadditives
of rotations compared to the rotations of products arriving
in box [1,b1] as an anchoring box suitable as a general ref-
erence. We rewrite this reference box to box (11,11) which
denotes all products arriving in the same position in fig. 2
from successive increases of m and n to the initial product
11×11 arriving in this box.

Horizontally, at the top of fig. 3, we list in succession
the factors in the original chamber, acting asmultiplicands
in the 64 basic products represented in fig. 2. Vertically, to
the left of fig. 3, we list in succession the numbers acting
as multiplicators in the 64 basic products represented in
fig. 2. Hence, all the 64 basic products, and all the clusters
of non- primes generated from each of them, are also rep-

resented in fig. 3. The amount of rotations for the initial
product in each box (i.e. for m=0 and n=0) is displayed in
red in fig. 3, and the position number where products ar-
rive (i.e. the columns of fig. 2) is displayed in black to the
right of these numbers in red. Hence, fig. 3 displays the
64 boxes of products distributed among these 8 position
numbers where the respective boxes arrive, as specified
expressions of n- and m-additives of rotations compared
to the reference box (11,11).

Figure 3 The8×8 universal matrix of (11,11)-related additives
of rotations for complete generation of non-primes.

Rotations for the platform for the additives, the refer-
ence box (11,11), are:
3 + 11n + 11(m+n) + n30(m+n)

The different amounts of rotations making up the com-
plete set of products arriving in the reference box (11,11)
can berepresented as the series displayed in Fig. 4:

Colour coding:
30’s
11’s
1’s

In fig. 4 the position of each number signify a unique
product. As an example: The amount of rotations repre-
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Figure 4 Make-up of the set of rotations for non-prime box
(11,11) at position number 31 in the revolving chamber

sented by the black4 at the row with blue 9 in the figure,
is:
(5) 3 + 11× 9 + 30 (8 + 6 +4) = 642
The natural number corresponding to this place in the re-
volving chamber after this amount of rotations:
(6) 642× 30 + 31 = 19291

Hence, this black 4 in fig. 4, when interpreted in this
manner, is just another way of writing the number 19291.
Since this number is included in fig. 4, it is positioned in
box (11,11) and with necessity a non-prime. Just for con-
firmation: This black 4 is located in fig. 5 at the position
for the row indicated by the blue number, n+(m+n)=9, and
the diagonal n=3. This gives the factor (11+3×30) from
the value of n, and from the value of m the other factor
[(11+3×30) + 3×30], i.e. the product 101×191 which is
19291.

The pattern in fig. 4 generating all products arriving
in box (11,11) is amazingly simple. The series generating
all products arriving in the remaining 63 boxes show to be
modified variations built on the same basic pattern. As an
example:

Colour coding:
30’s
11’s
2’s
2’s
1’s

For remaining boxes the modifications of the basic pat-
tern exposed by fig. 4 appear only moderately more com-
plex than the modification represented by fig. 5. Each of
the 64 patterns, with corresponding series, can becom-
pletelycharacterized byfour simple variableswhen com-
pared to the reference series displayed in fig. 4 anchored
in 112. The values of these four simple variables for the

Figure 5 Make-up of the set of rotations for non-prime box
(19,13) at position number 37 in the revolving chamber.

respective 64 boxes are calculated and listed in Johansen
(2010:153,166-8). By this the expressions of rotations gen-
erating all composite numbers located atsameposition
in the chamber is found as a set ofeight related series.
Hence, thetotal set of composite numbers located at all
eight positions is exposed aseight such sets of eight se-
ries. This represents acompleteexposition of composite
numbers generated by a quite simple mathematical struc-
ture.Ad negativothis also represents acompleteexposition
of all prime numbersas the union of the eight complement
sets for these eight non-prime sets of eight series.

3. Informational discussion of the enclosed
pattern of composite numbers vs. prime
numbers

Figure6 What is a pattern?

When performing a cut in a constrained appearance of
information, the criterion for a pattern is that it is possible
from the information residing at one side of the cut to pre-
dict someinformation residing at the other side of the cut
with more than randomprobability (cf. the definition by
Bateson 1972:131). This constitutes the criterion for amin-
imal pattern. The criterion for amaximalpattern is to pre-
dict with zerorandomnessall information residing at the
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otherside.Trivially, the exact and complete occurrences
of the multiples of 2 can be predicted from the informa-
tion before a cut performed after 2×2, and the same holds
for the multiples of 3 as predicted from the information
before a cut performed after 3×2, and for the multiples
of 5 as predicted from the information before a cut per-
formed after 5×2. Hence, all these three cases unveilmax-
imal patterns. Also quite trivially, the exact and complete
occurrences of multiples having 2, 3 or 5 as a factor, can be
predicted from the information before the last of said cuts,
repeating with periodicity 30 (= 2×3×5). Hence, also this
case unveils a maximal pattern. Obviously, as illustrated
in fig. 6, such a maximal pattern automatically implies a
corresponding prediction of the exact and complete occur-
rences of thegaps, i.e. theabsentinformation, in the posi-
tive over-all pattern, by simply performing the switch from
the positive pattern to itsnegative gestalt. Also evident, the
same must be the case whatever the mathematical com-
plexity of the positive pattern. Since our deductive exhibi-
tion in Johansen (2010) represents a prediction of the ex-
act and complete occurrences of composite numbers after
an initial cut, performance of the gestalt switch from this
positive pattern to the prediction of the exact and complete
occurrences ofgapsbetween composite numbers, i.e. of
the residences of the prime numbers, must also represent a
maximum pattern.

The complementarity between the two classes of gaps,
representing the two sides of the same coin, is implied
also in for example the treatment by Szpiro (2004). Szpiro
noted correctly that his ”findings point to the presence of
some structure in the prime number sequence that has hith-
erto not been identified”, but made ”no attempt to explain
the phenomenon”. In distinction to this our treatment firstly
and independently focuses and deduces the exact and
complete residences of the consecutive composite num-
bers thatmake upthe gaps between consecutive prime num-
bers in the exposed strict and exact regularity.

We may illustrate our approach in some analogy to the
keys on a piano:

The cut for contemplating the pattern is represented
by the eight prime numbers in our original chamber. From
these eight number positions, the occurrences of the eight
basic multiplicators for the respective eight multiplicands
are predicted with zero randomness. This constitutes the
self-referential basic matrix of products displayed in fig.
2, from which all other composite numbers are deduced
and predicted with zero randomness. More precisely, that
is when already presupposing the trivial maximum pattern
of composite numbers with factors 2, 3 or 5 (easily pre-
dicted with zero randomness from the original chamber),
and treating the multiplicand 7 as one negative rotation
of 37 (which in our analogy may be thought somewhat
similar to the left little finger hitting the key one octave
lower from the black key 37). Thus, the exact and complete
occurrences of all composite numbers are predicted with
zero randomness from the cut after the first chamber, and
the exact and complete occurrences of non-trivial compos-
ite numbers are predicted with zero randomness from the

Figure7 The Piano Analogy

eight prime numbers in the original chamber. This may be
compared to a pianist touching eight black keys at the left
of the piano with his hands and from there touching all
remaining white keys in succession in one swiping move-
ment. The keys he does not touch, is then the totality of
black keys after the first eight ones, corresponding to the
gaps representing the prime numbers. By simply perform-
ing the gestalt switch, our deduction of a maximal pat-
tern also represents an exact and complete prediction of
all non-trivial prime numbers, i.e. a deduction of amaxi-
mal pattern ofprime numbersfrom the cut after the eight
prime numbers in the original chamber.

To our knowledge such a maximal pattern of prime
numbers has never previously been discovered, not to say:
deduced, in mathematics. There exist manycomputational
methods to find prime numbers, but these moves to and
from and forwards and backwards between prime num-
bers and composite numbers. Hence, they do not establish
any cut where the class of prime numbers (or of composite
numbers) is predicted independently (of the complemen-
tary class of natural numbers), exactly, completely and ir-
reversibly from one side of the cut to the other. Thus, such
methods, as for example the ancient sieve of Eratosthenes,
are of course able to find the primes, but without knowl-
edge or claim of anypatternexisting in the primes.

Our exhibition has deduced such a pattern exactly and
completely in the maximal sense of a pattern, and this was
achieved from also unveiling thegeneratorof said pat-
tern. Thus, as far as we can see, the quest indicated by the
initial quote by John T. Tate appears completed. For up-
coming references we denote this discovery asJohansen
Revolving Prime Number Code, abbreviated toJohansen
Revolver, further abbreviated toJR. We denote the initial
software expression of JR (cf. appendix) asJohansen Re-
volver - Strand Algorithm, abbreviated toJR-SA. A further
software expression, showing able to pick the prime num-
bers (and only the prime numbers) in correct succession
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for freely chosenintervals of natural numbers, has been
denoted asJohansen Revolver - Strand Longrange Algo-
rithm, abbreviated toJR-SLA.

Inspection of the JR-SA program of the appendix may
be fruitful to indicate that successful and good program-
ming of such mathematical results is more than a straight
forward 1:1 translation between mathematics and software,
and also require an element of creative skills, somewhat
similar to translation between different natural languages.
The author was surprised that the consecutive complement
of the whole 88 sets of series proved possible to become
programmed in basically merely 29 lines of code (the main
”bow” part of the program). As in the case of the Man-
delbrot fractal, this may also serve as some indication of
nature’s tendency to prefer quite simple algorithms, pre-
senting as the foremost quest for science to seek and re-
constructthesimplicity. It may also be the case that further
contemplation of such software formulations will show fruit-
ful for mathematical ideas and approaches, with the possi-
bility for some co-evolution between upcoming advances
in prime number mathematics vs. related informatics. It
seems of special interest to investigate from further com-
putational studies from JR-SA whether there also can be
discovered a maximum pattern in the prime numbers from
a direct, positive formulation of the gestalt, i.e.without
anymore having to perform the gestalt switch.

As e.g. noted by Khurana and Koul (2005) probabilis-
tic primality tests, like Solovay- Strassen and Miller-Rabin,
have the disadvantage compared to deterministic primality
tests thatthe algorithm must run many times for satisfac-
tory ruling out of composite numbers. Other things equal,
deterministic primality tests should therefore be sought de-
veloped. However, the efficiency of deterministic primal-
ity tests will depend on plural factors, such as choice of
software language, degree of algorithmic optimation, or-
ganization of parallel software distrubution, degree of con-
vertion from software to hardware, processor capacity etc.
Therefore, improvement in computational efficiency stem-
ming from a novel deterministic pattern in prime numbers
discovered by means of mathematics, whether by deduc-
tion or by extensive successful number tests, may be hard
to predict in the early days after the discovery, and may
also depend much on coordinated efforts. On the other
hand it seems reasonable to assume that enclosure of a
maximum pattern in the prime numbers, which at the same
time displays a quite simple mathematical structure, as in
the case of JR, may yield future improvements in compu-
tational efficiency not possible to achievewithoutknowing
the exact, hidden structure.

Plural recent achievements in mathematics and science
indicate a strong and intimate relation between hidden pat-
terns in prime numbers and important patterns in natural
systems, such as argued in the referenced works by Ku-
mar et al. (2003), Higgs (2008), M̈uller (2009), Boeyens
(2003), Rapoport (2011) and Johansen (2011). This may
indicate that prime numbers should be reconsidered as ab-
stracted features of quite general informational relations,

patterns and laws. Hibbs (2008) advocates a ”new prime
number mindset” and writes:

Instead of thinking of the incremental growth of prime
numbers as a value on a number scale, we need to think
of them more in terms of an information container in a
relational structure. The real applied value for that type
of information container could be virus, cancer, density,
mass, molecular, momentum, torque, etc.

In this perspective one might also expect the likelihood
of further co-evolution between prime number patterning
and information science in the very foundations of number
theory vs. informatics.
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