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Abstract: Starting from a sequence of linear positive operators introduced by G.C. Jain, we present an integral version of it. Approx-
imation properties and the rate of convergence are investigated. We use the concept of A-statistical convergence. An extension for

smooth functions is also given.
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1. Introduction

SetNy = {0}UNandR . = [0, c0). By using the Poisson-
type distribution given by
T+ kB)ELe (k) | e Ny,

- o

wg(k; ) =

for0 < a < co and|g| < 1, G.C. Jain [7] introduced and
studied the following class of positive linear operators

= k
> wg(ksna) f (n) , x>0,

k=0

(@)

wheres € [0,1) and f € C(R,), the space of all real-
valued continuous functions defined Bn.. In the partic-

ular case3 = 0, Pﬁo], n € N, turn into well-known Sasz-
Mirakjan operators, see [11], [9] kﬂbf)(x) = (S, f)(x)

k k
=e ™ Zzoz() (n]f') f <n) y & > 0.

Due to their properties, the operatdis have been in-

2. The operator J

Considering the weight functign, : Ry — [1,00), pa(t) =
1+ 222 (X > 0), we define the space

f(z)
pa(z)

Co (Ry)= {fe C(Ry): is convergent as — oo}

endowed with the usual norn ||, , || f|| 5, = sup |f(:c)|.

+>0 PA(T)
Further on, we introduce a sequence of operators calling it
Jain-Beta, as follows

(S ) ()

.- k; = tk_l —nx
:;M/o f(t)Wdt—i—e £(0),3)

z > 0, wheren > 2, f € C, (Ry) andwg(k;nx) is
given as in (1). They have Jain and Beta basis functions in
summation and integration, respectively. One can see, for

tensively studied by many mathematicians. Thus, in our@"Y f € Cp, (R ) the integrals from (4) are well-defined.

opinion, the cIas:{P,[f]) should deeper investigate. This
paper focuses on an integral variant of the discrete opera-
tors defined by (2). The construction is presented in Sec-
tion 2. The approximation properties of our mixed summation-

integral type operators are collected in Section 3.

We mention that a Kantorovich-type extensionRyf’
was given in [12].

Indeed, iff € C,, (R) then a positive constait ; exists
such that

[F(O)] < My(1+2%).

The convergence of the integrals

o0
/ R 4 t) TR k>,
0
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[e'e) 3 o 1 + ﬁ
uaranteestha/ Ot A0 F e k> 1, are JPlp2)(z) = ( " - )x2
q. A f()“(. )” (Jn o) () DA 1-5
finite. The required condition is satisfied for> 1, so we 9
chosen > 2. 1+ =p)" , (6)

It is obvious that these operators are linear. Because (n —1)(1 — )3
any functionf > 0 implies JY ]f > 0, they are also pos- respectively.

itive. For 3 = 0, the operators/.”) reduce to the mixed ~Sincemax{z, 2%} < z + a2, (1 — §)% < 1 and

Szasz-Beta operators recently investigated by V. Gupta and B B

M.A. Noor [6]. 1-8)2<(1-p)"7
Lete;, j € Ny, be thej-th monomiale;(t) = 7. Itis

known (see, e.g., [2Proposition 4.2.§ that {eg, e1, €2}

is a strict Korovkin set irC,, (R.). So, our first concern (JP L) (z) < 8, 5(a% + z), @)

is to determine values of these test functions. To do th|sWh

we recall the following identities established in [Egs. ere

relation (7) implies

(2.12)-(2.14) bog— — 2 1 (®)
" -1 -8)3 1-4
(P, 7&5]60)( ) =1, (Pr[{g]el)(:c) _ 1?5’ (n )( ) B
4
(PPley)(z) = a? L * > 0. @ 3. Approximation properties

1=p)2 nd-p)>* "~

Lemma 1. The operators//), n > 2, defined by (4) We establish the rate of convergence of the sequ(eh[&ef )
satisfy the following relations to f in terms of the rate of convergence of the test func-
tions. The modulus of continuity ,(f;-) is also in-

€1
volved, where

-5
n (H”(l‘ﬁ)l) ) Wio.0) (f38) = sup{|f (') — f(a")| : &', € [0, ],
(n—1)(1—B)> n(1-8) )

Proof. By simple computation we get

TWeg=eq, Je; =

J,Qmez —

|2" —2"| <6}, 6 >0,
f continuous on the intervé, a].

(8] ;
J[ﬁ (k; —nz _ (plA] ' Theorem 1.LetJ,", n > 2, be defined by (4). For any
o) Z wy(k;na) (Py"eo)() functionf € C,, (Ry) one has

JE P () = f(x
(e (a Zwﬁ (ki) ”ffg (T ) () = f(@)]
n
~ < (1+\/x(x+1))w[0,a]f (f;«/&n,g)7 x € [0, al
Z (kynz)~ = (PPep)(x). wheres,,  is defined at (9).
k=0 Proof.We use the result of Shisha and Mond [10]. Con-
B —1L,k+2) sidering the interval0, al, it says: if L is a linear posi-
Zwﬁ (kynz)——"—— tive operator defined of’(I), [0,a] C I, then for every
(” +1.k) z € [0,a] andd > 0 one has
k _
= <|f(@)ll(Zeo) () ~ 1]
= D (PPles)(@) + = (PPler)(@). o ;
L e +((Zeo)(@) + 67V Ze) @) (Le2)@) ) wio,al ().
Taking into account (5) we easily obtain (6) and the ) 4] ) )
proof is completed. O Knowmg thatJ, 'eg = eg and relation (8), by choosing
We also introduce the-th order central moment of ¢ = /0 s the above inequality leads us to the desired
the operators”, that isJi %, wherep, (t) = ¢t —z,  result. _ o
(z,t) € Ry x R,. On the basis of (6), by a straightfor- Examining relation (6) and based on famous Korovkin
ward calculation, we obtain theorem [8], it is clear tha(.],[f])nzg does not form an
Lemma 2. The first and the second central moment of approximation process. The next step is to transform it for
JI n > 2, operators are given by enjoying of this property. For each > 2, the constants
will be replaced by a numbet, € [0,1). If
(Sea)(@) = 5 lim g, =0, 9)
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then Lemma 1 ensuréﬁn( Brle V(@) =2, j=0,1 if and only if
uniformly on any interval compack’ C R,. Based ON ¢, —lim | T, Fy — Fill, =0, k=0,1,2 (12)
Korovkin criterion we can state n P ’ Bk

[ﬁn] 1 1
Theorem 2.Let J;, ™, n > 2, be defined as in (4), whereFy,(z) = z*p(z) /(1 + 22).

where(f, ), satisfies (10). For any compaéf C R, As regards to our sequence we prove the following re-
and for eachf € C,,(Ry) one has sult. ? | P ’

Theorem 4.Let A = (a,, ) be a non-negative regular

summability matrix and\ > 0 be fixed. Let],[L nl ,n > 2,
be defined as in (4), whe(&,,),,>2,0 < 3, < 1, satlsﬂes

lim(J JIPI ) () = f(z), uniformly inz € K.

Our next concern is the study of statistical convergence

of the sequence of operators. For the convenience of thet , — lim 3, = 0. (13)
reader, let recall the concept of this type of convergence.
The density of a sef C N is defined by One has
sta —lm||JPVf = fllp, =0, f € Cpy(Ry).  (14)

DR
4(S) = lim *ZXS(]C) L .
noeen Proof. We use Theorem 3 which is still valid if one
. o ) ) .. replaces the domaiR by R, . Also, we choose the weight
provided the limit exists, whergg is the characteristic functionsp := po andp’ := py. Since) > 0, relation (11)
function ofS. Following [4], areal sequence= (,).>1 s fulfilled and one has’, (R;) C C,, (R.). The test
is statistically convergertio a real numbel. if, for every function areF}, = ey, k = 0, 1, 2. Taking in view Lemma

>0, 1 we havel|J} e 0_€O||p0:Oa

d{neN:|z, — Ll >¢c})=0.
175 er — el <

We write st — hm x, = L. Itis known that any con-

vergent sequence |s statistically convergent, but not cony 7l JBnle —es|
versely. Closely related to this notion is A-statistical con- = (1_ —Bp)?  n(l— )
vergence wherél = (a,, ;) is an infinite summability ma- ~ (14) and above relations imply

trix. For a given sequence = (x,,),>1, the A-transform

of = denoted bydz = (Az),; is defined by sta —lim [ [P ex —exllp =0, k=0,1,2.

I ﬁn
1

5 - Hypothesis

Since (13) holds, on the basis of Theorem 3, |dent|ty (15)
takes place and this ends the proof.

To increase the rate of convergence we can replé%e
provided the series converges for eaclSuppose thatl by its generalization of the-th order, see [1].

oo
(Ax), = Zan,kxk, neN,
k=1

is non-negative regular summability matrix, i.@,,; > 0 Let f € C7(Ry) such thate,f*) € C,,(R,) for
and the matrix transformation of any convergent sequence = 0,1,...,r, and letT,. f(x;-) be ther-th degree Tay-
preserves its limit. lor polynomial associated to the functighat the point
The sequence = (z,),>1 IS A-statistically conver- = € R,. Forn > 2 and anyz > 0 we define the linear
gentto the real numbet if, for everye > 0, one has operators
(I ) (@) = TP NT £ )
lim Z On k=0, '
" kel(e) = wg, (k;na) e~ 1 [ () (& — t)sth—1
Z B(n+ 1,k)z st Jo A )(1 + t)nthtl
wherel(e) ={k e N: |z, — L| > ¢}. k=1 §=0
We write st 4 — limz,, = [, see e.qg. [5]. Fem £(0). (15)

n

Duman and Orhan [Fheorem Bproved the following
weighted Korovkin-type theorem via A-statistical conver- Clearly, J\%:1 = Ji™"], n > 2. These operators keep the
gence. linearity property but Ioose the positivity.

Theorem 3.Let A = (a,, ;) be a non-negative regular In what follows, fora: € (0,1] andM > 0, Lipyro
summability matrix and let, o’ weight functions such that ~ stands for the the subset of albtder continuous functions
fonR, with exponentx and constand/, i.e.,
plz) _

im ——~ =0. (20)
l#l=o0 p'(2) [f (@) = f(y)l < Mz —y|* (z,y) € Ry xRy

Assume thatT,),>1 is a sequence of positive linear

operators fromC,(R) into C,, (R). One has

Applying [1; Theorem 1we obtain
] Theorem 5.Let A be a non-negative regular summa-
sta =lm [T f = fll =0, f € Cy(R), (11)  bility matrix. Letr € N be fixed € (0,1] and M > 0.
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Let the operatorsh[L ") and J,[fjf], n > 2, be defined by (4)
and (16), respectively.
If 2 > 0andy.t € C,, (R4 ) such that

stqa —lim 3, = 0andsts — lim(JJﬁ;‘]@;Jro‘)(x) =0,
then
sta— lim () f) (@) — F()] =0

holds for any functiory € C" (R,
propertiese, f*) € C, (R}), s =
Lippra.

) N Cp, (R4 ) with the
0,1,...,rand f(") e
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sult says that the property is inherited by the new sequence

(Bl

n.+ under additional conditions imposed on the smooth

signalf.
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