
Appl. Math. Inf. Sci.7, No. 2L, 729-739 (2013) 729

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/072L51

A Trustworthy Service Computing Framework through a
Semantic Messaging Model
Woongsup Kim

Department of Computer & Information Communication Engineering, Dongguk University, Seoul, Korea

Received: 15 Nov. 2012, Revised: 25 Jan. 2013, Accepted: 28 Jan. 2013
Published online: 1 Jun. 2013

Abstract: In this paper, we present a framework supporting reliable and trustworthy service-oriented workspace sharing environments.
To this end, we propose a communication model to facilitate a complex level of interactions among workspace participants. To
implement a communication model, we adopted a frame-based approach, in which each frame has slots to be filled. Slots in a frame
are analyzed and filled using the semantic information provided from service participants. In addition, we provide a trust model for
predicting behaviors of service providers. Our trust model ensuresreliability by indicating the extent to which a service is reliable. To
estimate risks and the degree of service satisfaction, we employ historicaluser ratings. In addition, we evaluated a case from the design
and manufacturing domain. We conclude that our proposed approachwill contribute to realizing trustworthy workspace sharing in a
service oriented environment.

Keywords: Service Computing, Semantic Web, Web Services, Computer Supported Collaborative Work, Process Management,
Workspace

1 Introduction

Service-computing is a distributed component computing
model that supports interoperability among
heterogeneous systems, based on platform-neutral open
web standard format [1,2]. Service computing is realized
through web service technology where its inputs and
outputs are composed of XML-based open standard, and
any external component can make successful interactions
so long as the component complies to input/output
specification provided from web services.

Certain challenges that can inhibit the implementation
of workspace sharing based on a service-computing
paradigm, one of the most noticeable challenges being the
issue of ”trustworthiness.” In computing society,
trustworthiness inherently addresses to secure, reliable,
and available computing systems. During service-oriented
workspace sharing processes, participants may face
uncertainties in terms of trustworthiness such as service
availability, service reliability, service safety, or service
integrity. These uncertainties come from two major
limitations of current web service technology. In web
services, description logics are used to describe functions
and capabilities of services [3]. However, they are not
well-suited to representing quantitative knowledge in

terms of performance and reliability. In addition,
communications within web services rely on RPC-type
messaging via the Simple Object Access Protocol
(SOAP) [4]; however, SOAP is not sufficient to
implement the complex communication required for
collaboration between participants.

Uncertainties in a service computing environment fall
into two categories: pre-purchase uncertainties and
fulfillment uncertainties. Pre-purchase uncertainties occur
when service consumers cannot decide whether or not to
purchase a certain service. Even semantically
well-written descriptions of a service may not be good
enough for users to be convinced of the service usability.
Fulfillment uncertainties involve situations in which a
user invokes a service only to find that the service cannot
provide the functionality claimed in the descriptions.
Service consumers may have concerns about defective or
low-quality services.

In response to pre-purchase uncertainty, recommender
systems and third-party certification methods have been
proposed [5,6]. Recommender systems are methodologies
that utilize evaluations records from past transactions in
the community. Third-party certification is a traditional
business method. For example, some traditional business

∗ Corresponding author e-mail:woongsup@dongguk.edu

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/072L51

730 W. Kim: A Trustworthy Service Computing Framework

transactions require a Letter of Credit (L/C) which
guarantees secure payment. Even though a L/C is issued
by only certified banks, third-party certification can be
provided by any organization within the community.
Although useful, these approaches are not sufficient to
provide performance information or reliability
information. It is thus hard to build the reliability models
or the performance models, that are required to predict
and improve the trustworthiness of service partners.

To manage fulfillment uncertainty, agreement-based
systems and assertion-based monitoring have been
designed [7,8]. Agreement-based systems utilize a
contract created by both parties. One specific example is
the Service-Level Agreement (SLA) from IBM and HP
[9]. To check contract fulfillment, companies maintain a
separate module that can check service fulfillment as
described in the contract. Another approach is,
assertion-based monitoring, in which, assertions are
determined based on requirement documents and then
inserted into process logic [10]. When execution reaches
each embedded assertion point, a service fulfillment
indication is reported to clients, and analyzed through
formal modeling languages such as SPIN [11].

Although these approaches are beneficial, intrinsic
anonymity (i.e., the customer’s lack of familiarity or
relationship with services and the people involved) still
makes users hesitant to join a service-oriented
collaborative environment. Complex interaction is a way
of testing new boundaries and seeing how far one can go
when no one knows about such boundaries. Instead of
judging services through categories, interactive
communication allows a service consumer to choose
which services to use in a service-oriented environment.
In this paper, we present a framework for supporting
reliable service-oriented workspace sharing
environments. To this end, we provide a communication
model to support a complex level of interactions among
workspace participants. To implement a communication
model, we adopted a frame-based approach, rather than
the more conventional finite state machine (FSM)
approach which has limited flexibility for generating
message sequences. In a frame-based approach, messages
have slots to be filled. Slots are analyzed and filled using
the semantic information provided from service
participants. We also exploit Process Grammar [12,13] to
implement hierarchical dialogue structure and selection
rules.

In addition, we provide a trust model for predicting
behaviors of service providers. Our trust model presents
probabilities that indicate the extent to which a service is
reliable. We employ ratings by previous service users in
order to estimate how much the user will be satisfied after
using the service. The probabilities are used to build the
risks and the degree of service satisfaction. The remainder
of this paper is organized as follows. In section2, we
present relevant issues and solutions. Section3 discusses
considerations for implementing a service oriented
workspace sharing environment. In section4, we propose

a communicative model to be used for workspace sharing.
In section5, we develop trustworthiness issues for the
service oriented environment. In particular, we propose a
methodology to be used for behaviors prediction and
run-time analysis in services. The implementation is
described in section6, where we also describe
experiments to evaluate the proposed models.

2 Background

Generally, Web Services are described using WSDL and
cataloged using the Universal Description Discovery and
Integration (UDDI) protocol. UDDI registries contain
so-called white pages for each registered services [14].
Description Logics [15] are a good candidate for this
purpose, and they are used to classify services and ground
individual service functionality.

For the trusted service discovery a reputation models
are proposed [16,17,18]. Reputation model provides for
recording past transactions and evaluations for each
service so that clients can estimate available services to
improve future service discovery decisions. For extended
trustworthy decisions, Quality of Service (QoS) factors
are integrated into UDDI. In this model, service behaviors
regarding QoS factors are recorded in the service registry,
so that future users can refer to them during service
selection [19,20]. Such QoS factors include capacity,
response time, latency, throughput, and service accuracy.

For secure Web Services, several security
methodologies are proposed in various computing
domains such as authentication, access control,
distributed security policy, and message layer security.
Policy-level security is principally concerned with the
existence of security guards and their role. There have
been many proposals regarding policy-level security.
However, they focus mainly on server-side policy. The
server decides the access level to its own resources from
policy documents. In Web Service environments, services
are spatially dispersed such that the design of a
policy-level security system on distributed objects on the
network is necessary. The most common approach is to
separate policy logics from business logic [21]. Clients
obtain certifications from access control server for a
specific service. A service provider then examines
certification from clients to decide access level.
Message-level security manages secure message
exchanges. A common technique in a traditional
lower-level approaches are the Secure Socket, secure
Transport Layer, Internet Protocol Security, and
implementing Virtual Private Networks. Although this
approaches work in many situations, it has a serious
disadvantage when applied to a service oriented
environment. The traditional lower-level security
mechanisms are not appropriate for secure end-to-end
communication as the intermediary domains may use
different security tunnels. WS-Security [22] is designed
to construct secure SOAP message exchanges through

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 2L, 729-739 (2013) /www.naturalspublishing.com/Journals.asp 731

end-to-end web applications. WS-Security defines how to
sign or encrypt SOAP messages to assure message
confidentiality.

Efforts are made to enhance reliability and reduce
unreliable service behaviors, which timeouts, runtime
errors, and violation of functional contracts. One way to
incorporate service level reliability would be to use
standardized headers containing information such as
transactional bracket markers and context information.
Such information is added to messages to be used for
monitoring service transactions (such as beginning of
transaction, commitment, roll-back and so on) with
minimal impact on existing applications. Another
approach is to use service choreographies. This approach
mainly utilizes annotations inside process logic [23,24],
and requires steps of incorporating assertions into the
standards business logic. Other approaches include
deploying specialized intermediary processes whose
specific function is to ensure that the requirements of
service usage are being met.

To support workspace sharing in a service oriented
environment, many standards such as ARCOL [25], CNP
[26], XLBC [27], KQML [28], and FBCL [29] have been
proposed for use in software collaboration. These
languages are designed for agents to talk with other
agents and work together. They are designed to facilitate
collaboration process by providing agent communication
mechanism since communication play a fundamental role
in collaboration [30]. Formal semantics for KQML have
been proposed to associate a meaning to a message [31].
The semantics are captured by feasibility conditions and a
rational effect. However, even though these approaches
can be employed in Web Service-based applications, they
have severe limitations when used in certain
environments such as collaborative design and processes.
The reason comes from the fact that they are not designed
to represent quantitative aspects (e.g. performance) within
the functional specification of such system.

3 Considerations for Workspace Sharing in
Service Computing Framework

To support workspace sharing in service-oriented
environment, we observed the required characteristics
that should be incorporated into service oriented
collaborative behavior modeling. To realize service
oriented workspace sharing, we first identify four types of
features needed for modeling collaborative process
behavior to be shared among partners [32].

–Workspaces should be highly reconfigurable.
Workspaces should be easily composed and divided
into sub workspaces respecting dynamic business
needs.

–End-to-end communication must support complex
level of business communications. Communication

protocol should not restric the expressive power of
business communication.

–Workspace control history should be recorded with
time relationship.

–Users or tasks should be grouped and controlled
securely.

Considering the above features, we identified the
requirements that must be considered in order to realize
trustworthy service-oriented workspace sharing in a
heterogeneous and distributed collaboration environment.

–Service Based Deployment: Services implemented
through web services interfaces are accessible from
any third party software components. Therefore, to
facilitate service interoperability, services should be
published with web services interfaces.

–Proactive Process Enactment: Business processes
often require modification in their business workflows
due to business environmental changes. Therefore, the
service-oriented framework should be able to
dynamically configure process paths at run-time.

–Sharing Service Execution: A service model must
provide sharing functionality where participants can
monitor and evaluate process execution status. In
addition, side effects from process execution require
run-time coordination between partners in order to
accomplish an optimal solution.

–Multi User Access Control: For secure collaboration,
it is necessary to have appropriate access control
support for multiple users, where resources and
workspaces are distributed and shared at some level.
The system should be able to regulate users’ access
pattern dynamically: the level of sharing of resources
must be restricted by certain policies. Based on user
policy, various access levels such as writing, reading,
or removing should be assigned to each individual
user.

–Support for Complex Communicational Behavior:
services should be able to perceive their environments
and act with other software components. Web service
applications should be able to refuse an action when
necessary. Services should be able to communicate
with each other to resolve complex business issues
among collaboration participants.

4 A Communicative Model for Workspace
Sharing in Service Oriented Environment

To support service-oriented complex interactions required
for workspace sharing, we propose a communicative
model to control and guide service operations through
end-to-end message exchanges. Our communicative
model represents communicative behavior of workspace
collaboration among distributed applications. To this end,
we employ speech act theory [33], which is widely
adopted in common agent communication languages. To

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

732 W. Kim: A Trustworthy Service Computing Framework

generate and exchange web service based communication
messages, we take a frame-based approach.

4.1 Communicative Model

Our communicative model is structured in a triple
<Intention, Action, Target>. Intention refers to the
purpose of a dialogue. Intention provides reason of a
message in a dialogue. Our model has eight types of
Intention such as ‘request’, ‘propose’, ‘accept’, ‘reject’,
‘query’, ‘answer’, ‘assertion’, and ‘declare’. The receiver
can identify a message type by checking the Intention
field and prepare appropriate responses. For example, if a
message has ’query’ as an intention, then a service
provider may prepare answers. If a message has ’request’
intention, then a service provider may prepare providing
the corresponding services. Intention of ’declare’ can be
used for notification purposes. If a service requester has
an authority to control an aspect of services, then they can
use ‘declare’ to notify some properties or rules. Messages
to be broadcasted can use ‘declare’ intention. The service
provider can deliver the response to a query with ’answer’
intention. ‘assertion” intention is for regular status
reports.

Target represents any instance which appears in a
collaborative process. Input/outputs, operations,
messages, and exceptions can be described as a Target.
The Target field defines a namespace and ontology in the
namespace is used to interpret what target means. Target
is designed to remove ambiguity in communication as
much as possible. In our approach, target uses OWL and
RDF to represent itself. Target can be described with
associated attributes. For quantitative analysis of system
behavior, we add special attributes such as “linkFrom”,
“linkTo”, “hasPreCondition”, and “hasEffects”, to
translate the target into a Petri Net based representation.
Since Petri nets are widely used in quantitative analysis of
system behavior, our communicative model can, unlike
other communication langauges, be used for system
behavior analysis and predictions.

Action is classes that can change an object’s state or
property. Therefore, Action is composed of various
information such as object information, object’s initial
state, operations to affect object states, and operations’
effect. We model Action as the following form.

φ =⇒
δ=<e,O>

φ ′

whereO is a target object,φ encapsulates properties
of a target objectO before transition,φ ’ encapsulates
properties of the objectO after transition takes effect, and
δ shows a labeling function (enactment property e×
target objectO) that enables transitions.

In our communicative model, we defined five
execution states representing propertiesφ of a target
object (Table1).

Table 1: Five basic execution states in a communicative model

Execution Description
States

Initial indicate that a service is not accessed so far.

Ready show that input data is provided to a service, but
that service is not yet activated.

Running indicate that a service is activated and executing
a task at a given time.

Finished indicate that service execution is completed and
the service generates outputs. There are two sub
classessuccessand f ail to notify whether a
service execution creates appropriate outputs.

Exception indicate that a service execution fails due
to some external reasons. Various Runtime
Exceptions can be defined as subclasses.

We also define six basic types of enactment properties
e which affect the property of a target object (Table2).
Each enactment property can have multiple attributes
based on target characteristics. For example, ‘execution’
property in ‘Casting’ service has three attributes ‘High
Pressure Casting’, ‘Vacuum Casting’, and ‘Low Pressure
Casting’ as execution options.

Table 2: Six types of enactment properties

Enactment Description
Property

ProvideInput deliver needed data to a service.

RetrieveOut put retrieve service execution traces to
participants

InvokeEnactment force to start service execution. But
service execution traces needs not
be reported.

Execution monitor service execution traces.

Rollback force rollback when a system
exception happens.

En f orcedRollback force rollback from some business
needs rather than system exceptions

Table 3 shows how our communicative model is
applied for each task status change. We assume a process

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 2L, 729-739 (2013) /www.naturalspublishing.com/Journals.asp 733

is structured linearly in the order datad0 as input to task
t1, which produces outputd1.

Table 3:Examples of Communicative Model in a general process

Execution Traces to
Report

Example Usage

Providing necessary
inputs to d0 before
starting a taskt1

initial =⇒
<provideInputs,d0>

ready

Forcing task t1 to
execute

initial =⇒
<invokeEnactment,t1>

ready

Confirm task t1 in
execution

ready =⇒
<execution,t1>

running

Confirm task t1
in execution with
’Vacuum Casting’
option.

ready =⇒
<execution,t1.VacuumCasting>

running

Task t1 is completed
and bind outputs from
taskt1 into a data object
d1

f inished =⇒
<retrieveOut put,t1>

f inished

initial =⇒
<retrieveOut put,d1>

ready

4.2 Frame Based Message Exchanges

To support flexible message exchanges and hence to
represent complex communicative behavior, we employs
a frame-based approach in order to exchange meaningful
messages. A frame is defined as a data structure that
represents a typical situation. A frame forms the
semantics of a concept, and consists of the properties and
the contents of each property.

Formally a message can be defined via aλ -expression
as follows.

λx (λy0 y1 . . . yk−1((x z0) y0 y1 . . .yk−1 (x zk−1))

p0 p1 . . . pk−1 s

wheres is a service name,pi , 0< i ≤ n, are grounded
properties bounded to the services’s capabilities.yi , 0< i
≤ n, are capabilitiess has,zi , 0 < i ≤ n, areyi ’s contents
bounded with types, andk is the number of properties to
query.

For example, suppose that a participant wants to
query the behavioral semantics of a service
‘vacuumAssistedCasting’. Then the corresponding query
is given by

λx (λ y0 y1(y0 (x z0) y1 (x z1))) composedO f

hasStatus vacuumAssistedCasting

=⇒
β−reduction

((VacuumAssistendCasting z0)

hasStatus(VacuumAssistedCasting z1)).

To answer queries, partners should provide contents
with values that can be called as needed. The answering
message is represented as follows. Bold faced words
represent the message generated from the answering
participant.

(composedO f(VacuumAssistedCasting(VacuumCasting
Trimming QualityAssurance SelectedMaterial Dies
TrimDies CastedProduct TrimmedProduct
: FinishedProduct) :type of String list) hasStatus

(VacuumAssistedCastingapplied: type of states))

In order to query non functional behavior for each of
the sub functional systems, for example, the corresponding
queries take the following forms.

λx (λy0 (y0 (x z0) processingTime

vacuumAssistendCasting=⇒
β−reduction

((processingTime

hasStatus(VacuumAssistedCasting z0)).

To answer the query, a service provider should
provide values forz0, which can be called by a service
consumer. For example, the answer in this case will be

(processingTime(VacuumAssistedCasting, 15 : type
of integer)).

Figure1 shows the actual query message created from
a service participant and the query message is represented
with OWL.

5 Trustworthy Workspace Sharing for
Service-Oriented Environment

Trustworthiness in service computing has the purpose of
improving service provisioning in terms of service
reliability and efficiency performance. To realize
trustworthy collaborative workspace in service computing
environment, we developed a trust model for predicting
service behavior. The goal of our trust model is to avoid
malicious or poorly working services involving in

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

734 W. Kim: A Trustworthy Service Computing Framework

Fig. 1: A Query Message for Execution Traces)

collaborative workspace as participants, by pre-evaluating
service reliability and efficiency performance.

To predict reliability, we first estimate the probability
that users will give a particular rating to a particular
service. We consider a set of usersU = u1,u2, . . . ,un, a set
of servicesS= s1,s2, . . . ,sm, and a set of ratingsR⊂ ℵ,
wheren is the number of users andm is the number of
available services. We assume that usersui made explicit
ratingsv∈V on a servicesj such thatU ×S→V.

The first step in our approach is to compute the
expected numerical ratings of (u, v) before the actual
ratings are known. To this end, we adopt probabilistic
Latent Semantic Analysis (pLSA) [34]. pLSA enable to
estimate the degree of how much a service execution
satisfies all the other participants in the same workspace.

The probability that a userui satisfied to a degreer ∈ℵ
after using servicesj can be defined as follows.

P(r i, j > c|sj ,ui) = ∑
z∈Z

P(r i, j > c|z,sj)P(z|ui) (1)

whereui is a service user,sj is an available service,c is
the minimum required level of the service satisfaction,r i is
the expected userui rating for a servicesj , andz is hidden
space used for pLSA.

To simplify the user-service co-occurrence
dependency structure, we use a conditional probability
density P(r|s,u) using a Gaussian model rather than
P(r|sj ,ui) in Equation1. Thus we introduceµs,z ∈ ℜ for
the mean service rating andσs,z ∈ ℜ for the spread of
service ratings. We defineP(r|s,u) as

P(r|u,s) = ∑
z∈Z

P(z|u)P(r; µs,zσs,z) (2)

where p(r; µ ,σ) = 1√
2πσ exp[− (v−mu)2

2σ2]. To obtain

P(z|u), we employ the expectation maximization
algorithm [36].

0

0.2

0.4

0.6

0.8

1

1.2

Tes
t S

et
 1

 (A
VG

)

Tes
t S

et
 1

 (p
LS

A
)

Tes
t S

et
 2

 (A
VG

)

Tes
t S

et
 2

 (p
LS

A
)

Tes
t S

et
 3

 (A
VG

)

Tes
t S

et
 3

 (p
LS

A
)

Tes
t S

et
 4

 (A
VG

)

Tes
t S

et
 4

 (p
LS

A
)

Tes
t S

et
 5

 (A
VG

)

Tes
t S

et
 5

 (p
LS

A
)

Tes
t S

et
 1

 (A
VG

)

Tes
t S

et
 1

 (p
LS

A
)

Tes
t S

et
 2

 (A
VG

)

Tes
t S

et
 2

 (p
LS

A
)

Tes
t S

et
 3

 (A
VG

)

Tes
t S

et
 3

 (p
LS

A
)

Tes
t S

et
 4

 (A
VG

)

Tes
t S

et
 4

 (p
LS

A
)

Tes
t S

et
 5

 (A
VG

)

Tes
t S

et
 5

 (p
LS

A
)

Fig. 2: Performance Comparisons on Average Prediction Errors

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Tes
t S

et
 1

 (A
VG

)

Tes
t S

et
 1

 (p
LS

A
)

Tes
t S

et
 2

 (A
VG

)

Tes
t S

et
 2

 (p
LS

A
)

Tes
t S

et
 3

 (A
VG

)

Tes
t S

et
 3

 (p
LS

A
)

Tes
t S

et
 4

 (A
VG

)

Tes
t S

et
 4

 (p
LS

A
)

Tes
t S

et
 5

 (A
VG

)

Tes
t S

et
 5

 (p
LS

A
)

Fig. 3: Performance Comparison on Non-Acceptability Rate

Finally, the expected probability of ratingr i > c is
calculated using Equation (2) as follows. Equation (3) is
used to estimate the predictive behavior of services.

P(rui ,sj > c) = ∑
r>c

P(r|u,s) (3)

In order to evaluate our model in Equation1, we first
run our model on MovieLens [37]. To simplify the
experiments, we used five base-test set split data instead
of a full data set. The split data consists of 80

The results are shown in figure2. To evaluate our
method, we define a prediction to be acceptable if the
difference between our prediction and the actual rating is
less than or equal to 1.0. That is, we assume that our
prediction is acceptable if it is within a certain range, here
between 0.0 and 1.0). The comparison is shown in figure
3. From the results in figure2 and figure3, our model
shows reasonably good performance compared to the
averaging method.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 2L, 729-739 (2013) /www.naturalspublishing.com/Journals.asp 735

Tes
t S

et
 1

 (A
VG

)

Tes
t S

et
 1

 (p
LS

A
)

Tes
t S

et
 2

 (A
VG

)

Tes
t S

et
 2

 (p
LS

A
)

Tes
t S

et
 3

 (A
VG

)

Tes
t S

et
 3

 (p
LS

A
)

Tes
t S

et
 4

 (A
VG

)

Tes
t S

et
 4

 (p
LS

A
)

Tes
t S

et
 5

 (A
VG

)

Tes
t S

et
 5

 (p
LS

A
)

Tes
t S

et
 1

 (A
VG

)

Tes
t S

et
 1

 (p
LS

A
)

Tes
t S

et
 2

 (A
VG

)

Tes
t S

et
 2

 (p
LS

A
)

Tes
t S

et
 3

 (A
VG

)

Tes
t S

et
 3

 (p
LS

A
)

Tes
t S

et
 4

 (A
VG

)

Tes
t S

et
 4

 (p
LS

A
)

Tes
t S

et
 5

 (A
VG

)

Tes
t S

et
 5

 (p
LS

A
)

i j

n
jip ,

1
, jip

n
jit ,

1
, jit

i j

n
jip ,

1
, jip

n
jit ,

1
, jit

Fig. 4: A Net Based Model to analyze non-functional behavior

We also propose a methodology for analysis of
non-functional behavior of services. To this end, we adopt
a net-based quantitative analysis technique in a service
oriented environment. Quantitative analysis enables one
to trace, analyze and predict quantitative information, by
examining its numerical, measurable characteristics such
as performance factors.

The quantitative parameters for non-functional
behavior are classified as performance parameters and
reliability parameters defined as follows.

–efficiency parameteris the (average) time or cost to
execute a given set of services

–Reliability parameteris the probability of entering and
successfully executing a given service

The execution time or cost can be measured by
monitoring services. The probability of unsuccessful
services depends on the service consumer’s criterion. A
service consumer may define a service as a success
whenever they get output regardless of the quality or
whenever they experience a particular level of defects in
the service. The probability can be assessed from past
experience of services by testing the same services
several times.

Figure 4 illustrates a net structure to be evaluated
using quantitative analysis. We represent the target in our
communicative model to be transformed into a Petri-Net
based model, so any service in our approach can be
represented in the same way as in figure4. Oval objects
connected to a rectangle object representn service
candidates available from an input specification objecti.
The notation pn

i, j over the dashed arrow indicates the
probability that the service n can be executed
successfully. Hence,pn

i, j represents service reliability. The
notation tn

i, j represents performance parameters such as
cost and execution time.

Provided there is no information about the probability
distribution of any inputs, then the assumption of our
model is that the probabilitypn

i, j of successful service
execution is determined by the expected ratings from
Equation (3). Obtainingtn

i, j is more complex. Assume that
a service provider posts their particular service

performance using a parameterT, we obtaintn
i, j using

Equation (4)

tn
i, j = T +delay= T +T · λe−λ (Er|s,u))

K
(4)

whereλ = 1
σr,s

, K is constant,E(r|s,u) is an expected
service rating from a useru for a services, andσr,s is the
standard deviation for the probability distribution of
ratingsr on a services.

6 Implementation and Evaluation

6.1 Implementation

We built a framework to support trustworthy service
oriented workspace sharing environment based on Java
6.1 and Apache Axis 2.2. Our framework is built as a
standalone application and is composed of the following
components.

–Process Engine’s primary purpose is to create,
manage, and enact a process instance. The Process
Engine instantiates the process after it loads up the
definition. Once instantiated, a process is executed
and monitored by theProcess Engine.

–Cockpit is a communication interface connecting a
user to theProcess Engine. It couples a user and an
engine by transmitting the user’s decision on process
creation and enactment to theProcess Engine.

–Message Interpreterhandles message generation
based on our communicative model.Message
Interpreter is connectedProcess Engineand deliver
messages toService Connector.

–Service ConnectorconnectsMessage Interpreterwith
published Web Services. Messages generated from
Message Interpreteris translated into SOAP format
throughService Connector.

6.2 A Case Study

In this section, we discuss how our proposed model
enables service oriented workspace sharing. To this end,
we developed a case study of a die casting process for
thermoelectric fan housing, from American steel
founder’s society [38]. The die casting process are
composed of several sub tasks such as ‘Design
Requirements’, ‘Die Design’, and ‘Part Analysis’, and
’Casting Product’. We assume each task is assigned to
different workers and they share their workspace through
service oriented environment. WorkerA works for
product design and is assigned ‘Design Requirements’.B
design Dies considering overflow vent and gates.C
selects casting materials with numerical methods.D
finally do casting works with product design and die
design. Figure5 illustrates a die casting collaborative

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

736 W. Kim: A Trustworthy Service Computing Framework

Fig. 5: A Die Casting Design Process

process. Based on figure5, B and C can work
concurrently whileD should wait untilB andC complete
their tasks.

Suppose later thatD found a problem on the final
product as the final product fails in a mechanical stress
testing. After a certain diagnosis,D concludes that the
product’s strength is not uniformly distributed and some
parts of a product is too weak to pass the stress testing.
Then D report the problem and diagnosis to other
workers. Then theyB founds the overflow design is
wrong and some parts gets hot too early. In such case,B
can notify the problem toA as the problem can be from
wrong product design. SoB should be able to notify
redesign is needed toA, while canceling all the work done
in ‘Design Dies’ task and ‘Part Analysis’ task. Our
communicative model can support all the needed
interactions on the service oriented environment. Below is
a sequence of messagesm1, m2, m3, andm4 from B andA.
Throughm1 and m2, B cancels ‘Part Analysis’ task and
‘Design Dies’ task. Usingm3, B asks redesign of the
product toA. A answer yes withm4.

m1 = < declare,hasStatus(DesignDies),

f inished =⇒
<En f orcedRollback,DesignDies>

initial >

m2 = < declare,hasStatus(PartAnalysis),

f inished =⇒
<En f orcedRollback,PartAnalysis>

ready>

TrimDies

Design
Requirements

Part Analysis

Die Design

Selected

Material

Dies

Casting

Product

Finished
Product

CP1

CP2

CPm

Dummy

DD1 DD2 DDn

Dummy

...

...

Selection

Roll Back with

pi,j 1.00

Transition

with pi,j = 1.00

Transition with

p 1.00

Task with

t i,j= 0

Task with

ti,j > 0

Finished Task

Finished Transition

TrimDies

Design
Requirements

Part Analysis

Die Design

Selected

Material

Dies

Casting

Product

Finished
Product

CP1

CP2

CPm

Dummy

DD1 DD2 DDn

Dummy

...

...

Selection

Roll Back with

pi,j 1.00

Transition

with pi,j = 1.00

Transition with

p 1.00

Task with

t i,j= 0

Task with

ti,j > 0

Finished Task

Finished Transition

Fig. 6: A Die Casting Design Process

m3 =< propose,hasStatus(DesignRequirements),

f inished =⇒
<En f orcedRollback,DesignRequirements>

initial >

m4 =< accept,hasStatus(DesignRequirements),

f inished =⇒
<En f orcedRollback,DesignRequirements>

initial >

6.3 Evaluation of Trustworthiness

In this section, we apply our trust model to the scenario
depicted in figure5. The prediction has three phases.
First, we design service behaviors based on service
capability published in the form of OWL or RDF. For the
die casting process example, figure5 present a service
behavior. The next phase is to build the dynamic service
behavior. In the second phase, new properties are added
such as rollback and selection steps with transition
probabilities and transition costs. Figure6 illustrates the
dynamic service behavior from the design of figure5.

The available services are also associated with
performance parameters based on our trust model. Since
‘DieDesign’ and ‘CastingProduct’ are about to be

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 2L, 729-739 (2013) /www.naturalspublishing.com/Journals.asp 737

outsourced, their performance values are set to 0.0 and
their tasks are filled with dots as a placeholder for the
future relationship. The grey data and task objects
indicate the completed task. In figure6, we are in the
middle of execution of the whole process, where the task
‘PartAnalysis’ is finished and the two tasks ‘DieDesign’
and ‘CastingProduct’ need to be associated with
particular services. The reliabilities and performances can
be obtained through our trust model presented in the
section5.

The third phase of our prediction is to estimate the
trustworthiness of the process. It is also capable of
offering analysis aimed at identifying the impact of
various factors. To this end, we run simulations based on
available choices by building the corresponding stochastic
Petri net models. In order to evaluate the scenario in
figure 5, we randomly chose 100 items for bothDDi and
CPi from MovieLens data to generate user satisfaction for
eachDDi andCPi . The average rating for user satisfaction
is 3.41. We assume the service consumer satisfies the
service outcome when the consumer’s rating is over 3.5.
Failure ratings are set to 2.5. The failure rate indicates the
expected probability that the service delivery brings a
rating less than 2.5.

For evaluation, we identify three types of evaluation
criteria: 1) the least failure rate (LF), 2) the best
satisfaction (BS), and 3) the maximal quality (MQ). LF
specifies the selection with the minimum failure
probability, BS indicates the selection for the best rated
service, and MQ gives the selection for maximum
probability satisfying a certain rating. In order to simplify
the evaluation, we assume that all the service providers
post the same values for performance factors such as cost
and delivery time. Table4 shows the prediction results
based on each criterion. Based on Table4, selections may
vary based on criteria. Table5 illustrates the ranking
differences between predictions and actual results.
Ranking provide the ordered list of service
recommendation. Therefore ranking correctness is also
important as ranking affects selection results. From the
samples tested, the overall ranking errors from our
approach are measured significantly lower than general
averaging methods. These results demonstrate that our
trust methods are reasonably acceptable for predicting
trustworthiness.

7 Conclusion

In this paper, we present a new framework providing
workspace sharing for service-oriented computing. Our
work focuses on issues of service trustworthiness through
message semantics. It provides a new, solid foundation
for reliable service-oriented computing for a collaborative
workspace sharing environment. In particular, we
developed a communicative model and a trust model. We,
then, propose a methodology for predicting service
behavior and hence enhancing system trustworthiness.

Table 4: Failure Rate and Quality Differences in various
selection criteria

Criteria Failure Rate(%) Quality
Difference(%)

BS 0.72 12

LF 0.68 15

MR 0.66 19

Table 5: Rank difference comparison on our method and
averaging method

Criteria Rank Difference
in Trust Model

Rank Difference
in Averaging
Method

Failure Rate 2.4 4.1

Quality Rate 3.1 6.2

Based on the proposed methodology, service behavior
is analyzed stochastically. Adopting our frame-based
approach enables partners to be monitored and enacted so
as to verify the service status as valid through purely
semantic dialogue interpretation. Moreover, our proposed
approach is designed in a platform neutral way, retaining
the spirit of a service-oriented paradigm. We believe that
our approach will satisfy the need of users to control
ability and customization availability in Web Services.

Our implementation is based on a standalone
server-application. Thus, collaboration based on service
computing and its reliability can be realized by using our
proposed framework. Moreover, our proposed approach
can also be integrated into current legacy systems or
existing Web Service based standards, as we have
proposed platform neutral and message oriented data
formats. Since our messages follow the SOAP format and
since the semantics based on OWL are integrated into
messages, software modules with any inference engine
can be implemented to support the proposed method. In
addition, we provide an evaluation based on the example
of a design and manufacturing domain. Although we
conducted experiments on the artificial data sets, we
believe that our work will contribute to the goal of
realizing true service oriented collaboration over broad
ranges of collaborative process domains.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

738 W. Kim: A Trustworthy Service Computing Framework

Acknowledgement

This work has been supported by Dongguk University
Research Fund DRIMS 2012.
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] M. K. Nair, S. M. Kakaraddi, K. M. Ramanarayan, V.
Gopalakrishna, Proceedings of the 2009 IEEE International
Conference on Services Computing, 528-531 (2009).

[2] R. Kubert, S. Wesner, Proceedings of the 2012 IEEE Ninth
International Conference on Services Computing, 578-585
(2012)

[3] F. Baader and W. Nutt, The description logic handbook:
theory, implementation, and applications, Cambridge
Uniersity Press, 43-95 (2003).

[4] A. Davis, D. Zhang, Proceedings in the fourth international
symposium on multimedia software engineering, 48-55
(2002).

[5] J. Huang, C. Lin, X. Kong, Y. Zhu, Proceedings of the 2011
IEEE International Conference on Services Computing, 184-
191 (2011).

[6] X. Ye, M. Gao, Proceedings of the 2012 IEEE Ninth
International Conference on Services Computing, 242-249,
(2012).

[7] A. Lazovik, M. Aiello, and M. Papazoglou, Proceedings
of the 2nd international conference on service oriented
computing, 94-104 (2004).

[8] W. Ma, V. Tosic, B. Esfandiari, and B. Pargurek, Proceedings
in international workshop on Business services networks, 7-7
(2005)

[9] L. J. Zhang and D. Anrdagna, Proceedings in the 2nd
international conference on Service oriented computing, 173-
182 (2004).

[10] L. Baresi, C. Ghezzi, and S. Guinea, Proceedings in the 2nd
international conference on service oriented computing, 193-
202 (2004).

[11] V. K. Shanbhag Proceedings of the 8th international SPIN
workshop on Model checking of software, 252-271 (2001).

[12] R. Baldwin and M. J. Chung, IEEE Computer, 54-63, 1995.
[13] M. J. Chung, P. Kwon, and B. Pentland, ASME Transaction

Journal of Mechanical Design,124, 364-374 (2002).
[14] S. Banerjee, S. Basu, S. Garg, S. Garg, S. Lee, P. Mullan,

P. Sharma, Proceedings of the 3rd international workshop on
Middleware for grid computing, 1-6 (2009).

[15] A. Artale, E. Franconi, Proceedings of the sixth international
workshop on Temporal Representation and Reasoning, 2-5
(1999)

[16] D. Kong, Y. Zhai, Proceedings of the 2012 International
Conference on Cloud and Service Computing, 176-179
(2012).

[17] Z. Malik, A. Bouguettaya, The VLDB,18, 885-911 (2009).
[18] J. Yao, W. Tan, S. Nepal, S. Chen, J. Zhang, D. DeRoure,

C. Goble, Proceedings of the 2012 IEEE Ninth International
Conference on Services Computing, 454-461 (2012).

[19] A. Hamalainen, P. Jappinen, J. Porras, Proceedings of the
Fourth International ICST Conference on Communication
System Software and Middleware,20 (2009).

[20] K. Yang, A. Galis, H. Chen, Mobile Networks and
Applications, 15, 488-510 (2010).

[21] T. Hofmann, Proceedings in the 22nd annual international
ACM SIGIR conference on Research and development in
information retrieval, 50-57 (1999).

[22] W. Liu, T. Pang, H. Qu, Proceedings of the Management and
Service Science, 1-3 (2009).

[23] A. Lazovik, M. Aiello, and M. Papazoglou, Proceedings
in the 2nd international conference on service oriented
computing, 94-104, (2004).

[24] L. Baresi, C. Ghezzi, and S. Guinea, Proceedings in the 2nd
international conference on service oriented computing, 193-
202 (2004).

[25] M. D. Sadek, Proceedings in ESCA/ETRW Workshop on
the Structure of Multimedia Dialogue, 1-29 (1999).

[26] R. G. Smith, IEEE Transactions on Computers,C-29, 1104-
1113 (1981).

[27] W. J. v. d. Heuvel and Z. Maamar, Communications of the
ACM, 46 (2003).

[28] T. Finin, R. Fritzson, D. McKay, and R. McEntire,
Proceedings in the third international conference on
Information and knowledge management 465-463 (1994).

[29] H. Weigand and W. J. v. d. Heuval, International Journal of
Electronic Commerce,2, 45-66, (1999).

[30] M. J. Wooldridge, IEEE Proceedings Software
Engtineering,144, 26-37 (1997).

[31] Y. Labrou and T. Finin, LNCS,1365, 209-214 (1998).
[32] W. Kim and M. J. Chung, Proceedings in the 6th

international conference on Web Information System
Engineering, 217-230 (2005).

[33] J. Shearle, Syntax and Semantics: Speech Acts,3, 59-82
(1975).

[34] T. Hofmann, ACM Transactions of Information Systems,
22, 89-115 (2004).

[35] K. Bhar, C. Fournet, and A. D. Gordon, Proceedings in
the 11th ACM conference on Computer and communication
security, 268-277 (2004).

[36] H.C. Kim, Z. Ghahramani, IEEE Transactions on Pattern
Analysis and Machine Intelligence,28, 12, 1948-1959
(2003).

[37] B. N. Miller, I.vAlbert, S. K. Lam, J. Konstan, J. Riedl,
Proceedings of the 8th international conference on Intelligent
user interfaces, 263-266 (2003).

[38] M. J. Chung, P. Kwon, B. Pentland, and S. Kim, Proceedings
in 2002 ASME International Mechanical Engineering
Congress & Exposition, 33-42 (2002).

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 2L, 729-739 (2013) /www.naturalspublishing.com/Journals.asp 739

Woongsup Kim received
the B.S. degree in Computer
Engineering from Seoul
National University in 1998,
M.S.E. degree in Computer
and Information Science from
University of Pennsylvania
in 2001 and Ph.D. degree
in Computer Science from
Michigan State University

in 2006, respectively. Since 2007, he has been an
Assistant Professor of Department of information and
communication engineering at Dongguk Univeresity.
Research interests include software engineering, semantic
web, Service oriented architecture, and cloud computing.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Background
	Considerations for Workspace Sharing in Service Computing Framework
	A Communicative Model for Workspace Sharing in Service Oriented Environment
	Trustworthy Workspace Sharing for Service-Oriented Environment
	Implementation and Evaluation
	Conclusion

