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Abstract: The existence and localization of strong (Caéatthory) solutions is proved for a second-order Floquet problem in a Banach
space. The result is obtained by combining a continuation principle together with a bounding (Liapunov-like) functions approach. The
application of the Scorza—Dragoni type technique allows us to use strictly localized transversality conditions.
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1. Introduction reflexivity) and let us consider the Floquet boundary value
problem (b.v.p.)

The main aim of this paper is to present a theorem concern-ifo(:)f;;l‘?g)[g(tT)]+ B(t)z(t) € F(t,x(t), (1), )

ing the existence and localization of solutions to second- h AR .

order Floquet boundary value problems for upper—C@mﬂbryx(T) = Mz(0), #(T) = N(0).

differential inclusions in Banach spaces. For some relatedhroughout the paper, we assume (for the related defini-

references, see e.g. [6, 7] and those quoted in [3]. The Nnowjons, see the next Section 2) that

elty consists in the application of strictly localized Liapunov-

type bounding functions guaranteeing the transversality béli) 4, B:[0,7] — L(E) are Bochner integrable, where

haviour of trajectories on bound sets, i.e. the fixed points ~ £(E) stands for the Banach space of all linear, bounded

free property required in the applied degree arguments. transformationsL: £ — E endowed with the sup-

The first-order problems were considered in [6,7]. Th nqrm, .
same second-order problem was already studied by og}i’i) F: [IO" T} x dE x E — E'is an upper-Caragodory
selves via a bound sets approach in [3]. The conditions ]T/[u thva uz énap.pénjg\;j naul
concerning bounding functions were not however imposetiii) 44> N € £(E) with M non-singular.
directly on the boundaries of bound sets like here, but at | et us note that in the entire paper, all derivatives will

some vicinity of them. On the other hand, such a strict lo-pe always understood in the sense dédfret, and by the
calization, allowed by means of the Scorza—Dragoni typemeasurability, we mean the one with respect to the Lebesque
technique developed in [15], demands a higher regularity,;-a|gebra in0, 7] and the Boreb-algebra ink.
of applied bounding functions which brings here some ob-  The notion of a solution will be understood in a strong
structions. Nevertheless, our result is new even in a singlegj e, Caratieodory) sense. Namely, bysalutionof prob-
valued case of equations. lem (1), we mean a functiom: [0,7] — E whose first
Hence, letE be a separable Banach space (with thederivative(-) is absolutely continuous and satisfies (1),
norm|| - ||) satisfying the Radon—Nikodym property (e.g. for almost allt € [0, 7.
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The solution of the b.v.p. (1) will be obtained as the A multivalued mappingF': X — Y is calledupper
limit of a sequence of solutions of approximating problemssemicontinuougshortly, u.s.c.) if, for each open subset
that we construct by means of a Scorza—Dragoni type ret/ C Y, the sef{x € X | F(x) C U} is openinX.

sult developed in [15]. The approximating problems will Let J C R be a compact interval. A mappinfg: J —
be treated by means of the continuation principle devel-Y" with closed values, wherg is a separable metric space,
oped in [3]. is calledmeasurabldf, for each open subséf C Y, the

For the main result (Theorem 1) in Section 3, we col-set{t € J | F(t) C U} belongs to ar-algebra of subsets
lect all necessary technicalities and applied tools in theof J.
next Section 2. Concluding remarks in Section 4 concern If F: J — Y is compact-valued and = FE is a sepa-
an illustrative example of the application of Theorem 1. rable Banach space, then the notion of measurability coin-
Since the applied bounding functidntakes the fornV (z) := cides with those of strong measurability (cf. e.g. [11, The-
% (||:c||2 — r) and since one condition in Theorem 1 deals orem 1.3.1]) as well as of weak measurability (cf. e.g. [1,
with V' € C?(E,R), we only restrict ourselves there to Proposition 1.3.45.4]). For the definitions and more details,
Hilbert spaces, wher& (z) = Id. In particular, we take ~S€€ €.9.[1,10,11]. _
E := L*(£2), where(? is a suitable nonempty, bounded A multivalued mapping”: X — Y is calledcompact
domain inR”. if the setF (X) = (J,cx F'(x) is contained in a compact
subset oft” and it is calledquasi-compacif it maps com-
pact sets onto relatively compact sets.
. . The relationship between upper semicontinuous map-
2. Preliminaries pings and quasi-compact mappings with closed graphs is
expressed by the following proposition (see, e.g., [11]).
Let E'be a Banach space having the Radon-Nikodym prop-
erty (see e.g. [13, pp. 694-695]) ajddT] c Rbe aclosed Proposition 1.Let X, Y be metric spaces antl: X — Y’
interval. By the symboL' ([0, 7], E), we shall mean the be a quasi-compact mapping with a closed graph. Then
set of all Bochner integrable functions[0,7] — E. For  isu.s.c.
the definition and properties, see e.g. [13, pp. 693—-701]. ) . )
The symbolAC' ([0, 7], E) will denote the set of func- Let J = [0,7] be a given compact interval. A multi-
tions : [0,T] — E whose first derivativei(-) is abso- ~ valued mapping™: J x X — Y, whereY is a separable
lutely continuous. Theti € L'([0, 7], E) and the funda- Banach space, is called apper-Caratieodory mappingf
mental theorem of calculus (the Newton—Leibniz formula) the mapF'(-, z): J — Y is measurable, for alt € X, the
holds (see e.g. [1, pp. 243—-244], [13, pp. 695-696]). In theMap F(t,-): X — Y isu.s.c., foralmostafi € ./, and the

sequel, we shall always considé€'! ([0, 7], E) as asub-  SEtF (¢, z) is compact and convex, for dil, x) € J x X.
space of the Banach spacé ([0, 7], E). The technique that will be used for proving the exis-

GivenC' c E ande > 0, the symbolB(C, ¢) will tence and localization result consists in constructing a se-

denote, as usually, the s6t+ B, whereB is the open  duence of approximating problems. This construction will
unit ball in E. i.e. B — (€ E,| 2] < 1}. In what be made on the basis of the Scorza—Dragoni type result in

follows, the symbolu will denote the Lebesque measure [15] (cf. [3]).

onR. Definition 1. An upper-Caratbodory mappingd: [0, T'] x

r E',:m. e'aghlL 2€S§(§hEthatE), there exist uniqud.i; € X x X — X is said to have the Scorza—Dragoni property

(B),i,5 =12, if there exists a multivalued mappidg: [0, 7] x X x X —o

L(z,y) = (Lu1z + L1oy, Loyx + Lagy) X U{0} with compact, convex values having the following
' properties:

where(z,y) € E x E. For the sake of simplicity, we shall .

use th(e no'zation () Fo(t,z,y) C F(t,z,y), forall (¢t,z,y) € [0,T]x X x

I— (LH L12> (ii) if w,v: [0, 7] — X are measurable functions witlit) €
T\ Loy Lao - F(t,u(t),u(t)), for a.a.t € [0,T], then alsov(t) €
Fo(t,u(t),u(t)), fora.a.t € [0,T],
Let £ be the Banach space dualffoand let us denote  (jii) for everys > 0, there exists a closed. C [0,7]

by (-,-) the pairing (the duality relation) betweén and such thatu([0, 7]\ I.) < e, Fy(t,z,y) # 0, for all

E' ie., forall® € E' andz € E, we putd(z):=(®, z). (t,z,y) € I.x X x X, andFy is u.s.c. onl. x X x X.
We shall also need the following definitions and no-

tions from multivalued analysis. Let, Y be two metric The following two propositions are crucial in our in-

spaces. We say thatis amultivalued mappinfrom X to vestigation. The first one is almost a direct consequence
Y (written F: X — Y) if, for everyz € X, a nonempty  of the main result in [15] (cf. [5] and [7, Theorem 2.1]);
subsetF'(z) of Y is given. We associate with' its graph  precisely, the quoted results deal with a multivalued map
I'r, the subset ofX x Y, defined byl'r := {(z,y) € F:[0,T] x X — X, but it is straightforward to see that
X xY |yeF(x)}. they are still valid in this case, whetE is defined on
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[0,7] x X x X. The second one allows us to construct

a sequence of approximating problems of (1).

Proposition 2. Let X be a separable Banach space and

F:[0,7T] x X x X — X be an upper-Caratiodory map-

ping. If F is globally measurable or quasi-compact, then

F has the Scorza—Dragoni property.

Proposition 3. (cf. [7, Theorem 2.2]Let X be a Banach

E) be such thal] f,,(¢)|] < a(t),

Let{f,} C L([0,T], E)
t), for a.a.t € [0,7], alln € N and

{0} < elt), fo
suitablea, ¢ € L([0,T],R), then (cf. [11])

([ 0e)) < o

Moreover, for all subset® of F (see e.g. [4]),

@)

space and< C X a nonempty, open, convex, bounded setY(Uxe[o,11A2) = 7(£2).

such thatd € K. Moreover, let: > 0 andV: X — R
be a Féchet differentiable function with Lipschitzian in
B(0K,¢) satisfying

(H1) V] 95 = 0, B
(H2) V(z) <0,forall z € K,
(H3) |V (z)|| > 9, forall z € 0K, whered > 0 is given.

Then there exists a bounded Lipschitzian function
¢:B(0K,e) — X
such that(V,, (x)) = 1, for everyz ¢ B(9K,¢)

Example 1Let us note that the function — ¢(x)||Vz||,
where¢ andV,, occur in Proposition 3, is Lipschitzian and

bounded inB(9K, <). The symbolV/, denotes as usually
the first FEchet derivative o atz.

Let us now introduce the function

pu($2) : {u)rﬁiﬁg( S{lél;][ Y{wn () }n) +y{n () In)],
4)

mOdC({wn}n) + mo%({wn}n))a
E), where the or-

defined on the bounde@ c C([0, 7],
dering is induced by the positive cone R¥ and where
mod:({2) denotes the modulus of continuity of a subset
2 c O([0,T], E).* It was proved in [3] that the function

p given by (4) is an m.n.c. i@} ([0, T, E) that is mono-
tone, invariant with respect to the union with compact sets
and regular.

Definition 3. Let £ be a Banach space an C E. A
multivalued mapping”: X — E with compact values is
called condensing with respect to an m.rniqshortly, 5-

For more details concerning multivalued analysis, seecondensing) if, for every? C X such that3(F(12)) =

e.g.[1,10,11].

Definition 2. Let N be a partially ordered setf be a Ba-
nach space and leP(E) denote the family of all subsets
of E. A functiong: P(E) — N is called a measure of
non-compactness (m.n.c.)iif B(co 2) = 3(12), for all

{2 € P(E), whereco {2 denotes the closed convex hull of

. A m.n.c3is called:

(i) monotone if3(£2;) < B(§2), forall 2, C 2, C E,
(i) nonsingular ifg({z} U 2) = B(£2), forall z € F and
NCE,

(iii) mvarlant with respect to the union with compact sets © #(t) = C(t)z(t) + f(1),

if (K U 2) = p(£2), for every relatively compact
K c Fandevery? C E,

(iv) regular wheng(£2) = 0 if and only if {2 is relatively
compact.

It is obvious that the m.n.c. which is invariant with respec
to the union with compact sets is also nonsingular.

The typical example of an m.n.c. is thkausdorff mea-
sure of noncompactnessdefined, for allf2 C E by

1(02) :
inf{e > 0| 3xy,...

,xn € E: 2 C U B({x;},e)}-

X
The Hausdorff m.n.c. is monotone, invariant with respect
to the union with compact sets and regular. Moreover, if

L e L(F)and{? C E, then (see, e.g., [11])

Y(LE2) < ||ILl £(z)v(92). ()

B(£2), it holds that(?2 is relatively compact.

A family of mapping&': X x [0, 1] — F with compact
values is called3-condensing if, for every? C X such
that 3(G(£2 x [0,1])) > B(£2), it holds thatf? is relatively
compact.

It will be also convenient to recall some basic facts
concerning evolution equations. For a suitable introduc-
tion and more details, we refer, e.g., to [8,12,16].

Hence, letC: [0,7] — L(E) be Bochner integrable
and letf € L([0,T],E). Givenz, € E, consider the
linear initial value problem

z(0) = xo. (5)

It is well-known (see, e.g., [8]) that, for the uniquely solv-
able problem (5), there exists the evolution operator

{U(tv 3)}(t,s)€Av

twhereA := {(¢,5):0 < s <t < T}, such that

U(t,s) € L(E) and ||U(t,s)| < s lomlldr

forall (¢, s) € A; (6)

in addition, the unique solution(-) of (5) is given by

=U(t,0)xo + /Ot U(t,s)f(s)ds, € [0,T].

1 The m.n.c. mod(£2) is a monotone, nonsingular and alge-
braically subadditive ot'([0, T, E) (cf. e.g. [11]) and itis equal
to zero if and only if all the elements € (2 are equi-continuos.
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GivenD € L(E), the linear Floquet b.v.p. where¢, h andC are defined by relations (12), (13) and
R ) (14), respectively, angy € E x E. Itis easy to see that
2(t) = C(B)z(@) + £(2), } @ M) < 1+ |A®)] + | B()] and, according to (6), we
z(T') = Dx(0), obtain

associated with the equation in (5), satisfies the foIIowingHU(t )||<ef'oT(HIIA(t)IHIIB(t)II)dt
property. P = ’

Lemma 1. (cf. [4]) If the linear operatorD — U(T,0) is
invertible, then (7) admits a unique solution given, for all U (t, )| < elo A+HIA@®I+IB@®)) dt
t € [0,77, by T ’

forall (t,s) € A.

Consequently, forall, j =1, 2,

forall (¢,s) € A. a7)
1 T N
z(t) = U(t,0) {D - U(T, 0)} / U(T,7)f(r)dr Moreover, if we assume th@ — U (T',0) is invertible,
. 0 denote
+/ Ut,7)f()dr. (8) A —1._ [ Kn Ki2
o [D-U(T,0)] " = Kot Koy
Example 2Denoting and put
A= el 19O P — || [D — U(T, 0)] ] k=D - UT,0)], (18)

we obtain, in view of (6), (8) and the growth estimate im-

< . .
posed onC(t), the following inequality for the solution then | Ki;[| < k, fori,j = 1,2, and the solution:(:) of

(10) and its derivative:(-) take, for allt € [0, T, the forms

z(+) of (7): .
T _
Jef@)] < AT+ 1) [ 15)lds, @ w040 [ V@i
T
Now, consider the second-order linear Floquet b.v.p. +A2(t) /0 U (T, 7) f(7) dT
E(t) + A()x(t) + B(t)z(t) = f(1), t
fora.a.t € [0,7], } ’ (10) +/ Uia(t,7)f(7) dr, (19)
o(T) = Mx(0), #(T) = Ni(0), o ’
whereA, B are Bochner integrable anfde L!([0,T], E), T
and let (1) = As(t) / Ura(T, 7)£(7) dr
(@ llexe == Vlzl* + [ly||*.forall z,y € E. °
Problem (10) is equivalent to the following first-order +A4(t)/ Uso (T, 7)f(7) dr

linear one .0
£() + C(E(E) = h(t»} + [ valt.r) st ar (20)
fora.a.t € [0,7], (11) 0
¢(T) = DE(0), where
where Ai(t) := U (t,0) K11 + Upa(t,0) Koy,
&= (z,y) = (z,2), (12) Aa(t) == Un1(t,0) K12 + Uia(t,0) Kaa,
h(t) _ (07 f(t)), (13) Ag(t) = UQl(t, O)Kll + ng(t, O)Kgl,

Ay(t) := Ui (t,0) K12 + Uza(t,0) Kaa,

C(t): ExE — ExE, (x, —y, B(t)x + A(t)y)(14
(¥ (@9) — (~y, Blt)e () 14) forall ¢ € [0, 7. It holds that

and
- . Jo AHIA@DI+IB@)) dt
D:EXE—ExE, (ry)— (Mz,Ny). (@5 IAiDl=< 2ke :
fori=1,2,3,4andt € [0,T]. (21)
Let us denote, for allt, s) € [0,T] x [0,T], by
U U If there existsy € L1([0,T7,[0,00)) suchthat| ()| <
U(t,s) = ( 1t ) 12(t78)) a(t), for a.a.t € [0,7T7], then it immediately follows from
Uni(t, s) Una(t, 5) Remark 2 that the following estimates hold for each solu-
the evolution operator associated with tion z(-) of (10) and its derivative:(-):
(t) + C()E() = h(t), fora.ate0,T], T
§(0) + C(HE(H) = h(t) 0,7] } (16)  |xz(t)|| < Z (4Zk + 1)/ a(s)ds
£(0) = &, 0
(© 2012 NSP
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and
T
lz@)| < Z (4Zk + 1)/ a(s)ds,
0
where
7 .— o IAG+IB(s)[+1) ds (22)
with k& defined in (18).

solvability and localization of a solution of the multivalued
Floquet problem (1).

For this purpose, let us consider again the single-valued
Floquet b.v.p. (10) which is equivalent to the first-order
Floguet b.v.p. (11), provided, h(-), C(-) and D are de-
fined by relations (12)—(15). Moreover, [Et(t, s) be the
evolution operator associated with (16).

The proof of the main result (cf. Theorem 1 below) Theorem 1. Consider the Floguet b.v.p. (1), under con-
will be based on the following slight modification of the ditions (1;)—(1:;;), and suppose that" has the Scorza—
continuation principle developed in [3]. Since the proof Dragoni property. Assume that an open, convex, bounded

of this modified version differs from the one in [3] only
slightly in technical details, we omit it here.

Proposition 4. Let us consider the b.v.p.

Z(t) € (t,z(t), £(t)), fora.a.t € [0,T],

(23)
T €S,
wherey: [0, T] x E x E — E'is an upper-Carathodory
mapping ands ¢ AC*([0,T], E). LetH: [0, T]x Ex Ex
E x E x [0,1] — E be an upper-Caratkodory mapping
such that

H(t,c,d,c,d,1) C p(t,c,d), forall (t,¢,d) € [0, T|xExE.

Moreover, assume that the following conditions hold:

(i) There exist a closed sé C S and a closed, con-
vex set) C C*([0,T], E) with a non-empty interior
Int @Q such that each associated problem

i(t) € H(t,x(t),2(t), q(t), 4(t), N), }
fora.a.t € [0, 7],
T € Sl,

whereqg € @ and A € [0,1], has a non-empty, convex
set of solutions (denoted (g, \)).

(i) For every non-empty, bounded set- Ex Ex Ex E,
there existy, € L'(]0, 7], [0, 00)) such that

||H(t’xayauav7/\)” S I/Q(t);

fora.a.t € [0,7] and all (z,y,u,v) € 2 andX €
[0,1].

set K C FE containing0 exists such thal/0K = 0K.
Furthermore, let the following condition&;)—(2;,) be
satisfied:

(2;,) D — U(T,0) is invertible.

(20) 7 (F(t, 21 x 22)) < g(t) (7(21) +7(22)), fora.a.
t € [0,7] and each bounded),, 2> C FE, where
g € L*([0,T],[0,00)) and+y is the Hausdorff m.n.c.
inE.

(2;::) For every non-empty, bounded C E, there exists

v € LY([0,T],]0,00)) such that
IE @z, )| < velt),

fora.a.t € [0,7]and all (z,y) € 2 x E.
(2i») The inequality

2elo (LHIAM+IB®)]) dt

% (4kefoT(1+HA(t)II+HB(t)H)dt + 1)

(24)

Xl 21 j0,77,0,00)) < 1
holds, where is defined(# (08).
Furthermore, let there exist > 0 and a functionV €
C?(E,R), i.e. a twice continuously differentiable function
in the sense of Echet, satisfying (H1)—(H3) with Echet

derivativeV” Lipschitzian inB(9 K, ).2 Moreover, let there

existh > 0 such that
<Vx(v),v> > 0, forallz € B(OK, h), v € E, (25)

whereV, (v) denotes the second&ehet derivative of at

(iii) The solution mapping is quasi-compact and-condensing in the direction(v,v) € £ x E. Finally, let

with respect to a monotone and nonsingular m.p.c.
defined orC ([0, T, E).

(iv) For eachq € @, the set of solutions of the problem
P(q,0) is a subset ofnt Q, i.e.%(q,0) C Int Q, for
all g € Q.

(v) For each\ € (0, 1), the solution mappin@(-, A\) has
no fixed points on the boundady) of Q.

Then the b.v.p. (23) has a solutionGh

3. Main result

Combining the foregoing continuation principle with the

(Ve w) >0, (26)
and

<VMI,N7}> : <Vx,v> >0,

or

<VMQC,NU> = <V$,v> =0, (27)

and forallz € 0K, t € (0,T),v € E, A € (0,1) and
w € AF(t,xz,v) — A(t)v — B(t)x.

Then the Floquet b.v.p. (1) admits a solution whose
values are located k.

2 Since aC?-function V' has only a locally Lipschitzian

Scorza—Dragoni type technique (cf. Proposition 2), we areFrechet derivative/ (cf. e.g. [13]), we had to assume explicitly
ready to state the main result of the paper concerning théne global Lipschitzianity of” in a noncompact se8 (9K, ¢).
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Proof. Since the proof of this result is rather technical, it mappingH,,

1[0, T] x Ex Ex Ex E x[0,1] — E by

will be divided into several steps. At first, let us define the the formula

sequence of approximating problems. For this purpose, IetH (

us consider a continuous functien E — [0, 1] such that
T(z) = 0,forallz € E\ B(0K,¢), and7(z) = 1, for

all x € B(OK,
Remark 1), the function: £ — E, where

q@(m) _ {7‘(3;‘) - p(x) - ||V,]|, forallz € B(OK,e),
o, forallx € E\ B(0K,¢),

is well-defined, continuous and bounded. Siitg/) —
A(t)y and (¢,x) — B(t)xz are CaratBodory maps, on

[0, T|x E, they are also almost-continuous (cf. [14]). There

fore, the mappingt, =, y) — —A(t)y—B(t)z+F(t,z,y)

5). According to Proposition 3 (see also

t,z,y,u,v,\) = Hp(t, u,v )\)
)\Fo(t,u,’l))—p( )(XJm %) 'LL )
forall (¢,z,y,u,v,\) € [0,T]\ J x E* x [0,1],
—p(t) (X, (1) + 55) Blu),
forall (t,z,y,u,v,\) € J x E* x [0,1].

Let us show that, whem € N is sufficiently large, all
assumptions of Proposition 4 (fe(t, z, &) := F,,(t,x, &)—

A(t)z — B(t)x) are satisfied.
For this purpose, let us define the closed%et S; by
S = {z € AC*([0,T), E): 2(T) = Mxz(0), &(T) = N(0)}

has the Scorza—Dragoni property. So, we are able to find &nd let the sef) of candidate solutions be defined@s=

decreasing sequenéd,, } of subsets of0, 7'] and a map-

ping Fy : [0,T] x E x E — E U {0} such that, for all
m € N,
_N(Jm) < %’

=0, T)\ J,, is closed,

—(t,z,y) — —A(t)y — B(t)x + Fo(t,z,y) is u.s.c. on
[0,T]\ Jmm x E x E,

—v(t) is continuous if0, T \ Jp,

If we putJ = NS°_, J, thenu(J) =0, Fo(t,z,y) # 0,
forall¢ € [0, T]\J and the mappin¢t, z,y) — —A(t)y—
B(t)x + Fy(t,z,y) isu.s.c.on0,T]\ J x E x E.

For eachm € N, let us define the mapping;,, :
[0,T] x E x E — F with compact, convex values by
the formula

Fo(t,l',y) - p(t) (XJm (t) + %) é(»ﬂ),
forall (¢,z,y) € [0,T]\ J x E x E,
E.(t,z,y) :=
p(t) (x,. (2) i) ),
for all (t,z,y) e J x ExX E,
where
p(t) = —vgt) — [[AWDZ(4Zk + D)|lvgll i (o.77,0.00)

~IB)] (10K +3) -

with & andZ defined by (18) and (22), respectively.
Let us consider the b.v.p.

(28)

Z(t) + A(t)z(t) + B(t)x(t) € F(t,z(t), 2(t)), }
fora.a.t € (0,77,
2(T) = Mx(0), #(T) = Ni(0).

Now, let us verify the solvability of problemgP,,,).
Letm € N be fixed. Sincey is globally u.s.c. o0, 77 \
JXEXE, F,,(-,z,y) is measurable, for each, y) € Ex
E, and, due to the continuity af, F,,,(t, -,-) is u.s.c., for
allt € [0,T]\ J. Therefore F,, is an upper-Caraéodory
mapping. Moreover, let us define the upper-Caattory

C1([0,T], K). Because of the convexity df, the se() is
closed and convex.

Forallg € Q and\ € [0, 1], consider still the associ-
ated fully linearized problem

Z(t) + A(t)z(t) + B(t)x(t) € Hpn(t,
fora.a.t € 0,77,

q(t),4(t),A), }
2(T) = Mx(0), (T)

= Ni(0),

and denote b¥,,, the solution mapping which assigns to
each(q, A) € Q x [0,1] the set of solutions aP,,,(q, A).

ad () In order to verify conditior(¢) in Proposition 4,
we need to show that, for eati \) € @ x|0, 1], the prob-
lem P,,(q, \) is solvable with a convex set of solutions. So,
let (¢, \) € Q x [0, 1] be arbitrary and lef,(-) be a mea-
surable selection off,, (-, ¢(:),4(-), A). Then, according
to (2;), Lemma 1 and the equivalence, stated in Section 2,
between the b.v.p. (10) and (11), the single-valued Floquet
problem

B(t) + A()i(t) + B(t)z(t) = fo(1),
fora.a.t € [0, 7],

2(T) = Mxz(0), 2(T) = Ni(0)

admits a unique solution which is one of solutiong%f(g, \).

Thus, the set of solutions d?,,(¢q, A) is nonempty. The

convexity of the solution sets follows immediately from

the definition ofH,,, and the fact that problemB,, (¢, A)
are fully linearized.

ad (ii) Let 2 C F x F x E x E be bounded. Then,
there exists a bounde@, C E such that? C 27 x {21 x
21 x £y and, according t¢2,;;) and the definition of{,,,,

there exists/ c [0, 7] with p (J = 0 such that, for all
te 0.1\ (JUJ), (@,y.u. o)
[ Hom (t, u,0,A) = A(t)y — B(t)z|| < v, (1)

b@)| + 1A - lyll + 1 B@] - [l

emRZ and € [0,1],

max__||¢
+€B(0K.2)

Therefore, the mapping,,. (¢, ¢(t), ¢(t), \) — A(t)z(t) —
B(t)x(t) satisfies conditiorfii) from Proposition 4.

+2p(t) -
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ad (7it) Since the verification of conditiofii:) in Proposition 4 is technically the most complicated, it will be split
into two partsi(iii1) the quasi-compactness of the solution operdtgr (iii2) the condensity of,,, w.r.t. the monotone
and non-singular m.n.¢. defined by (4).

ad (iii1) Let us firstly prove that the solution mappirg,, is quasi-compact. Sinc€([0, 7], E) is a complete
metric space, it is sufficient to prove the sequential quasi-compactness,.ofence, let us consider the sequences
{gn}, { M} gn € @, A\, € [0,1], for all n € N, such thayg,, — ¢ in C*([0,7], E) and),, — \. Moreover, letz,, €
T (qn, An), for alln € N. Then there exists, forall € N, k,,(-) € Fo(, ¢n(-), ¢n(+)) such that

Bn () + At)dn (t) + B(t)2n () = Mkn(t) — p(t) (XJm (t) + ;) d(qn(t)), fora.ate[0,T], (29)
and thatz,,(T) = Mz, (0), &,(T) = Ni,(0).

According to conditior{(2;;;) and the definition o), ||k, (t)|| < v#(t), for everyn € Nand a.at € [0, T]. According
to formula (19),

T T t
() = A1 (1) /0 Ura(T, 7) fo(7) dr + As(t) /0 Usa(T, 7) i (7) d + /0 Usa(t, 7) fo(7) dr, (30)
where
Falt) = Ma(®) = 900) (100 + 5 ) 00, @)

Therefore, for alk € [0,7] andn € N,

len (t)]| < Z(4ZK + 1)C,
wherek, Z are defined by relations (18), (22) and

6 = | vl n o000y + 2 m||g£($)||-”pHLl([O,T],[O,oo))]- (32)
2€B(9K 2)

This implies that the sequenge,, } is bounded.
Moreover, since

T T t

) = As(®) [ Vna(Tn) o) dr o+ Aalt) [ Una(@or)fu(r)dr + [ Usaltm) () (33)
0 0 0

where f,,(t) is defined by formula (31), we can obtain, by the similar arguments||that)|| < Z(4Zk + 1)C for all

t € [0,7] andn € N.
Consequently, for a.a.€ [0, T], we have

[En N < NA@ - [1En@ON + 1BE - llzn @1 + [ fo (@]
< (IADI + IB@)) - Z(4Zk +1)C + vge(t) +2- max_|d(@)] - p(t).

z€B(0Ke)

Thus,{%, } is uniformly integrable.
For each € [0, T, the properties of the Hausdorff m.n.c. yield

AU < Qa1 4500 (10,04 5 ) 7 (100an())n)
< Unelo PV (03,) +200) (300, () + 1 ) o (1000 DIV 0] < 00(6) € BOR.21))

= (U ®)a) + 900) (120 + ) 2 ({600, OV 0] ) € BOK21)).
Therefore, according to conditid®;,), for a.a.t € [0, 7],

AU < 9000 (1 (Can(}a) + 7 ({0 0})) 4 200 (10,0 + ) 3 ({6an®) IV 0] < 00(0) € BORK:21)
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<) s (7 (a1 47 (0 + 900 (0.0 + 22 ) 3 (0 ODTinio 0006 € BOK.2))).

t€[0,T)

Since the function: — ¢(x)|| V|| is Lipschitzian onB(9K, ) with some Lipschitz constarit > 0 (see Remark 1), we
get that

U030 < (o004 20) (00 + 1)) s 3 )+ (L (D).
Sinceg, — ¢ andg, — ¢ in C([0,T], E), we get that, for a.at € [0,T], v ({g.(t)}n) = v {¢n(t)}n) = 0, which
implies thaty({ f,.(t)}») = 0, for a.a.t € [0, 7.

For a givert € (0,71, the sequenced’;;(t, s) f»(s)}, 4,5 € {1, 2}, are relatively compact as well, for asac [0, ],
because, according to (2),

Y{Ui;(t,8) fn(8)}n) < Ui (8 8) [V ({Fn(s)1n) = O, (34)

foralli,j € {1,2}.
Moreover, according to (17) and (22),

U5 (8, 8) fu(s)]| < Z <D7(5) +2- max_[|d(x)] 'p(8)> ; (35)

r€B(0K ¢)

fora.a.s € [0,¢] and alln € N.
By virtue of (2), (3), (34), (35) and the sub-additivity of we finally arrive at

st < ({ [ (1) fulr) d}) A0 A ({ / V(T 1) df} )
T
FAa0)] - ({ / Uw(T,T)fn(T)dT} ) —o.

By similar reasonings, when using (20) instead of (19), we also get

Y{@n(t)}n) =0

by which{z,,(t)}, {,(t)} are relatively compact, for a.a< [0,T]. Moreover, since:,, satisfies for alh € N equation
(29),{#.,(t)} is relatively compact, for a.a.€ [0, T]. Thus, according to [1, Lemma Ill.1.30], there exist a subsequence of
{,}, for the sake of simplicity denoted in the same way as the sequence,@dd ([0, 7], E) such that{i,, } converges
tod in C([0,T], E) and{%,} converges weakly té in L' ([0, T], E). According to the classical closure results (cf. e.g.
[11, Lemma5.1.1])¢ € %, (g, A), which implies the quasi-compactnessiof.

ad (zii2) In order to show that, fom € N sufficiently large X, is u-condensing with respect to the m.rn.cdefined
by (4), let us consider a bounded sub®etC @ such tha (%,,,(© x [0,1])) > u(O). Let{z,} C T,, (© x [0,1]) be a
sequence such that

(T (6 % [0,1])) = ( sup [y({zn () }n) +v({En(t)}n)], mode ({25 }n) + Mode ({xn}n)> :

te[0,T]
According to (19) and (20), we can fif@,,} C ©, {\.} C [0, 1] and{k, } satisfyingk,,(t) € Fo(t, qn(t), dn(t)), for a.a.
t € [0,T7, such that, for alt € [0,T], z,,(¢t) andi,,(t) are defined by formulas (30) and (33), respectively, wifg(e) is

defined by formula (31).
By the similar reasonings as in the pad (iii; ), we can obtain that

YU < (900 + o000 0+ 1) 2 O ({an(®h) + 7 ({inD}))

fora.a.t € [0,77.
Let us put

S= sup (y({gn()}n) +7 {dn(t)}n)),

te[0,7)
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fix € [0,T] and leti, j = 1, 2. Then, according to (17) and (22), we have that, fonadl N,

Ui (T, ) fa @I < Ui (m, O] - 1 £ < Z (llkn(t) +2- max [é(x)| 'p(t)> , fora.ate0,7].
z€B(0K,e)

Sincek,(t) € Fo(t,qn(t),dn(t)), for a.a.t € [0,7], andg, € O, for all n € N, where® is a bounded subset of
C1([0,T], E), there existd? C K such that,(t) € 2, for all n € N andt € [0,7]. Hence, it follows from condition
(24:;) that

1Uis (T, ) fa ()] < Z (Vn(f) +2-p(t) - max_||g(z )I) ;. fora.at e[0,7].

z€B(0K,e)

As a consequence of (17), (22) and property (2), we also have that

v {Ui(r.0fa(0},) < Zy{£2(D},),  fora.ate0,7].

Therefore, we can use (3) in order to show that

7({/OTUU(T t)fn(t)d } ) <ZS/ ( )(XJ,"L(t)Jr;)) dt, ij=1,2,

and also

7<{AtU,2(tT)fn( }><ZS/( )+ L )(XJW(TH;)) dr. =12,

Consequently, according to (2), (21), (30) and the subadditivity, @fe have that, for a.a.€ [0, 7],

T
3 o0 < 28 (101 + 14200+ 1) [ (904 2ot0) (x0. 0+ ) )

- 1
< 25 @2+ 1) (Lol oayiooey + £ (Il + - lolsomomn) )

The same estimate can be obtainedf¢f,,(¢) }..), when starting from condition (33). Subsequently,

, . 1
(1) + 7 (a(0h) < 228 @02+ 1) (Ialsgomooen + L (W20 + ool 000 ) )

Since we assume that(%,,,(© x [0,1])) > u(©) and{g, }, C O, we get
S= S (v {an®)}n) +7 {dn()}n)) < S (v {zn(®)}n) +7 {En(t)1n))

- 1
< 22025+ 1) (Lol ooy + £ (Iplrcn) + bl o) ) S

Since we have, according Q;, ), that2Z(4kZ + 1)||g|| 1 (j0,1],/0,0)) < 1, we can choosen, € N such that, for all
m € N, m > my, it holds that

A 1
27(4kZ +1) <||g||L1([O,T],[o,oo)) + L (|p||L1(Jm) + m||PL1([o,T],[o,oo))>) <L

Therefore, we get, for sufficiently large € N, the contradictiorS < S which ensures the validity of conditiqfiii) in
Proposition 4.
ad (iv) For allq € Q, the seff,, (¢, 0) coincides with the unique solutiar,, of the linear system

(1) + A1) + B)(t) = —p(t) (xs,.(t) + 1) dla(t)), foraat € [0.7], }
z(T) = Mxz(0), &(T) = Ni(0).
According to (19) and (20), for all € [0, T,

t

wm(t) :Al(t)/o U12(T,T)g0m(7') d’T+A2(t)/O UQQ(T,T)(pm(T)dT—‘r/O Ulg(t,T)me(T)dT,
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and
T T t
i (t) = As(t) /0 Ui (T, 7)o (7) dr + Aa(t) /0 Usa (T, 7)o (7) dr + /O Usa(t, 7)o (7) dr,

wherep,,, (t) := —p(t) (xs,. (t) + &) dlgm (D).
Since

€B(0K,e) ’

lemlzsom ooy < mx 16 (Il ooy + 212

we have that, for alt € [0, 7],

N 1 )

om0 < 2020+ 1) s [ (o110, oy + TN, (36)
z€B(0K,e) m

wherek, Z are defined by relations (18), (22).

Let us now consider > 0 such that-B C K. Then, it follows from (36) that we are able to fine, € N such that,
forall m € N, m > myg, andt € [0, 7], ||xm| < r. Therefore, for allm € N, m > mg, T,,(¢,0) C Int Q, for all
g € @, which ensures the validity of conditiqiv) in Proposition 4.

ad (v) Letm € N be fixed and let us show that each,,) satisfies the transversality conditién) in Proposition 4.
We reason by a contradiction, and assume the existenkecof0, 1) andg € 9Q such thayy € %,,(¢q, \). According to
the definition of the solution operat@,, there isfy € L ([0, T, E) with fo(t) € Fo(t,q(t),q(t)), fora.at € [0,7]\ J,
satisfying

00+ AW+ B0 = 7olt) = 1) (2,0 + L) dla(0), forat € 0.1\ @)

Since, moreove(J) = 0, condition (37) is indeed valid for a.ac [0, T.

Sinceg € 9Q, there exists, € [0, T satisfyingq(ty) € OK. If we further assume thay = 0, theng(T") = Mq(0) €
MOK = OK. With no loss of generality we can then take € (0,7]. According to condition (H3)]|Vq(t0)|| > 0.
Furthermore, since— HVq(t)H is continuous, there i, > 0 such thay(t) € B (0K, min{h, 5}) andHVq(t)H > &, for
allt € [tg—ho, to]. Since,, is openin[0, T, if, in addition,ty € J,,,, we can takéy, in such away that,—hg, to] C Jom-

Consider now the functiop: [0, 7] — R defined byy(t) = V(q(¢)).

According to the regularity conditions imposed Brandg, we have thay € C*([0, 7], R) andg(t) = (Vq(t), q(t)),
for all t € [0,T]. Since, moreovery € C?(E,R) andq is absolutely continuous ojt, 7], we obtain that alsg is
absolutely continuous, implying thatt) exists, for a.at € [ty — ho, to].

Sinceg(t) < 0, for all ¢t € [0,T] with g(to) = 0, %o is a local maximum point. Hencé(t,) > 0 andg(ty) = 0,
whenevett, € (0, 7). Consider now the special case whgn= 7. Sinceq(0) = M ~1¢(T), according to the properties
of M, we have thay(0) € 0K, and thusj(0) = (V,(0), 4(0)) < 0. Note, moreover, tha(T) = N¢(0). Consequently,
we have thatVas,(), N(0)) - (V0. 4(0)) = ¢(T) - §(0) < 0 and according to (27) we obtain that

9(0) = (Vao)»@(0) ) = (1) = {Vyr, d(T) ) = 0.
Lett € [to — ho, to] be such that botki(¢) andi(¢) exist. Then
Vo) 4t +h)) — (Vo) 4(1))

o e gt h)—g(t)
g(t) = lim =————— = lim, ? :

According to the regularity ofj, there exist two functions(h) andb(h) from [—¢, T — t¢] to E with a(h) — 0 and
b(h) — 0 whenh — 0 such that

Q(t+h) = g(t) + hlq(t) + a(h)],  q(t+h) = q(t) + h [4(t) + b(k)]

Consequently,

g T h—0 h

:%12%< a(t+h) ()>h Vaw, a(®) ¢ q(t+h)h [a(h)]) Va0,
© 2012 NSP
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Sinceh +— ||[Vy11n)|| is continuous, it is bounded, fore [—¢,T — t], and therefore

(Va(t+ny, b [a(R)])
h

< WVa@smlllla(m)| — 0, b — 0.

Thus, we obtain that

<Vq(t+h)7 q(t)) — <Vq(t)7(1(t)>

g(t) = lim + <‘7(1(t+}z),‘j(t)>

h—0 h
- Vaoyenta o) 40 = Vo, d(0)) . .
_ }1111)% q(t)+h[q(t)+b(h)] ; q(t) + <Vq(t+h)aQ(t)>~

According to the regularity condition imposed &h there exist®(h) € E’ with
1O

T —0 forh—20

such that

Vay+ataty+on) = Vay + Varry (hd(#) + hb(h)) + O(h)

implying

(Vay+hta+bmy 40) = Vo, (1) _ (Voo (ha(t)), 4(t)) N (Vi) (hD(R)), 4(2)) . (O(h), (1))
h h h h

= (Wi (G0, 1)) + Vi (1)), 1)) + CL2AE),

Therefore,

i(6) = Tim (V0 (60 0) + (T (61)) . 6(0)) + Vi i) + CL2AE)

= (Vo) (1)), 4(1)) + (Vg (). (38)

Let us now consider the case whgne J,,,. According to the properties gf, it is possible to findy € (ty — ho, to)
such thatj(#) > 0. Therefore, we obtain that

0> —i(io) = ilto) — g(Fo) = / "Gt dr.

According to (25) and (38), we have that

0> —4(iy) = / "G(tydt = / (Voo (6(6)), 40 + (Vg (1)) dt > / Wi, d(0)) dt

= /t °<Vq(t), Afo(t) — A(t)q(t) — B(t)q(t) — (1 + ;) p(t)d(q(t))) dt

= [t Aote) = A0 - BOao) ~ (14 ) s @OV lotateh

Sinceq(t) € B(OK, §), for all t € [ty,to], 7(¢(t)) = 1 and, according to Proposition a'/q(t%(;b(q(t))) = 1. Therefore,
we obtain that

02 ~gli0) = [ Vi Aolt) = A00) ~ BOute) ~ (14 1 ) prr(a) Vi lofate)

= [ (Moo~ 4010~ Byt - (1+ 1) 0Vl )
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> [l () (14 ) o0) a

where

e
w(t) = —velt) = [ABNZAZk + Dl oy oo — IBOI (10K +3).

According to the definition gf, we have that the last integral is strictly positive, so we get the contradictory conclusion
0> —g(tp) > 0. Itimplies thatty & J,,,.

Therefore, let us study the case whgre [0, 7]\ J,,. If we are able to get a contradiction also whgre [0, T\ Jpn,
theng € T,, (), ¢) with ¢ € 9Q is not possible, and so problef¥,,) satisfies the required tranversality condition.

Letwg € F(to,q(to), ¢(to)). According to Proposition 3, and sintg¢ J,,,, we have that

(Vo> Ao = Alto)ilto) ~ Blto)alto) — plto) (v (t0) + - )lalo)

. p(to) 5

= (Va(ro)» Awo — A(to)q(to) — Bto)a(to) — == 0(q(t0)))
= (Va0 = Alt0)ilto) — Bltoa(to)) ~ 221V,

Therefore, as a consequence of (26), the negativigyasfd condition #3), we have that

(Ve Mo = Alto)itt) = Bltalatto) — o2 atta) ) = = P02 vy = =220 .,

for all wg € F(to,q(to), ¢(to)). The multivalued magF is compact-valued and the mé}g(to): E — R is continuous.
Thus, we can fing > 0 such that

(Vi huo = Altoitn) = Bltohato) ~ o2 dlatto) ) > 20

for all wo € F(to, q(t0)7 q(to))
In[0,T7\ Jp,, the multivalued map

t — AFo(t,q(1),4(t)) — A)4(t) = B(t)g(t) — ==
is u.s.c. and, thereforé; [0, T \ J,, — R defined by

_ o)

- {<Vq<t>, xw — A@d(t) - BOa(t) - "), : w e Rt (o), q(ﬂ)}

is u.s.c. Thus, we can finiy < &g such thatb(t) € [0, +-00), for all t € [ty — ho, to] \ Jm.
Sinceg(ty — ho) < 0, also infty — ho, to], we can findy with §(f,) > 0. Now, we reason as before and get

0> —4(f) = ilto) — glfo) = / "Gy de

- / (Voo (d(0)), (1)) dt + / (Vgoii(t)) di > / Vo (1)) dt

to

= | W Aolt) = AW = BOIO = PO (1) + 5 )dale))
= [ W Ae) ~ A0 - Bioyte) - B oa(0)

F L W Aalt) ~ AW) ~ BO ~pO1+ )dale)) de
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Since the multivalued mag(¢) is u.s.c. and sincg ¢ .J,,,, we have that

Lo (it - a6 - B - "itan) arza [ o
[to,to]\Jm m [

to,to]\Jm

Otherwise, from the definition of and by a similar reasoning as before, we obtain that

L o (a6 = it = 503t =00 (14 1) étaten )

[ (T o0 = 40)i0) = B0 = i0) (1+ ) W lotate) ) o

L (o wte) = a0 - B o) (14 1) Wil a

> Vo I (v () = 1A@1Z(4ZE + Dllvglli o1, j0,00))) dt

[{o,to]f‘lJm

. < 1
= o Wl (10 (1014 5)+ (14 ) 0 ) >0

In the case when, € [0,7] \ J,,, we obtain the contradictory conclusion> —g(Z,) > 0 as well, and the tranversality
condition(v) in Proposition 4 is so verified.
Summing up, we have proved that there exists € N such that every problert,,,), wherem > my, satisfies all

the assumptions of Proposition 4. This implies that every $ir;h) admits a solution, denoted hy,,, with z,,,(t) € K,
forall ¢ € [0, 7). Consequently, there exists a sequeficg },,, in L1 ([0, 7], E) satisfying

B (0) + AW (1) + B30 = bn(0) = 500) (100 + 2 ) o) (@9)

and alsok,,,(t) € F(t,zm(t), m (), for a.a.t € [0,7] and everym > mg. Moreover, according t¢2;;), we obtain
that ||k, (¢)|| < vg(t), for a.a.t € [0,7] and everym > mg. Therefore, reasoning as ad (iii;), we have that

& (£)]| < Z(4Zk + 1)C with C defined by (32). We can then apfl;;) and get
Y {Fm(t)}m) < g(t) [y {zm(®)}m) + 7 {@m(t)}Im)],  fora.at €]0,T]. (40)

Let us putS = v ({zm()}m) + v {Zm()}m) and let{f,,} < L([0,T], E) be defined byf,,(t) := kn(t) —
p(t) (X, () + L) (@ (1)), for a.a.t € [0,T]. Whent ¢ J, there isr = () > my such thatt ¢ J,,, for all
m > m. If we further apply the subadditivity of the Hausdorff m.n.c., we obtain

3 Un®hn) <3 (@) +3 (1900 (100 + 2 ) San (D))

Since¢ is bounded, we obtain that
p(t)
m
implying thaty ({ fm (t)}m) < v ({km(t)}m), fora.at € [0, T]. According to (40), we have that({ f,. (t)}m) < Sg(t),

fora.a.t € [0,T]. Reasoning as iad(iii; ), it is also possible to show that

Y {@m(®)m) < Z(4Zk + 1)S||gll 21 (j0,77,0,00))

QAS(a:m(t)) —0, m— oo
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and the same estimate is valid fo{z,, (t) },,). Con-

sequently, accordin@;;;), we obtain that
S =7 {zm(®)}m) + 7 {Zm(t)}m)
<22(4Zk + 1)S|gl L1 (0,7, [0,00)) < S5

sense that all relations holding for, ) € (0,7) x K1 N
B(0K7,e¢) can be strictly localized t60, T') x 0K;. More
concretely, problem (41), (42), wheld = N = Id or
M = N = —Id together withp(t, —u) = —p(t,u), ad-
mits in this way a (strong) solution(t) := w(t,-) such
thatz(t) € K4, t € [0,T), provided (for more details, see

) L3

implying thatS = 0. Hencesy ({m (t) Ym) = 7 ({Zm (£) }rn) =

0, for everyt ¢ J. Thus, alsoy ({ f.(t) }m) = 0. Accord-
ing to (39), we then obtain that ({%,,(¢)}m) = 0, for

a.a.t € [0,T]. Therefore, a classical convergence result

(see e.g. [1, Lemma 111.1.30])) assures the existence of

subsequence, denoted as the sequence, and of a functi

x € ACY([0,T],E) such thatz,, — z andi,, — &
in C([0,T], F) and alsai,, — = in L'([0,T], E), when

m — oo. Finally, a classical closure result (see e.g. [11,

Lemma 5.1.1]) guarantees thatis a solution of (1) sat-
isfying z(t) € K, for allt € [0,T], and the proof is so
complete.

4. Concluding remarks

Observe thatin a Hilbert spaég for V(z) := 1 (||z[|> — r),
we have that (cf. [3], [13]pV (z) = {V(z)} = z, i.e. we
obtain thatV (z) = Id. In particularV e C?(E,R), as
required in Theorem 1. On the other hand)| if ||? (i.e.
alsoV'(-)) is twice Féchet differentiable & in a Banach
space(E, | - ||), then E is isomorphic to a Hilbert space
(see e.g.[9, p. 180]).

As pointed out in [3], problems of type (1) can be re-
lated to those fombstract nonlinear wave equations
Hilbert spacess := L?(£2). Hence, fort € [0, T and¢ €
2, where{? is a nonempty, bounded domainik¥ with a
Lipschitz boundary)(2, consider the functional evolution
equation
0%u ou
atz at U= (p(t’u)v

whereu = u(t, ), subject to boundary conditions
ouwT,-) 8u( 3
ot ot

Assume that: > 0,b < 0,8 > 0, p € [3,00) are con-
stants and thap: [0,7] x R — R is sufficiently regular.

+a— + bu(t, ) + Bu(t,)||P~2 (41)

u(T,-) = Mu(0,-), = (42)

(1)a>0,b<0,0<B< 5
(ii) ¢

7, Wherep € [3, 00),
is Caratleodory (resp. contlnuous) and such that

co(t) ci(t) 2m.
i (8= VIR +1 \/\(2|+1|§|
c[0,T], £ € 0,

wherecy, ¢; are suitable integrable coefficients

(= fis Caratt®odory and such thgltf (¢, z)|| < co(t)+
c1(t)||z||™, for all z € L2(£2)),

(#i1) ¢(t, &) is Lipschitzian in¢ with a constant. (in-
dependent of) such that § will be specified below)

de T (1+a—b) <4keT(1+“ b) + 1) LT <1 (43)

(= f satisfies the/—regularity condition, namely
v (f(t, fZ)) < L~(2), for a.a.t € [0,7] and each
bounded? c E, with g(t) := L satisfying the inequality

4T (1+a—b) <4keT(1+a—b) i 1) gl (o700 < 1),

(iv) condition(d — B)||z||* + (z, f(t,x)) > 0, holds
on the sef0, T x 9K, whered > 0 is a suitable constant
such that? < —4b(b + d).

It would be nice to express conditiqliv), as condi-
tions (i)—(i4i), for function . For instance, the related

equality fQ x2(€) d¢ = r would then, however, lead to
the inequality

zp(t,z) > (B — d)2*

required, for all(t, z) € [0,7] x R. In this way, the infor-
mation concerning the localization of solutions would be
lost.

The most technical requirement (in nontrivial situa-
tions) is so the inequality (43) in conditigfiii). Never-

The problem under consideration can be still restricted byneless, the quotient in (43)

a constraint(t, -) € K, where
Ky :={ee€ L) | el < 1}, t € [0,T).

Takingz(t) := u(t,-) with z € AC'([0,T], L*(£2)),
At) = A := a, B()—B == b, f:]0,T] x L?(2) —
L2(92) defined by(t,v) — o(t,v(-)), and F(t,z,y) =
F(t,z) := —B||z||P~2z + f(t,z), the above problem can
be rewritten into the form (1), possibly together witft) <
Ki,t€[0,T).

In view of the above arguments, all illustrative exam-

plesin [3], related td/ (z) := ;|| z||* — R acting in Hilbert

spaces, can be improved by means of Theorem 1 in thé;*

k= |[[D - U(T,0)] || = ||[£Id — ]!

can be calculated as

||E><E

k=kyt
et y,ereT e’ _ea”
= ; 72 eAz 7 Sty et
A1 s ( 1 2T ) bY 2T _ 1 b
B ves v e v R2 X R2

where
= [ (eMT 4 eoT) 4 M T2l
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Forinstance, for. = 0,b = —1, we getk < 21;“7‘“74 [ ; A .
o ' ' o= 2 :
1: condition (43) can bé then satisfied, whan elg< 1Dé2gici|;|ls property Le Matematiche (Catanieg7 (1982),
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T (1637 +4e2T) - _ [15] T. RzezuchowskiScorza—Dragoni type theorem for upper
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£||z||? — R is the most standard one, the illustrative exam-  Sci. Sr. Sci. Math28, 1-2 (1980), 61-66.
ple demonstrates that, in view of the above arguments, th€l6] G. Sell and Y. You, Dynamics of Evolutionary Equations.

practical application of Theorem 1 reduces to separable  Springer, Berlin, 2002.
Hilbert spaces. [17]1. I. Vrabie, Compactness Methods for Nonlinear Evolu-

) ) tions, 2nd ed., Longman House, Burn Mill, Harlow, 1990.
Acknowledgements. The first and the third author were

supported by the Council of Czech Government (MSM

6198959214). The second author were supported by the
national research project PRIN “Ordinary Differential Equa- ™ 7™
tions and Applications”. . ’

Jan Andres is presently em-
ployed as a full Professor at Palgck
« University in Olomouc, Czech Re-
public. He is there a chairman of
Department of Mathematical Anal-
/2% ysis and Applications of Mathe-
~ matics. He was also a Visiting Pro-
< . fessor at two American and many
European Universities; in the last
years, especially at University of
[2] J. Andres, M. Kausrikova and L. MalagutiBound sets ap- Paris 1 ~ Sorbonne_ and Univ_ersi_ty of Roma 1 - La Sapienza.
proach to boundary value problems for vector second-order 1€ réceived the highest scientific degrees in Czech Re-
differential inclusionsNonlin. Anal.71, 1-2 (2009), 28-44.  Public (DSc.) and in Poland (dr hab.). He is a member of
[3] J. Andres, L. Malaguti and M. Pawlkova, On second-order ~ 15 editorial boards of international scientific journals. He
boundary value problems in Banach spaces: a bound setdS @lso a coautor (jointly with Lech @niewicz) of a re-
approach Topol. Meth. Nonlin. Anal.37, 2 (2011), 303-  puted monograph published in 2003 at Kluwer (its second
341. edition will be published in this year by Springer jointly
[4] J. Andres, L. Malaguti and V. Tadden boundary value  with World Publ. Corp., Beijing), the author of three in-
problems in Banach space@ynam. Syst. Appl18 (2009),  vited monographic chapters (two of them in handbooks
275-302. of ordinary differential equations and a topological fixed
[5] R. Bader and W. KryszewskDn the solution set of differen-  point theory) and a (co)author of more than 160 scien-
tial inclusions and the periodic problem in Banach spaces tific articles. His main research activities concern topo-
Nonlin. Anal.54, 4 (2003), 707-754. logical methods in nonlinear analysis, differential equa-
[6] 1. Benedetti, E. Panasenko and V. Tadd&8VP for  tjons and inclusions, multivalued dynamical systems, frac-

Caratheodory inclusions in Hilbert spaces: sharp existence tg|s and their application to quantitative linguistics.
conditions and applications]. Appl. Anal. 16, 2 (2010),

237-258.

[7] S. Cecchini, L. Malaguti and V. Taddegtrictly localized
bounding functions and Floquet boundary value problems
Electr. J. Qual. Th. Diff. Eqnsi7 (2011), 1-18.

[8] Ju. L. Dalecki and M.G. Kren, Stability of Solutions of
Differential Equations in Banach Spac&ranslation of
Mathematical Monographs, American Mathematical Soci-
ety, Providence, R. I., 1974,

[9] R. Deville, G. Godefroy and V. Zizler, Smoothness and
Renorming in Banach Spaces, Longman Scientific and

References f

[1] J. Andres and L. @Grniewicz, Topological Fixed Point Prin-
ciples for Boundary Value Problems, Topological Fixed
Point Theory and Its Applications, Vol. 1, Kluwer, Dor-
drecht, 2003.

Luisa Malaguti is an Associate
Professor at the University of Mod-
ena and Reggio Emilia, Italy. She
obtained the degree in Mathemat-
ics with honors in 1982 at the Uni-
versity of Modena. In 1987 she re-
ceived the Ph.D. in applied math-
ematics from the University of Tri-

Technical, Harlow, 1993. este, Italy. Her research interests
[10] S. Hu and N. S. Papageorgiou, Handbook of Multivalued ) o include: boundary value problems,
Analysis, Vol. I: Theory, Kluwer, Dordrecht, 1997. reaction-diffusion processes, multivalued analysis and evo-

[11] M. I. Kamenskii, V. V. Obukhovskii and P. Zecca, Con- lution equations.
densing Multivalued Maps and Semilinear Differential In-
clusions in Banach Spaces. W. de Gruyter, Berlin, 2001.
[12] J. L. Massera and J. J. Sifer, Linear Differential Equa-
tions and Functional Spaces. Academic Press, New York,
1966.

© 2012 NSP
Natural Sciences Publishing Cor.



192 Jan Andres et al.: A Scorza—Dragoni approach to second-order boundary value .....

Martina Pavlackovais presently
employed as an Assistant Profes-
sor at Palack University in Olo-
mouc, Czech Republic. She obtained
her PhD from PalagkUniversity
in 2008. Her research concerns mainly
the existence and localization of
solutions of the second-order mul-
tivalued boundary value problems.
She is an active researcher cou-
pled with the several years of teaching experience. She
published several research articles in reputed international
mathematical journals.

(© 2012 NSP
Natural Sciences Publishing Cor.



