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1. Introduction

The main aim of this paper is to present a theorem concern-
ing the existence and localization of solutions to second-
order Floquet boundary value problems for upper-Carathéodory
differential inclusions in Banach spaces. For some related
references, see e.g. [6,7] and those quoted in [3]. The nov-
elty consists in the application of strictly localized Liapunov-
type bounding functions guaranteeing the transversality be-
haviour of trajectories on bound sets, i.e. the fixed points
free property required in the applied degree arguments.

The first-order problems were considered in [6,7]. The
same second-order problem was already studied by our-
selves via a bound sets approach in [3]. The conditions
concerning bounding functions were not however imposed
directly on the boundaries of bound sets like here, but at
some vicinity of them. On the other hand, such a strict lo-
calization, allowed by means of the Scorza–Dragoni type
technique developed in [15], demands a higher regularity
of applied bounding functions which brings here some ob-
structions. Nevertheless, our result is new even in a single-
valued case of equations.

Hence, letE be a separable Banach space (with the
norm‖ · ‖) satisfying the Radon–Nikodym property (e.g.

reflexivity) and let us consider the Floquet boundary value
problem (b.v.p.)

ẍ(t) + A(t)ẋ(t) + B(t)x(t) ∈ F (t, x(t), ẋ(t)),
for a.a.t ∈ [0, T ],
x(T ) = Mx(0), ẋ(T ) = Nẋ(0).



 (1)

Throughout the paper, we assume (for the related defini-
tions, see the next Section 2) that

(1i) A, B: [0, T ] → L(E) are Bochner integrable, where
L(E) stands for the Banach space of all linear, bounded
transformationsL: E → E endowed with the sup-
norm,

(1ii) F : [0, T ] × E × E ( E is an upper-Carath́eodory
multivalued mapping,

(1iii) M, N ∈ L(E) with M non-singular.

Let us note that in the entire paper, all derivatives will
be always understood in the sense of Fréchet, and by the
measurability, we mean the one with respect to the Lebesque
σ-algebra in[0, T ] and the Borelσ-algebra inE.

The notion of a solution will be understood in a strong
(i.e. Carath́eodory) sense. Namely, by asolutionof prob-
lem (1), we mean a functionx: [0, T ] → E whose first
derivativeẋ(·) is absolutely continuous and satisfies (1),
for almost allt ∈ [0, T ].
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The solution of the b.v.p. (1) will be obtained as the
limit of a sequence of solutions of approximating problems
that we construct by means of a Scorza–Dragoni type re-
sult developed in [15]. The approximating problems will
be treated by means of the continuation principle devel-
oped in [3].

For the main result (Theorem 1) in Section 3, we col-
lect all necessary technicalities and applied tools in the
next Section 2. Concluding remarks in Section 4 concern
an illustrative example of the application of Theorem 1.
Since the applied bounding functionV takes the formV (x) :=
1
2

(‖x‖2 − r
)

and since one condition in Theorem 1 deals
with V ∈ C2(E,R), we only restrict ourselves there to
Hilbert spaces, wherëV (x) ≡ Id. In particular, we take
E := L2(Ω), whereΩ is a suitable nonempty, bounded
domain inRn.

2. Preliminaries

LetE be a Banach space having the Radon-Nikodym prop-
erty (see e.g. [13, pp. 694–695]) and[0, T ] ⊂ R be a closed
interval. By the symbolL1([0, T ], E), we shall mean the
set of all Bochner integrable functionsx: [0, T ] → E. For
the definition and properties, see e.g. [13, pp. 693–701].
The symbolAC1([0, T ], E) will denote the set of func-
tions x: [0, T ] → E whose first derivativėx(·) is abso-
lutely continuous. Then̈x ∈ L1([0, T ], E) and the funda-
mental theorem of calculus (the Newton–Leibniz formula)
holds (see e.g. [1, pp. 243–244], [13, pp. 695–696]). In the
sequel, we shall always considerAC1([0, T ], E) as a sub-
space of the Banach spaceC1([0, T ], E).

Given C ⊂ E and ε > 0, the symbolB(C, ε) will
denote, as usually, the setC + εB, whereB is the open
unit ball in E, i.e. B = {x ∈ E | ||x|| < 1}. In what
follows, the symbolµ will denote the Lebesque measure
onR.

For eachL ∈ L(E × E), there exist uniqueLij ∈
L(E), i, j = 1, 2, such that

L(x, y) = (L11x + L12y, L21x + L22y) ,

where(x, y) ∈ E×E. For the sake of simplicity, we shall
use the notation

L =
(

L11 L12

L21 L22

)
.

Let E′ be the Banach space dual toE and let us denote
by 〈·, ·〉 the pairing (the duality relation) betweenE and
E′, i.e., for allΦ ∈ E′ andx ∈ E, we putΦ(x):=〈Φ, x〉.

We shall also need the following definitions and no-
tions from multivalued analysis. LetX, Y be two metric
spaces. We say thatF is amultivalued mappingfrom X to
Y (written F : X ( Y ) if, for everyx ∈ X, a nonempty
subsetF (x) of Y is given. We associate withF its graph
ΓF , the subset ofX × Y, defined byΓF := {(x, y) ∈
X × Y | y ∈ F (x)}.

A multivalued mappingF : X ( Y is calledupper
semicontinuous(shortly, u.s.c.) if, for each open subset
U ⊂ Y, the set{x ∈ X | F (x) ⊂ U} is open inX.

Let J ⊂ R be a compact interval. A mappingF :J (
Y with closed values, whereY is a separable metric space,
is calledmeasurableif, for each open subsetU ⊂ Y , the
set{t ∈ J | F (t) ⊂ U} belongs to aσ-algebra of subsets
of J.

If F : J ( Y is compact-valued andY = E is a sepa-
rable Banach space, then the notion of measurability coin-
cides with those of strong measurability (cf. e.g. [11, The-
orem 1.3.1]) as well as of weak measurability (cf. e.g. [1,
Proposition I.3.45.4]). For the definitions and more details,
see e.g. [1,10,11].

A multivalued mappingF : X ( Y is calledcompact
if the setF (X) =

⋃
x∈X F (x) is contained in a compact

subset ofY and it is calledquasi-compactif it maps com-
pact sets onto relatively compact sets.

The relationship between upper semicontinuous map-
pings and quasi-compact mappings with closed graphs is
expressed by the following proposition (see, e.g., [11]).

Proposition 1.LetX, Y be metric spaces andF : X ( Y
be a quasi-compact mapping with a closed graph. ThenF
is u.s.c.

Let J = [0, T ] be a given compact interval. A multi-
valued mappingF : J × X ( Y , whereY is a separable
Banach space, is called anupper-Carath́eodory mappingif
the mapF (·, x): J ( Y is measurable, for allx ∈ X, the
map F (t, ·): X ( Y is u.s.c., for almost allt ∈ J , and the
setF (t, x) is compact and convex, for all(t, x) ∈ J ×X.

The technique that will be used for proving the exis-
tence and localization result consists in constructing a se-
quence of approximating problems. This construction will
be made on the basis of the Scorza–Dragoni type result in
[15] (cf. [5]).

Definition 1. An upper-Carath́eodory mappingF : [0, T ]×
X×X ( X is said to have the Scorza–Dragoni property
if there exists a multivalued mappingF0: [0, T ]×X×X (
X∪{∅} with compact, convex values having the following
properties:

(i) F0(t, x, y) ⊂ F (t, x, y), for all (t, x, y) ∈ [0, T ]×X×
X,

(ii) if u, v: [0, T ] → X are measurable functions withv(t) ∈
F (t, u(t), u̇(t)), for a.a. t ∈ [0, T ], then alsov(t) ∈
F0(t, u(t), u̇(t)), for a.a.t ∈ [0, T ],

(iii) for everyε > 0, there exists a closedIε ⊂ [0, T ]
such thatµ([0, T ] \ Iε) < ε, F0(t, x, y) 6= ∅, for all
(t, x, y) ∈ Iε×X×X, andF0 is u.s.c. onIε×X×X.

The following two propositions are crucial in our in-
vestigation. The first one is almost a direct consequence
of the main result in [15] (cf. [5] and [7, Theorem 2.1]);
precisely, the quoted results deal with a multivalued map
F : [0, T ] × X ( X, but it is straightforward to see that
they are still valid in this case, whereF is defined on
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[0, T ] × X × X. The second one allows us to construct
a sequence of approximating problems of (1).

Proposition 2. Let X be a separable Banach space and
F : [0, T ]×X ×X ( X be an upper-Carath́eodory map-
ping. If F is globally measurable or quasi-compact, then
F has the Scorza–Dragoni property.

Proposition 3. (cf. [7, Theorem 2.2])Let X be a Banach
space andK ⊂ X a nonempty, open, convex, bounded set
such that0 ∈ K. Moreover, letε > 0 and V : X → R
be a Fŕechet differentiable function witḣV Lipschitzian in
B(∂K, ε) satisfying

(H1) V | ∂K = 0,
(H2) V (x) ≤ 0, for all x ∈ K,

(H3) ‖V̇ (x)‖ ≥ δ, for all x ∈ ∂K, whereδ > 0 is given.

Then there exists a bounded Lipschitzian function
φ: B(∂K, ε) → X

such that〈V̇x, φ(x)〉 = 1, for everyx ∈ B(∂K, ε)

Example 1.Let us note that the functionx → φ(x)||V̇x||,
whereφ andV̇x occur in Proposition 3, is Lipschitzian and
bounded inB(∂K, ε). The symbolV̇x denotes as usually
the first Fŕechet derivative ofV atx.

For more details concerning multivalued analysis, see
e.g. [1,10,11].

Definition 2. LetN be a partially ordered set,E be a Ba-
nach space and letP (E) denote the family of all subsets
of E. A functionβ:P (E) → N is called a measure of
non-compactness (m.n.c.) inE if β(co Ω) = β(Ω), for all
Ω ∈ P (E), whereco Ω denotes the closed convex hull of
Ω.

A m.n.c.β is called:

(i) monotone ifβ(Ω1) ≤ β(Ω2), for all Ω1 ⊂ Ω2 ⊂ E,
(ii) nonsingular ifβ({x}∪Ω) = β(Ω), for all x ∈ E and

Ω ⊂ E,
(iii) invariant with respect to the union with compact sets

if β(K ∪ Ω) = β(Ω), for every relatively compact
K ⊂ E and everyΩ ⊂ E,

(iv) regular whenβ(Ω) = 0 if and only ifΩ is relatively
compact.

It is obvious that the m.n.c. which is invariant with respect
to the union with compact sets is also nonsingular.

The typical example of an m.n.c. is theHausdorff mea-
sure of noncompactnessγ defined, for allΩ ⊂ E by

γ(Ω) :=

inf{ε > 0 | ∃x1, . . . , xn ∈ E:Ω ⊂ ∪n
i=1B({xi}, ε)}.

The Hausdorff m.n.c. is monotone, invariant with respect
to the union with compact sets and regular. Moreover, if
L ∈ L(E) andΩ ⊂ E, then (see, e.g., [11])

γ(LΩ) ≤ ‖L‖L(E)γ(Ω). (2)

Let {fn} ⊂ L([0, T ], E) be such that||fn(t)|| ≤ α(t),
γ({fn(t)}) ≤ c(t), for a.a.t ∈ [0, T ], all n ∈ N and
suitableα, c ∈ L([0, T ],R), then (cf. [11])

γ

({∫ T

0

fn(t) dt

})
≤

∫ T

0

c(t) dt. (3)

Moreover, for all subsetsΩ of E (see e.g. [4]),

γ(∪λ∈[0,1]λΩ) = γ(Ω).

Let us now introduce the function

µ(Ω) : = max
{wn}n⊂Ω

( sup
t∈[0,T ]

[γ({wn(t)}n) + γ({ẇn(t)}n)],

modC({wn}n) + modC({ẇn}n)), (4)

defined on the boundedΩ ⊂ C1([0, T ], E), where the or-
dering is induced by the positive cone inR2 and where
modC(Ω) denotes the modulus of continuity of a subset
Ω ⊂ C([0, T ], E).1 It was proved in [3] that the function
µ given by (4) is an m.n.c. inC1([0, T ], E) that is mono-
tone, invariant with respect to the union with compact sets
and regular.

Definition 3. Let E be a Banach space andX ⊂ E. A
multivalued mappingF : X ( E with compact values is
called condensing with respect to an m.n.c.β (shortly,β-
condensing) if, for everyΩ ⊂ X such thatβ(F (Ω)) ≥
β(Ω), it holds thatΩ is relatively compact.

A family of mappingsG:X× [0, 1] ( E with compact
values is calledβ-condensing if, for everyΩ ⊂ X such
thatβ(G(Ω× [0, 1])) ≥ β(Ω), it holds thatΩ is relatively
compact.

It will be also convenient to recall some basic facts
concerning evolution equations. For a suitable introduc-
tion and more details, we refer, e.g., to [8,12,16].

Hence, letC: [0, T ] → L(E) be Bochner integrable
and letf ∈ L([0, T ], E). Given x0 ∈ E, consider the
linear initial value problem

ẋ(t) = C(t)x(t) + f(t), x(0) = x0. (5)

It is well-known (see, e.g., [8]) that, for the uniquely solv-
able problem (5), there exists the evolution operator

{U(t, s)}(t,s)∈∆,

where∆ := {(t, s): 0 ≤ s ≤ t ≤ T}, such that

U(t, s) ∈ L(E) and ‖U(t, s)‖ ≤ e
∫ t

s
‖C(τ)‖ dτ ,

for all (t, s) ∈ ∆; (6)

in addition, the unique solutionx(·) of (5) is given by

x(t) = U(t, 0)x0 +
∫ t

0

U(t, s)f(s) ds, t ∈ [0, T ].

1 The m.n.c. modC(Ω) is a monotone, nonsingular and alge-
braically subadditive onC([0, T ], E) (cf. e.g. [11]) and it is equal
to zero if and only if all the elementsx ∈ Ω are equi-continuos.
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GivenD ∈ L(E), the linear Floquet b.v.p.

ẋ(t) = C(t)x(t) + f(t),
x(T ) = Dx(0),

}
(7)

associated with the equation in (5), satisfies the following
property.

Lemma 1. (cf. [4]) If the linear operatorD − U(T, 0) is
invertible, then (7) admits a unique solution given, for all
t ∈ [0, T ], by

x(t) = U(t, 0)
[
D − U(T, 0)

]−1
∫ T

0

U(T, τ)f(τ) dτ

+
∫ t

0

U(t, τ)f(τ) dτ. (8)

Example 2.Denoting

Λ := e
∫ T
0 ‖C(s)‖ ds, Γ := ‖[D − U(T, 0)]−1‖,

we obtain, in view of (6), (8) and the growth estimate im-
posed onC(t), the following inequality for the solution
x(·) of (7):

‖x(t)‖ ≤ Λ (ΛΓ + 1)
∫ T

0

‖f(s)‖ ds. (9)

Now, consider the second-order linear Floquet b.v.p.

ẍ(t) + A(t)ẋ(t) + B(t)x(t) = f(t),
for a.a.t ∈ [0, T ],
x(T ) = Mx(0), ẋ(T ) = Nẋ(0),



 , (10)

whereA, B are Bochner integrable andf ∈ L1([0, T ], E),
and let

‖(x, y)‖E×E :=
√
‖x‖2 + ‖y‖2, for all x, y ∈ E.

Problem (10) is equivalent to the following first-order
linear one

ξ̇(t) + C(t)ξ(t) = h(t),
for a.a.t ∈ [0, T ],
ξ(T ) = D̃ξ(0),



 (11)

where

ξ = (x, y) = (x, ẋ), (12)

h(t) = (0, f(t)), (13)

C(t): E×E → E×E, (x, y) 7−→ (−y,B(t)x + A(t)y)(14)

and

D̃: E × E → E × E, (x, y) 7−→ (Mx, Ny) . (15)

Let us denote, for all(t, s) ∈ [0, T ]× [0, T ], by

U(t, s) :=
(

U11(t, s) U12(t, s)
U21(t, s) U22(t, s)

)

the evolution operator associated with

ξ̇(t) + C(t)ξ(t) = h(t), for a.a.t ∈ [0, T ],
ξ(0) = ξ0,

}
(16)

whereξ, h andC are defined by relations (12), (13) and
(14), respectively, andξ0 ∈ E × E. It is easy to see that
‖C(t)‖ ≤ 1 + ‖A(t)‖+ ‖B(t)‖ and, according to (6), we
obtain

‖U(t, s)‖ ≤ e
∫ T
0 (1+‖A(t)‖+‖B(t)‖) dt, for all (t, s) ∈ ∆.

Consequently, for alli, j = 1, 2,

‖Uij(t, s)‖ ≤ e
∫ T
0 (1+‖A(t)‖+‖B(t)‖) dt,

for all (t, s) ∈ ∆. (17)

Moreover, if we assume that̃D−U(T, 0) is invertible,
denote

[D̃ − U(T, 0)]−1 :=
(

K11 K12

K21 K22

)

and put

k := ‖[D̃ − U(T, 0)]−1‖, (18)

then‖Kij‖ ≤ k, for i, j = 1, 2, and the solutionx(·) of
(10) and its derivativėx(·) take, for allt ∈ [0, T ], the forms

x(t) = A1(t)
∫ T

0

U12(T, τ)f(τ) dτ

+A2(t)
∫ T

0

U22(T, τ)f(τ) dτ

+
∫ t

0

U12(t, τ)f(τ) dτ, (19)

and

ẋ(t) = A3(t)
∫ T

0

U12(T, τ)f(τ) dτ

+A4(t)
∫ T

0

U22(T, τ)f(τ) dτ

+
∫ t

0

U22(t, τ)f(τ) dτ, (20)

where

A1(t) := U11(t, 0)K11 + U12(t, 0)K21,

A2(t) := U11(t, 0)K12 + U12(t, 0)K22,

A3(t) := U21(t, 0)K11 + U22(t, 0)K21,

A4(t) := U21(t, 0)K12 + U22(t, 0)K22,

for all t ∈ [0, T ]. It holds that

‖Ai(t)‖ ≤ 2ke
∫ T
0 (1+‖A(t)‖+‖B(t)‖) dt,

for i = 1, 2, 3, 4 andt ∈ [0, T ]. (21)

If there existsα ∈ L1([0, T ], [0,∞)) such that‖f(t)‖ ≤
α(t), for a.a.t ∈ [0, T ], then it immediately follows from
Remark 2 that the following estimates hold for each solu-
tion x(·) of (10) and its derivativėx(·):

‖x(t)‖ ≤ Z (4Zk + 1)
∫ T

0

α(s) ds

c© 2012 NSP
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and

‖ẋ(t)‖ ≤ Z (4Zk + 1)
∫ T

0

α(s) ds,

where

Z := e
∫ T
0 (‖A(s)‖+‖B(s)‖+1) ds (22)

with k defined in (18).
The proof of the main result (cf. Theorem 1 below)

will be based on the following slight modification of the
continuation principle developed in [3]. Since the proof
of this modified version differs from the one in [3] only
slightly in technical details, we omit it here.

Proposition 4.Let us consider the b.v.p.

ẍ(t) ∈ ϕ(t, x(t), ẋ(t)), for a.a.t ∈ [0, T ],
x ∈ S,

}
(23)

whereϕ: [0, T ]× E × E ( E is an upper-Carath́eodory
mapping andS ⊂ AC1([0, T ], E). LetH: [0, T ]×E×E×
E × E × [0, 1] ( E be an upper-Carath́eodory mapping
such that

H(t, c, d, c, d, 1) ⊂ ϕ(t, c, d), for all (t, c, d) ∈ [0, T ]×E×E.

Moreover, assume that the following conditions hold:

(i) There exist a closed setS1 ⊂ S and a closed, con-
vex setQ ⊂ C1([0, T ], E) with a non-empty interior
Int Q such that each associated problem

ẍ(t) ∈ H(t, x(t), ẋ(t), q(t), q̇(t), λ),
for a.a.t ∈ [0, T ],
x ∈ S1,



 P (q, λ)

whereq ∈ Q andλ ∈ [0, 1], has a non-empty, convex
set of solutions (denoted byT(q, λ)).

(ii) For every non-empty, bounded setΩ ⊂ E×E×E×E,
there existsνΩ ∈ L1([0, T ], [0,∞)) such that

‖H(t, x, y, u, v, λ)‖ ≤ νΩ(t),

for a.a. t ∈ [0, T ] and all (x, y, u, v) ∈ Ω and λ ∈
[0, 1].

(iii) The solution mappingT is quasi-compact andµ-condensing
with respect to a monotone and nonsingular m.n.c.µ
defined onC1([0, T ], E).

(iv) For eachq ∈ Q, the set of solutions of the problem
P (q, 0) is a subset ofInt Q, i.e.T(q, 0) ⊂ Int Q, for
all q ∈ Q.

(v) For eachλ ∈ (0, 1), the solution mappingT(·, λ) has
no fixed points on the boundary∂Q of Q.

Then the b.v.p. (23) has a solution inQ.

3. Main result

Combining the foregoing continuation principle with the
Scorza–Dragoni type technique (cf. Proposition 2), we are
ready to state the main result of the paper concerning the

solvability and localization of a solution of the multivalued
Floquet problem (1).

For this purpose, let us consider again the single-valued
Floquet b.v.p. (10) which is equivalent to the first-order
Floquet b.v.p. (11), providedξ, h(·), C(·) andD̃ are de-
fined by relations (12)–(15). Moreover, letU(t, s) be the
evolution operator associated with (16).

Theorem 1. Consider the Floquet b.v.p. (1), under con-
ditions (1i)–(1iii), and suppose thatF has the Scorza–
Dragoni property. Assume that an open, convex, bounded
setK ⊂ E containing0 exists such thatM∂K = ∂K.
Furthermore, let the following conditions(2i)–(2iv) be
satisfied:

(2i) D̃ − U(T, 0) is invertible.
(2ii) γ (F (t, Ω1 ×Ω2)) ≤ g(t) (γ(Ω1) + γ(Ω2)), for a.a.

t ∈ [0, T ] and each boundedΩ1, Ω2 ⊂ E, where
g ∈ L1([0, T ], [0,∞)) andγ is the Hausdorff m.n.c.
in E.

(2iii) For every non-empty, boundedΩ ⊂ E, there exists
νΩ ∈ L1([0, T ], [0,∞)) such that

‖F (t, x, y)‖ ≤ νΩ(t), (24)

for a.a.t ∈ [0, T ] and all (x, y) ∈ Ω × E.
(2iv)The inequality

2e
∫ T
0 (1+‖A(t)‖+‖B(t)‖) dt

×
(
4ke

∫ T
0 (1+‖A(t)‖+‖B(t)‖) dt + 1

)

×‖g‖L1([0,T ],[0,∞)) < 1

holds, wherek is defined in (18).

Furthermore, let there existε > 0 and a functionV ∈
C2(E,R), i.e. a twice continuously differentiable function
in the sense of Fréchet, satisfying (H1)–(H3) with Fréchet
derivativeV̇ Lipschitzian inB(∂K, ε).2 Moreover, let there
existh > 0 such that〈
V̈x(v), v

〉
≥ 0, forallx ∈ B(∂K, h), v ∈ E, (25)

whereV̈x(v) denotes the second Fréchet derivative ofV at
x in the direction(v, v) ∈ E × E. Finally, let

〈V̇x, w〉 > 0, (26)

and〈
V̇Mx, Nv

〉
·
〈
V̇x, v

〉
> 0,

or〈
V̇Mx, Nv

〉
=

〈
V̇x, v

〉
= 0, (27)

and for all x ∈ ∂K, t ∈ (0, T ), v ∈ E, λ ∈ (0, 1) and
w ∈ λF (t, x, v)−A(t)v −B(t)x.

Then the Floquet b.v.p. (1) admits a solution whose
values are located inK.

2 Since a C2-function V has only a locally Lipschitzian
Fréchet derivativeV̇ (cf. e.g. [13]), we had to assume explicitly
the global Lipschitzianity ofV̇ in a noncompact setB(∂K, ε).
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Proof. Since the proof of this result is rather technical, it
will be divided into several steps. At first, let us define the
sequence of approximating problems. For this purpose, let
us consider a continuous functionτ : E → [0, 1] such that
τ(x) = 0, for all x ∈ E \ B(∂K, ε), andτ(x) = 1, for
all x ∈ B(∂K, ε

2 ). According to Proposition 3 (see also

Remark 1), the function̂φ: E → E, where

φ̂(x) =
{

τ(x) · φ(x) · ‖V̇x‖, for all x ∈ B(∂K, ε),
0, for all x ∈ E \B(∂K, ε),

is well-defined, continuous and bounded. Since(t, y) →
A(t)y and (t, x) → B(t)x are Carath́eodory maps, on
[0, T ]×E, they are also almost-continuous (cf. [14]). There-
fore, the mapping(t, x, y) ( −A(t)y−B(t)x+F (t, x, y)
has the Scorza–Dragoni property. So, we are able to find a
decreasing sequence{Jm} of subsets of[0, T ] and a map-
ping F0 : [0, T ] × E × E ( E ∪ {∅} such that, for all
m ∈ N,

–µ(Jm) < 1
m ,

–[0, T ] \ Jm is closed,
–(t, x, y) ( −A(t)y −B(t)x + F0(t, x, y) is u.s.c. on
[0, T ] \ Jm × E × E,

–νK(t) is continuous in[0, T ] \ Jm.

If we put J = ∩∞m=1Jm, thenµ(J) = 0, F0(t, x, y) 6= ∅,
for all t ∈ [0, T ]\J and the mapping(t, x, y) ( −A(t)y−
B(t)x + F0(t, x, y) is u.s.c. on[0, T ] \ J × E × E.

For eachm ∈ N, let us define the mappingFm :
[0, T ] × E × E ( E with compact, convex values by
the formula

Fm(t, x, y) :=





F0(t, x, y)− p(t)
(
χJm(t) + 1

m

)
φ̂(x),

for all (t, x, y) ∈ [0, T ] \ J × E × E,

−p(t)
(
χJm(t) + 1

m

)
φ̂(x),

for all (t, x, y) ∈ J × E × E,

where

p(t) = : −νK(t)− ‖A(t)‖Z(4Zk + 1)‖νK‖L1([0,T ],[0,∞))

−‖B(t)‖
(
‖∂K‖+

ε

2

)
. (28)

with k andZ defined by (18) and (22), respectively.
Let us consider the b.v.p.

ẍ(t) + A(t)ẋ(t) + B(t)x(t) ∈ Fm(t, x(t), ẋ(t)),
for a.a.t ∈ [0, T ],

x(T ) = Mx(0), ẋ(T ) = Nẋ(0).



 (Pm)

Now, let us verify the solvability of problems(Pm).
Let m ∈ N be fixed. SinceF0 is globally u.s.c. on[0, T ] \
J×E×E, Fm(·, x, y) is measurable, for each(x, y) ∈ E×
E, and, due to the continuity of̂φ, Fm(t, ·, ·) is u.s.c., for
all t ∈ [0, T ] \ J . Therefore,Fm is an upper-Carath́eodory
mapping. Moreover, let us define the upper-Carathéodory

mappingHm: [0, T ] × E × E × E × E × [0, 1] ( E by
the formula

Hm(t, x, y, u, v, λ) ≡ Hm(t, u, v, λ)

:=





λF0(t, u, v)− p(t)
(
χJm

(t) + 1
m

)
φ̂(u),

for all (t, x, y, u, v, λ) ∈ [0, T ] \ J × E4 × [0, 1],

−p(t)
(
χJm

(t) + 1
m

)
φ̂(u),

for all (t, x, y, u, v, λ) ∈ J × E4 × [0, 1].

Let us show that, whenm ∈ N is sufficiently large, all
assumptions of Proposition 4 (forϕ(t, x, ẋ) := Fm(t, x, ẋ)−
A(t)ẋ−B(t)x) are satisfied.

For this purpose, let us define the closed setS = S1 by

S := {x ∈ AC1([0, T ], E): x(T ) = Mx(0), ẋ(T ) = Nẋ(0)}
and let the setQ of candidate solutions be defined asQ :=
C1([0, T ], K). Because of the convexity ofK, the setQ is
closed and convex.

For all q ∈ Q andλ ∈ [0, 1], consider still the associ-
ated fully linearized problem

ẍ(t) + A(t)ẋ(t) + B(t)x(t) ∈ Hm(t, q(t), q̇(t), λ),
for a.a.t ∈ [0, T ],
x(T ) = Mx(0), ẋ(T ) = Nẋ(0),



 Pm(q, λ)

and denote byTm the solution mapping which assigns to
each(q, λ) ∈ Q× [0, 1] the set of solutions ofPm(q, λ).

ad (i) In order to verify condition(i) in Proposition 4,
we need to show that, for each(q, λ) ∈ Q×[0, 1], the prob-
lemPm(q, λ) is solvable with a convex set of solutions. So,
let (q, λ) ∈ Q × [0, 1] be arbitrary and letfq(·) be a mea-
surable selection ofHm(·, q(·), q̇(·), λ). Then, according
to (2i), Lemma 1 and the equivalence, stated in Section 2,
between the b.v.p. (10) and (11), the single-valued Floquet
problem

ẍ(t) + A(t)ẋ(t) + B(t)x(t) = fq(t),
for a.a.t ∈ [0, T ],

x(T ) = Mx(0), ẋ(T ) = Nẋ(0)





admits a unique solution which is one of solutions ofPm(q, λ).
Thus, the set of solutions ofPm(q, λ) is nonempty. The
convexity of the solution sets follows immediately from
the definition ofHm and the fact that problemsPm(q, λ)
are fully linearized.

ad (ii) Let Ω ⊂ E × E × E × E be bounded. Then,
there exists a boundedΩ1 ⊂ E such thatΩ ⊂ Ω1 ×Ω1 ×
Ω1×Ω1 and, according to(2iii) and the definition ofHm,

there existsĴ ⊂ [0, T ] with µ
(
Ĵ
)

= 0 such that, for all

t ∈ [0, T ] \
(
J ∪ Ĵ

)
, (x, y, u, v) ∈ Ω andλ ∈ [0, 1],

‖Hm(t, u, v, λ)−A(t)y −B(t)x‖ ≤ νΩ1(t)

+2p(t) · max
x∈B(∂K,ε)

‖φ̂(x)‖+ ‖A(t)‖ · ‖y‖+ ‖B(t)‖ · ‖x‖.

Therefore, the mappingHm(t, q(t), q̇(t), λ)−A(t)ẋ(t)−
B(t)x(t) satisfies condition(ii) from Proposition 4.
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ad (iii) Since the verification of condition(iii) in Proposition 4 is technically the most complicated, it will be split
into two parts:(iii1) the quasi-compactness of the solution operatorTm, (iii2) the condensity ofTm w.r.t. the monotone
and non-singular m.n.c.µ defined by (4).

ad (iii1) Let us firstly prove that the solution mappingTm is quasi-compact. SinceC1([0, T ], E) is a complete
metric space, it is sufficient to prove the sequential quasi-compactness ofTm. Hence, let us consider the sequences
{qn}, {λn}, qn ∈ Q,λn ∈ [0, 1], for all n ∈ N, such thatqn → q in C1([0, T ], E) andλn → λ. Moreover, letxn ∈
Tm(qn, λn), for all n ∈ N. Then there exists, for alln ∈ N, kn(·) ∈ F0(·, qn(·), q̇n(·)) such that

ẍn(t) + A(t)ẋn(t) + B(t)xn(t) = λnkn(t)− p(t)
(

χJm
(t) +

1
m

)
φ̂(qn(t)), for a.a.t ∈ [0, T ], (29)

and thatxn(T ) = Mxn(0), ẋn(T ) = Nẋn(0).
According to condition(2iii) and the definition ofQ, ‖kn(t)‖ ≤ νK(t), for everyn ∈ N and a.a.t ∈ [0, T ]. According

to formula (19),

xn(t) = A1(t)
∫ T

0

U12(T, τ)fn(τ) dτ + A2(t)
∫ T

0

U22(T, τ)fn(τ) dτ +
∫ t

0

U12(t, τ)fn(τ) dτ, (30)

where

fn(t) = λnkn(t)− p(t)
(

χJm(t) +
1
m

)
φ̂(qn(t)). (31)

Therefore, for allt ∈ [0, T ] andn ∈ N,

‖xn(t)‖ ≤ Z(4Zk + 1)Ĉ,

wherek, Z are defined by relations (18), (22) and

Ĉ :=

[
‖νK‖L1([0,T ],[0,∞)) + 2 · max

x∈B(∂K,ε)
‖φ̂(x)‖ · ‖p‖L1([0,T ],[0,∞))

]
. (32)

This implies that the sequence{xn} is bounded.
Moreover, since

ẋn(t) = A3(t)
∫ T

0

U12(T, τ)fn(τ) dτ + A4(t)
∫ T

0

U22(T, τ)fn(τ) dτ +
∫ t

0

U22(t, τ)fn(τ) dτ, (33)

wherefn(t) is defined by formula (31), we can obtain, by the similar arguments, that‖ẋn(t)‖ ≤ Z(4Zk + 1)Ĉ for all
t ∈ [0, T ] andn ∈ N.

Consequently, for a.a.t ∈ [0, T ], we have

‖ẍn(t)‖ ≤ ‖A(t)‖ · ‖ẋn(t)‖+ ‖B(t)‖ · ‖xn(t)‖+ ‖fn(t)‖

≤ (‖A(t)‖+ ‖B(t)‖) · Z(4Zk + 1)Ĉ + νK(t) + 2 · max
x∈B(∂K,ε)

‖φ̂(x)‖ · p(t).

Thus,{ẍn} is uniformly integrable.
For eacht ∈ [0, T ], the properties of the Hausdorff m.n.c. yield

γ({fn(t)}n) ≤ γ ({λnkn(t)}n) + p(t)
(

χJm(t) +
1
m

)
γ

(
{φ̂(qn(t))}n

)

≤ γ
(∪λ∈[0,1]{λkn(t)}n

)
+ p(t)

(
χJm(t) +

1
m

)
γ

(
{φ(qn(t))‖V̇qn(t)‖ : qn(t) ∈ B(∂K, ε)}

)

= γ ({kn(t)}n) + p(t)
(

χJm(t) +
1
m

)
γ

(
{φ(qn(t))‖V̇qn(t)‖ : qn(t) ∈ B(∂K, ε)}

)
.

Therefore, according to condition(2ii), for a.a.t ∈ [0, T ],

γ({fn(t)}n) ≤ g(t) (γ ({qn(t)}n) + γ ({q̇n(t)}n)) + p(t)
(

χJm(t) +
1
m

)
γ

(
{φ(qn(t))‖V̇qn(t)‖ : qn(t) ∈ B(∂K, ε)}

)
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≤ g(t) sup
t∈[0,T ]

(γ ({qn(t)}n) + γ ({q̇n(t)}n)) + p(t)
(

χJm(t) +
1
m

)
γ

(
{φ(qn(t))‖V̇qn(t)‖ : qn(t) ∈ B(∂K, ε)}

)
.

Since the functionx → φ(x)‖V̇x‖ is Lipschitzian onB(∂K, ε) with some Lipschitz constant̂L > 0 (see Remark 1), we
get that

γ({fn(t)}n) ≤
(

g(t) + L̂p(t)
(

χJm
(t) +

1
m

))
sup

t∈[0,T ]

(γ ({qn(t)}n) + γ ({q̇n(t)}n)) .

Sinceqn → q and q̇n → q̇ in C([0, T ], E), we get that, for a.a.t ∈ [0, T ], γ ({qn(t)}n) = γ ({q̇n(t)}n) = 0, which
implies thatγ({fn(t)}n) = 0, for a.a.t ∈ [0, T ].

For a givent ∈ (0, T ], the sequences{Uij(t, s)fn(s)}, i, j ∈ {1, 2}, are relatively compact as well, for a.a.s ∈ [0, t],
because, according to (2),

γ({Uij(t, s)fn(s)}n) ≤ ‖Uij(t, s)‖γ({fn(s)}n) = 0, (34)

for all i, j ∈ {1, 2}.
Moreover, according to (17) and (22),

‖Uij(t, s)fn(s)‖ ≤ Z

(
νK(s) + 2 · max

x∈B(∂K,ε)
‖φ̂(x)‖ · p(s)

)
, (35)

for a.a.s ∈ [0, t] and alln ∈ N.
By virtue of (2), (3), (34), (35) and the sub-additivity ofγ, we finally arrive at

γ({xn(t)}n) ≤ γ

({∫ t

0

U12(t, τ)fn(τ) dτ

}

n

)
+ ‖A1(t)‖ · γ

({∫ T

0

U12(T, τ)fn(τ) dτ

}

n

)

+ ‖A2(t)‖ · γ
({∫ T

0

U22(T, τ)fn(τ) dτ

}

n

)
= 0.

By similar reasonings, when using (20) instead of (19), we also get

γ({ẋn(t)}n) = 0

by which{xn(t)}, {ẋn(t)} are relatively compact, for a.a.t ∈ [0, T ]. Moreover, sincexn satisfies for alln ∈ N equation
(29),{ẍn(t)} is relatively compact, for a.a.t ∈ [0, T ]. Thus, according to [1, Lemma III.1.30], there exist a subsequence of
{ẋn}, for the sake of simplicity denoted in the same way as the sequence, andx ∈ C1([0, T ], E) such that{ẋn} converges
to ẋ in C([0, T ], E) and{ẍn} converges weakly töx in L1([0, T ], E). According to the classical closure results (cf. e.g.
[11, Lemma 5.1.1]),x ∈ Tm(q, λ), which implies the quasi-compactness ofTm.

ad (iii2) In order to show that, form ∈ N sufficiently large,Tm is µ-condensing with respect to the m.n.c.µ defined
by (4), let us consider a bounded subsetΘ ⊂ Q such thatµ (Tm(Θ × [0, 1])) ≥ µ(Θ). Let {xn} ⊂ Tm (Θ × [0, 1]) be a
sequence such that

µ (Tm (Θ × [0, 1])) =

(
sup

t∈[0,T ]

[γ({xn(t)}n) + γ({ẋn(t)}n)] , modC ({xn}n) + modC ({ẋn}n)

)
.

According to (19) and (20), we can find{qn} ⊂ Θ, {λn} ⊂ [0, 1] and{kn} satisfyingkn(t) ∈ F0(t, qn(t), q̇n(t)), for a.a.
t ∈ [0, T ], such that, for allt ∈ [0, T ], xn(t) andẋn(t) are defined by formulas (30) and (33), respectively, wherefn(t) is
defined by formula (31).

By the similar reasonings as in the partad (iii1), we can obtain that

γ ({fn(t)}n) ≤
(

g(t) + L̂p(t)(χJm(t) +
1
m

)
)

sup
t∈[0,T ]

(γ ({qn(t)}n) + γ ({q̇n(t)}n)) ,

for a.a.t ∈ [0, T ].
Let us put

S := sup
t∈[0,T ]

(γ ({qn(t)}n) + γ ({q̇n(t)}n)) ,
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fix τ ∈ [0, T ] and leti, j = 1, 2. Then, according to (17) and (22), we have that, for alln ∈ N,

‖Uij(τ, t)fn(t)‖ ≤ ‖Uij(τ, t)‖ · ‖fn(t)‖ ≤ Z

(
‖kn(t)‖+ 2 · max

x∈B(∂K,ε)
‖φ̂(x)‖ · p(t)

)
, fora.a.t ∈ [0, τ ].

Sincekn(t) ∈ F0(t, qn(t), q̇n(t)), for a.a.t ∈ [0, T ], andqn ∈ Θ, for all n ∈ N, whereΘ is a bounded subset of
C1([0, T ], E), there existsΩ ⊂ K such thatqn(t) ∈ Ω, for all n ∈ N andt ∈ [0, T ]. Hence, it follows from condition
(2iii) that

‖Uij(τ, t)fn(t)‖ ≤ Z

(
νΩ(t) + 2 · p(t) · max

x∈B(∂K,ε)
‖φ̂(x)‖

)
, fora.a.t ∈ [0, τ ].

As a consequence of (17), (22) and property (2), we also have that

γ
({Uij(τ, t)fn(t)}n

) ≤ Zγ ({fn(t)}n) , fora.a.t ∈ [0, τ ].

Therefore, we can use (3) in order to show that

γ

({∫ T

0

Uij(T, t)fn(t) dt

}

n

)
≤ ZS

∫ T

0

(
g(t) + L̂p(t)

(
χJm(t) +

1
m

))
dt, ij = 1, 2,

and also

γ

({∫ t

0

Ui2(t, τ)fn(τ) dτ

}

n

)
≤ ZS

∫ t

0

(
g(τ) + L̂p(τ)

(
χJm(τ) +

1
m

))
dτ, i = 1, 2.

Consequently, according to (2), (21), (30) and the subadditivity ofγ, we have that, for a.a.t ∈ [0, T ],

γ ({xn(t)}n) ≤ ZS (‖A1(t)‖+ ‖A2(t)‖+ 1)
∫ T

0

(
g(t) + L̂p(t)

(
χJm(t) +

1
m

))
dt

≤ ZS (4kZ + 1)
(
‖g‖L1([0,T ],[0,∞)) + L̂

(
‖p‖L1(Jm) +

1
m
‖p‖L1([0,T ],[0,∞))

))
.

The same estimate can be obtained forγ ({ẋn(t)}n), when starting from condition (33). Subsequently,

γ ({xn(t)}n) + γ ({ẋn(t)}n) ≤ 2ZS (4kZ + 1)
(
‖g‖L1([0,T ],[0,∞)) + L̂

(
‖p‖L1(Jm) +

1
m
‖p‖L1([0,T ],[0,∞))

))
.

Since we assume thatµ (Tm(Θ × [0, 1])) ≥ µ(Θ) and{qn}n ⊂ Θ, we get

S = sup
t∈[0,T ]

(γ ({qn(t)}n) + γ ({q̇n(t)}n)) ≤ sup
t∈[0,T ]

(γ ({xn(t)}n) + γ ({ẋn(t)}n))

≤ 2Z(4Zk + 1)
(
‖g‖L1([0,T ],[0,∞)) + L̂

(
‖p‖L1(Jm) +

1
m
‖p‖L1([0,T ],[0,∞))

))
S.

Since we have, according to(2iv), that2Z(4kZ + 1)‖g‖L1([0,T ],[0,∞)) < 1, we can choosem0 ∈ N such that, for all
m ∈ N, m ≥ m0, it holds that

2Z(4kZ + 1)
(
‖g‖L1([0,T ],[0,∞)) + L̂

(
‖p‖L1(Jm) +

1
m
‖p‖L1([0,T ],[0,∞))

))
< 1.

Therefore, we get, for sufficiently largem ∈ N, the contradictionS < S which ensures the validity of condition(iii) in
Proposition 4.

ad (iv) For all q ∈ Q, the setTm(q, 0) coincides with the unique solutionxm of the linear system

ẍ(t) + A(t)ẋ(t) + B(t)x(t) = −p(t)
(
χJm(t) + 1

m

)
φ̂(q(t)), for a.a.t ∈ [0, T ],

x(T ) = Mx(0), ẋ(T ) = Nẋ(0).

}

According to (19) and (20), for allt ∈ [0, T ],

xm(t) = A1(t)
∫ T

0

U12(T, τ)ϕm(τ) dτ + A2(t)
∫ T

0

U22(T, τ)ϕm(τ) dτ +
∫ t

0

U12(t, τ)ϕm(τ) dτ,
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and

ẋm(t) = A3(t)
∫ T

0

U12(T, τ)ϕm(τ) dτ + A4(t)
∫ T

0

U22(T, τ)ϕm(τ) dτ +
∫ t

0

U22(t, τ)ϕm(τ) dτ,

whereϕm(t) := −p(t)
(
χJm

(t) + 1
m

)
φ̂(qm(t)).

Since

‖ϕm‖L1([0,T ],[0,∞)) ≤ max
x∈B(∂K,ε)

‖φ̂(x)‖ ·
(
‖p‖L1(Jm,[0,∞)) +

‖p‖L1([0,T ],[0,∞))

m

)
,

we have that, for allt ∈ [0, T ],

‖xm(t)‖ ≤ Z · (4Zk + 1) · max
x∈B(∂K,ε)

‖φ̂(x)‖ ·
(
‖p‖L1(Jm,[0,∞)) +

‖p‖L1([0,T ],[0,∞))

m

)
, (36)

wherek, Z are defined by relations (18), (22).
Let us now considerr > 0 such thatrB ⊂ K. Then, it follows from (36) that we are able to findm0 ∈ N such that,

for all m ∈ N, m ≥ m0, andt ∈ [0, T ], ‖xm‖ ≤ r. Therefore, for allm ∈ N, m ≥ m0, Tm(q, 0) ⊂ Int Q, for all
q ∈ Q, which ensures the validity of condition(iv) in Proposition 4.

ad (v) Let m ∈ N be fixed and let us show that each(Pm) satisfies the transversality condition(v) in Proposition 4.
We reason by a contradiction, and assume the existence ofλ ∈ (0, 1) andq ∈ ∂Q such thatq ∈ Tm(q, λ). According to
the definition of the solution operatorTm, there isf0 ∈ L1([0, T ], E) with f0(t) ∈ F0(t, q(t), q̇(t)), for a.a.t ∈ [0, T ]\J ,
satisfying

q̈(t) + A(t)q̇(t) + B(t)q(t) = λf0(t)− p(t)
(

χJm(t) +
1
m

)
φ̂(q(t)), fora.a.t ∈ [0, T ] \ J. (37)

Since, moreover,µ(J) = 0, condition (37) is indeed valid for a.a.t ∈ [0, T ].
Sinceq ∈ ∂Q, there existst0 ∈ [0, T ] satisfyingq(t0) ∈ ∂K. If we further assume thatt0 = 0, thenq(T ) = Mq(0) ∈

M∂K = ∂K. With no loss of generality we can then taket0 ∈ (0, T ]. According to condition (H3),‖V̇q(t0)‖ ≥ δ.
Furthermore, sincet 7−→ ‖V̇q(t)‖ is continuous, there ish0 > 0 such thatq(t) ∈ B

(
∂K, min{h, ε

2}
)

and‖V̇q(t)‖ ≥ δ
2 , for

all t ∈ [t0−h0, t0]. SinceJm is open in[0, T ], if, in addition,t0 ∈ Jm, we can takeh0 in such a way that[t0−h0, t0] ⊂ Jm.
Consider now the functiong: [0, T ] → R defined byg(t) = V (q(t)).
According to the regularity conditions imposed onV andq, we have thatg ∈ C1([0, T ],R) andġ(t) = 〈V̇q(t), q̇(t)〉,

for all t ∈ [0, T ]. Since, moreover,V ∈ C2(E,R) and q̇ is absolutely continuous on[0, T ], we obtain that alsȯg is
absolutely continuous, implying thatg̈(t) exists, for a.a.t ∈ [t0 − h0, t0].

Sinceg(t) ≤ 0, for all t ∈ [0, T ] with g(t0) = 0, t0 is a local maximum point. Hence,ġ(t0) ≥ 0 and ġ(t0) = 0,
whenevert0 ∈ (0, T ). Consider now the special case whent0 = T . Sinceq(0) = M−1q(T ), according to the properties
of M , we have thatq(0) ∈ ∂K, and thusġ(0) = 〈V̇q(0), q̇(0)〉 ≤ 0. Note, moreover, thaṫq(T ) = Nq̇(0). Consequently,
we have that〈V̇Mq(0), Nq̇(0)〉 · 〈V̇q(0), q̇(0)〉 = ġ(T ) · ġ(0) ≤ 0 and according to (27) we obtain that

ġ(0) =
〈
V̇q(0), q̇(0)

〉
= ġ(T ) =

〈
V̇q(T ), q̇(T )

〉
= 0.

Let t ∈ [t0 − h0, t0] be such that botḧq(t) andẍ(t) exist. Then

g̈(t) = lim
h→0

ġ(t + h)− ġ(t)
h

= lim
h→0

〈V̇q(t+h), q̇(t + h)〉 − 〈V̇q(t), q̇(t)〉
h

.

According to the regularity ofq, there exist two functionsa(h) and b(h) from [−t, T − t] to E with a(h) → 0 and
b(h) → 0 whenh → 0 such that

q̇(t + h) = q̇(t) + h [q̈(t) + a(h)] , q(t + h) = q(t) + h [q̇(t) + b(h)] .

Consequently,

g̈(t) = lim
h→0

〈V̇q(t+h), q̇(t) + h [q̈(t) + a(h)]〉 − 〈V̇q(t), q̇(t)〉
h

= lim
h→0

〈V̇q(t+h), q̇(t)〉 − 〈V̇q(t), q̇(t)〉
h

+
〈V̇q(t+h), h [a(h)]〉

h
+ 〈V̇q(t+h), q̈(t)〉.
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Sinceh 7−→ ‖V̇q(t+h)‖ is continuous, it is bounded, fort ∈ [−t, T − t], and therefore
∣∣∣∣∣
〈V̇q(t+h), h [a(h)]〉

h

∣∣∣∣∣ ≤ ‖V̇q(t+h)‖‖a(h)‖ → 0, h → 0.

Thus, we obtain that

g̈(t) = lim
h→0

〈V̇q(t+h), q̇(t)〉 − 〈V̇q(t), q̇(t)〉
h

+ 〈V̇q(t+h), q̈(t)〉

= lim
h→0

〈V̇q(t)+h[q̇(t)+b(h)], q̇(t)〉 − 〈V̇q(t), q̇(t)〉
h

+ 〈V̇q(t+h), q̈(t)〉.

According to the regularity condition imposed onV , there existsO(h) ∈ E′ with

‖O(h)‖
h

→ 0 forh → 0

such that

V̇q(t)+h[q̇(t)+b(h)] = V̇q(t) + V̈q(t) (hq̇(t) + hb(h)) + O(h)

implying

〈V̇q(t)+h[q̇(t)+b(h)], q̇(t)〉 − 〈V̇q(t), q̇(t)〉
h

=
〈V̈q(t)(ḣq(t)), q̇(t)〉

h
+
〈V̈q(t)(hb(h)), q̇(t)〉

h
+
〈O(h), q̇(t)〉

h

= 〈V̈q(t)(q̇(t)), q̇(t)〉+ 〈V̈q(t)(b(h)), q̇(t)〉+
〈O(h), q̇(t)〉

h
.

Therefore,

g̈(t) = lim
h→0

〈V̈q(t)(q̇(t)), q̇(t)〉+ 〈V̈q(t)(b(h)), q̇(t)〉+ 〈V̇q(t+h), q̈(t)〉+
〈O(h), q̇(t)〉

h

= 〈V̈q(t)(q̇(t)), q̇(t)〉+ 〈V̇q(t), q̈(t)〉. (38)

Let us now consider the case whent0 ∈ Jm. According to the properties ofg, it is possible to find̂t0 ∈ (t0 − h0, t0)
such thaṫg(t̂0) ≥ 0. Therefore, we obtain that

0 ≥ −ġ(t̂0) = ġ(t0)− ġ(t̂0) =
∫ t0

t̂0

g̈(t) dt.

According to (25) and (38), we have that

0 ≥ −ġ(t̂0) =
∫ t0

t̂0

g̈(t) dt =
∫ t0

t̂0

〈V̈q(t)(q̇(t)), q̇(t)〉+ 〈V̇q(t), q̈(t)〉 dt ≥
∫ t0

t̂0

〈V̇q(t), q̈(t)〉 dt

=
∫ t0

t̂0

〈V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)−
(

1 +
1
m

)
p(t)φ̂(q(t))〉 dt

=
∫ t0

t̂0

〈V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)−
(

1 +
1
m

)
p(t)τ(q(t))‖V̇q(t)‖φ(q(t))〉 dt.

Sinceq(t) ∈ B(∂K, ε
2 ), for all t ∈ [t̂0, t0], τ(q(t)) = 1 and, according to Proposition 3,〈V̇q(t), φ(q(t))〉 = 1. Therefore,

we obtain that

0 ≥ −ġ(t̂0) ≥
∫ t0

t̂0

〈V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)−
(

1 +
1
m

)
p(t)τ(q(t))‖V̇q(t)‖φ(q(t))〉 dt

=
∫ t0

t̂0

(
〈V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)〉 −

(
1 +

1
m

)
p(t)‖V̇q(t)‖

)
dt
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≥
∫ t0

t̂0

‖V̇q(t)‖
(

κ(t)−
(

1 +
1
m

)
p(t)

)
dt,

where

κ(t) := −νK(t)− ‖A(t)‖Z(4Zk + 1)‖νK‖L1([0,T ],[0,∞)) − ‖B(t)‖
(
‖∂K‖+

ε

2

)
.

According to the definition ofp, we have that the last integral is strictly positive, so we get the contradictory conclusion
0 ≥ −ġ(t̂0) > 0. It implies thatt0 6∈ Jm.

Therefore, let us study the case whent0 ∈ [0, T ]\Jm. If we are able to get a contradiction also whent0 ∈ [0, T ]\Jm,
thenq ∈ Tm(λ, q) with q ∈ ∂Q is not possible, and so problem(Pm) satisfies the required tranversality condition.

Let w0 ∈ F (t0, q(t0), q̇(t0)). According to Proposition 3, and sincet0 6∈ Jm, we have that

〈V̇q(t0), λw0 −A(t0)q̇(t0)−B(t0)q(t0)− p(t0)(χJm
(t0) +

1
m

)φ̂(q(t0))〉

= 〈V̇q(t0), λw0 −A(t0)q̇(t0)−B(t0)q(t0)− p(t0)
m

φ̂(q(t0))〉

= 〈V̇q(t0), λw0 −A(t0)q̇(t0)−B(t0)q(t0)〉 − p(t0)
m

‖V̇q(t0)‖.

Therefore, as a consequence of (26), the negativity ofp and condition(H3), we have that
〈

V̇q(t0), λw0 −A(t0)q̇(t0)−B(t0)q(t0)− p(t0)
m

φ̂(q(t0))
〉
≥ − p(t0)

m
‖V̇q(t0)‖ ≥ −δp(t0)

m
> 0,

for all w0 ∈ F (t0, q(t0), q̇(t0)). The multivalued mapF is compact-valued and the mapV̇q(t0): E → R is continuous.
Thus, we can findσ > 0 such that
〈

V̇q(t0), λw0 −A(t0)q̇(t0)−B(t0)q(t0)− p(t0)
m

φ̂(q(t0))
〉
≥ 2σ,

for all w0 ∈ F (t0, q(t0), q̇(t0)).
In [0, T ] \ Jm, the multivalued map

t ( λF0(t, q(t), q̇(t))−A(t)q̇(t)−B(t)q(t)− p(t)
m

φ̂(q(t))

is u.s.c. and, therefore,Φ: [0, T ] \ Jm ( R defined by

t (
{
〈V̇q(t), λw −A(t)q̇(t)−B(t)q(t)− p(t)

m
φ̂(q(t))〉, : w ∈ F0(t, q(t), q̇(t))

}

is u.s.c. Thus, we can find̃h0 ≤ h0 such thatΦ(t) ∈ [σ, +∞), for all t ∈ [t0 − h̃0, t0] \ Jm.
Sinceg(t0 − h̃0) ≤ 0, also in[t0 − h̃0, t0], we can find̃t0 with ġ(t̃0) ≥ 0. Now, we reason as before and get

0 ≥ −ġ(t̃0) = ġ(t0)− ġ(t̃0) =
∫ t0

t̃0

g̈(t) dt

=
∫ t0

t̃0

〈V̈q(t)(q̇(t)), q̇(t)〉 dt +
∫ t0

t̃0

〈V̇q(t), q̈(t)〉 dt ≥
∫ t0

t̂0

〈V̇q(t), q̈(t)〉 dt

=
∫ t0

t̃0

〈V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)− p(t)(χJm(t) +
1
m

)φ̂(q(t))〉 dt

=
∫

[t̃0,t0]\Jm

〈V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)− p(t)
m

φ̂(q(t))〉 dt

+
∫

[t̃0,t0]∩Jm

〈V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)− p(t)(1 +
1
m

)φ̂(q(t))〉 dt.

c© 2012 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.6, No. 2, 177-192 (2012) / www.naturalspublishing.com/Journals.asp 189

Since the multivalued mapΦ(t) is u.s.c. and sincet0 6∈ Jm, we have that
∫

[t̃0,t0]\Jm

〈
V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)− p(t)

m
φ̂(q(t))

〉
dt ≥ σ

∫

[t̃0,t0]\Jm

> 0.

Otherwise, from the definition ofp and by a similar reasoning as before, we obtain that
∫

[t̃0,t0]∩Jm

〈
V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)− p(t)

(
1 +

1
m

)
φ̂(q(t))

〉
dt

=
∫

[t̃0,t0]∩Jm

〈
V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)− p(t)

(
1 +

1
m

)
‖V̇q(t)‖φ(q(t))

〉
dt

=
∫

[t̃0,t0]∩Jm

(〈
V̇q(t), λf0(t)−A(t)q̇(t)−B(t)q(t)

〉
− p(t)

(
1 +

1
m

)
‖V̇q(t)‖

)
dt

≥
∫

[t̃0,t0]∩Jm

‖V̇q(t)‖
(−νK(t)− ‖A(t)‖Z(4Zk + 1)‖νK‖L1([0,T ],[0,∞))

)
dt

−
∫

[t̃0,t0]∩Jm

‖V̇q(t)‖
(
‖B(t)‖

(
‖∂K‖+

ε

2

)
+

(
1 +

1
m

)
p(t) dt

)
> 0

In the case whent0 ∈ [0, T ] \ Jm, we obtain the contradictory conclusion0 ≥ −ġ(t̃0) > 0 as well, and the tranversality
condition(v) in Proposition 4 is so verified.

Summing up, we have proved that there existsm0 ∈ N such that every problem(Pm), wherem ≥ m0, satisfies all
the assumptions of Proposition 4. This implies that every such(Pm) admits a solution, denoted byxm, with xm(t) ∈ K,
for all t ∈ [0, T ]. Consequently, there exists a sequence{km}m in L1([0, T ], E) satisfying

ẍm(t) + A(t)ẋm(t) + B(t)xm(t) = km(t)− p(t)
(

χJm(t) +
1
m

)
φ̂(xm(t)) (39)

and alsokm(t) ∈ F (t, xm(t), ẋm(t)), for a.a.t ∈ [0, T ] and everym ≥ m0. Moreover, according to(2ii), we obtain
that ‖km(t)‖ ≤ νK(t), for a.a.t ∈ [0, T ] and everym ≥ m0. Therefore, reasoning as inad (iii1), we have that
‖ẋm(t)‖ ≤ Z(4Zk + 1)Ĉ with Ĉ defined by (32). We can then apply(2ii) and get

γ ({km(t)}m) ≤ g(t) [γ ({xm(t)}m) + γ ({ẋm(t)}m)] , fora.a.t ∈ [0, T ]. (40)

Let us putŜ := γ ({xm(t)}m) + γ ({ẋm(t)}m) and let{fm} ⊂ L1([0, T ], E) be defined byfm(t) := km(t) −
p(t)

(
χJm(t) + 1

m

)
φ̂(xm(t)), for a.a.t ∈ [0, T ]. Whent 6∈ J , there ism̂ = m̂(t) ≥ m0 such thatt 6∈ Jm, for all

m ≥ m̂. If we further apply the subadditivity of the Hausdorff m.n.c., we obtain

γ ({fm(t)}m) ≤ γ ({km(t)}m) + γ

(
{−p(t)

(
χJm(t) +

1
m

)
φ̂(xm(t))}m

)

≤ γ ({km(t)}m) + γ

(
{−p(t)

(
χJm(t) +

1
m

)
φ̂(xm(t)), m = m0, . . . , m̂(t)− 1}m

)

+ γ

(
{−p(t)

m
φ̂(xm(t)), m ≥ m̂(t)}m

)
= γ ({km(t)}m) + γ

(
{−p(t)

m
φ̂(xm(t)), m ≥ m̂(t)}m

)
.

Sinceφ̂ is bounded, we obtain that

p(t)
m

φ̂(xm(t)) → 0, m →∞

implying thatγ ({fm(t)}m) ≤ γ ({km(t)}m), for a.a.t ∈ [0, T ]. According to (40), we have thatγ ({fm(t)}m) ≤ Ŝg(t),
for a.a.t ∈ [0, T ]. Reasoning as inad(iii1), it is also possible to show that

γ ({xm(t)}m) ≤ Z(4Zk + 1)Ŝ‖g‖L1([0,T ],[0,∞)),
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and the same estimate is valid forγ ({ẋm(t)}m). Con-
sequently, according(2iii), we obtain that

Ŝ = γ ({xm(t)}m) + γ ({ẋm(t)}m)

≤ 2Z(4Zk + 1)Ŝ‖g‖L1([0,T ],[0,∞)) < Ŝ,

implying thatŜ = 0. Hence,γ ({xm(t)}m) = γ ({ẋm(t)}m) =
0, for everyt 6∈ J . Thus, alsoγ ({fm(t)}m) = 0. Accord-
ing to (39), we then obtain thatγ ({ẍm(t)}m) = 0, for
a.a.t ∈ [0, T ]. Therefore, a classical convergence result
(see e.g. [1, Lemma III.1.30])) assures the existence of a
subsequence, denoted as the sequence, and of a function
x ∈ AC1([0, T ], E) such thatxm → x and ẋm → ẋ
in C([0, T ], E) and alsoẍm ⇀ x in L1([0, T ], E), when
m → ∞. Finally, a classical closure result (see e.g. [11,
Lemma 5.1.1]) guarantees thatx is a solution of (1) sat-
isfying x(t) ∈ K, for all t ∈ [0, T ], and the proof is so
complete.

4. Concluding remarks

Observe that in a Hilbert spaceE, for V (x) := 1
2

(‖x‖2 − r
)
,

we have that (cf. [3], [13])∂V (x) = {V̇ (x)} = x, i.e. we
obtain thatV̈ (x) ≡ Id. In particularV ∈ C2(E,R), as
required in Theorem 1. On the other hand, if‖ · ‖2 (i.e.
alsoV (·)) is twice Fŕechet differentiable at0 in a Banach
space(E, ‖ · ‖), thenE is isomorphic to a Hilbert space
(see e.g. [9, p. 180]).

As pointed out in [3], problems of type (1) can be re-
lated to those forabstract nonlinear wave equationsin
Hilbert spacesE := L2(Ω). Hence, fort ∈ [0, T ] andξ ∈
Ω, whereΩ is a nonempty, bounded domain inRn with a
Lipschitz boundary∂Ω, consider the functional evolution
equation

∂2u

∂t2
+ a

∂u

∂t
+ bu(t, ·) + B‖u(t, ·)‖p−2u = ϕ(t, u), (41)

whereu = u(t, ξ), subject to boundary conditions

u(T, ·) = Mu(0, ·), ∂u(T, ·)
∂t

= N
∂u(0, ·)

∂t
. (42)

Assume thata ≥ 0, b < 0,B ≥ 0, p ∈ [3,∞) are con-
stants and thatϕ: [0, T ] × R → R is sufficiently regular.
The problem under consideration can be still restricted by
a constraintu(t, ·) ∈ K1, where

K1 := {e ∈ L2(Ω) | ‖e‖ < 1}, t ∈ [0, T ].

Takingx(t) := u(t, ·) with x ∈ AC1([0, T ], L2(Ω)),
A(t) ≡ A := a, B(t) ≡ B := b, f : [0, T ] × L2(Ω) →
L2(Ω) defined by(t, v) → ϕ(t, v(·)), andF (t, x, y) ≡
F (t, x) := −B‖x‖p−2x + f(t, x), the above problem can
be rewritten into the form (1), possibly together withx(t) ∈
K1, t ∈ [0, T ].

In view of the above arguments, all illustrative exam-
ples in [3], related toV (x) := 1

2‖x‖2−R acting in Hilbert
spaces, can be improved by means of Theorem 1 in the

sense that all relations holding for(t, x) ∈ (0, T )×K1 ∩
B(∂K1, ε) can be strictly localized to(0, T )×∂K1. More
concretely, problem (41), (42), whereM = N = Id or
M = N = −Id together withϕ(t,−u) ≡ −ϕ(t, u), ad-
mits in this way a (strong) solutionx(t) := u(t, ·) such
thatx(t) ∈ K1, t ∈ [0, T ], provided (for more details, see
[3])

(i) a ≥ 0, b < 0, 0 ≤ B < 1
p−1 , wherep ∈ [3,∞),

(ii) ϕ is Carath́eodory (resp. continuous) and such that

|ϕ(t, ξ)| ≤ c0(t)√
|Ω|+ 1

+
c1(t)√
|Ω|+ 1

|ξ|2m,

t ∈ [0, T ], ξ ∈ Ω,

wherec0, c1 are suitable integrable coefficients
(⇒ f is Carath́eodory and such that‖f(t, x)‖ ≤ c0(t)+

c1(t)‖x‖m, for all x ∈ L2(Ω)),
(iii) ϕ(t, ξ) is Lipschitzian inξ with a constantL (in-

dependent oft) such that (k will be specified below)

4eT (1+a−b)
(
4keT (1+a−b) + 1

)
LT < 1 (43)

(⇒ f satisfies theγ−regularity condition, namely

γ
(
f(t, Ω̃)

)
≤ Lγ(Ω̃), for a.a.t ∈ [0, T ] and each

boundedΩ̃ ⊂ E, with g(t) := L satisfying the inequality

4eT (1+a−b)
(
4keT (1+a−b) + 1

)
‖g‖L1([0,T ],[0,∞)) < 1),

(iv) condition(d − B)‖x‖2 + 〈x, f(t, x)〉 ≥ 0, holds
on the set[0, T ]×∂K1, whered ≥ 0 is a suitable constant
such thata2 ≤ −4b(b + d).

It would be nice to express condition(iv), as condi-
tions (i)–(iii), for function ϕ. For instance, the related

equality
√∫

Ω
x2(ξ) dξ = r would then, however, lead to

the inequality

zϕ(t, z) ≥ (B − d)z2

required, for all(t, z) ∈ [0, T ]× R. In this way, the infor-
mation concerning the localization of solutions would be
lost.

The most technical requirement (in nontrivial situa-
tions) is so the inequality (43) in condition(iii). Never-
theless, the quotient in (43)

k := ‖[D̃ − U(T, 0)]−1‖ = ‖[±Id− eCT ]−1‖E×E

can be calculated as

k = k−1
0

∣∣∣∣∣

∣∣∣∣∣
±1 + λ1eλ1T−λ2eλ2T

λ2−λ1
, eλ2T−eλ1T

λ2−λ1
λ1λ2(eλ1T−eλ2T )

λ2−λ1
, ±1 + λ1eλ2T−λ2eλ1T

λ2−λ1

∣∣∣∣∣

∣∣∣∣∣
R2×R2

,

where

k−1
0 =

[
1∓ (eλ1T + eλ2T ) + eλ1T+λ2T

]−1
,
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λ1 =
−a−√a2 − 4b

2
, λ2 =

−a +
√

a2 − 4b

2
.

For instance, fora = 0, b = −1, we getk ≤ 1+eT

2+eT +e−T <
1; condition (43) can be then satisfied, when e.g.L ≤

1
T (16e4T +4e2T )

.

After all, since the usage of bounding functionV (x) :=
1
2‖x‖2−R is the most standard one, the illustrative exam-
ple demonstrates that, in view of the above arguments, the
practical application of Theorem 1 reduces to separable
Hilbert spaces.
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puted monograph published in 2003 at Kluwer (its second
edition will be published in this year by Springer jointly
with World Publ. Corp., Beijing), the author of three in-
vited monographic chapters (two of them in handbooks
of ordinary differential equations and a topological fixed
point theory) and a (co)author of more than 160 scien-
tific articles. His main research activities concern topo-
logical methods in nonlinear analysis, differential equa-
tions and inclusions, multivalued dynamical systems, frac-
tals and their application to quantitative linguistics.

Luisa Malaguti is an Associate
Professor at the University of Mod-
ena and Reggio Emilia, Italy. She
obtained the degree in Mathemat-
ics with honors in 1982 at the Uni-
versity of Modena. In 1987 she re-
ceived the Ph.D. in applied math-
ematics from the University of Tri-
este, Italy. Her research interests
include: boundary value problems,

reaction-diffusion processes, multivalued analysis and evo-
lution equations.

c© 2012 NSP
Natural Sciences Publishing Cor.



192 Jan Andres et al.: A Scorza–Dragoni approach to second-order boundary value .....
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in 2008. Her research concerns mainly
the existence and localization of
solutions of the second-order mul-
tivalued boundary value problems.
She is an active researcher cou-

pled with the several years of teaching experience. She
published several research articles in reputed international
mathematical journals.

c© 2012 NSP
Natural Sciences Publishing Cor.


