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Abstract: In this work, a new class of asymmetric probability densitiée Epsilon Skew Inverted Gamma (E$tistribution, which
was first introduced by Abdulat®], is applied to analyzing skewed and bimodality data. Basaperties of this distribution, such
as the pdf, cdf, and moments are presented. In addition, atatpnal forms of parameters estimation of MLE and MME asedu
Finally, we illustrate the theory of ESldistribution by modeling some real data.
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1 Introduction

The last three decades have witnessed a good attention igitibdtions that can capture skewness and leptokurtic
properties for some kind of data exhibiting skewness amtakedness. Skewed technique is often utilized in an attemp
to requite the problem of long tailed and skewed data sets.rithimal curve with such data fails to give an adequate
fitting. Therefore, many efforts have been motivated toduilbust models, able to fitting the data even if it includes
outliers, see with this respect Azzalirti][ Fernandez and Steel]], Mudholkar [L4], Arellano [4], Elsalloukh in [LO]

and P], Gomez [L2], and Ali [3]. The inverse gamma (irfv) distribution is one of most used distributions for anafygi
skewed data and was introduced by Peard&hih 1901 and was known as Pearson type five. Thé idistribution is
commonly used in fregentist and Bayesian analysis. It pysmportant role as proper prior distribution for the
distributions with unknown scale parameter particulatig normal distribution. Through our review of the litenas,

we are needing to parametric models which can control asyrgmeeakedness, and bimodality features. In this
research, we extend the reflected inverfedistribution, which is symmetric, to the Epsilon Skew Ireer Gamma
ESII Abdulah P] by adding a new skewness parameter. In the process, we ineke models more flexible and rich
enough in their shapes by adding another shape parameler positive and negative orthants of the inverted refleCted
distribution. The EST considers four parameters and provides great reliabilityodeling skewed, tailed behavior, and
bimodality features on the positive and negative real liffeese features are eligible and suitable for modeling séewe
data which come from different sources. Besides flexibilitg can fit a wide range of cases of this distribution, where
invl, and invx? distributions are two special cases of ESlistribution and obtain reflected Borghi [7] distribution

via a transformation case. Typically, the distributionresgents reciprocal of a variable distributed as the Epskaw
Gamma (E&) distribution Abdulah {].

The rest of this paper is organized as follows. In Section € develop definitions and some basic properties. In
Section 3, the estimation for the model parameters are attthusing the MLE and MME methods. In Section 4, Fisher
information matrix is derived and finally, we present the E&iodel of the eruption times for the real data set of the Old
Faithful Geyser in Section 5.
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2 Definition and Basic Properties of the ESIT Distribution

Borghi [7] defined the pdf of the reflectdd distribution as

1 _x=8l
cx—6kte P xeR,

2r (k)

wheref € R, 3 > 0, andk > 0 are the location, scale, and shape parameters, respgclivis distribution is symmetric
about the location paramet@rand has a heavier or lighter tails than the normal distrdsutiepending on the value of the
shape parameté&r A formal definition of a pdf of an E$1 random variable comes by the following proposition

f(x 6,8,k =

Proposition 1. If Y ~ standard reflected (0, 1,k), then the random variable X% 1/Y is said to have an Epsilon Skew
Inverted Gamma distribution, denoted by ES#, 31k, €), if it has the pdf

f(xy) =
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wherey = (0,B,k,e) and 8 € R, 3, k> 0, and |¢| < 1 are the location, scale, shape, and skewness parameters,
respectively.

Proof. First we start with the pdf of the standard form of the reflddiedistribution Borghi [] with a random variable
Y
f(vK) = —— e M.
(k) = 57 ( 9 Iyl
Letx= 1, thenwe havéd f1(x)| = 3 .
Thus, we have the pdf of a random variakl@as
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We can redefine the symmetrization procedureyfwhich leads to the standardized form of the reflected ieeart
distribution, that is

f(x;k)zzr(k) (—x) ke~ ifx<0. )

1 [ x KD if x>0
Ve

We now generalize3) to become the pdfly.

Note that 8) represents the pdf of the standard form of the/ESflistribution. To satisfy the validity of (x; y) is a pdf,

we can prooff (x;y) > 0 and [, f(x;y)dx= 1. The ESI distribution can be obtained by standing two inverted gamma
distributions back to back and adding a skewness parammdétermore description of the tail shape. The distribution is
sharply peaked near the location parameter, skewed towiggme > 0, skewed to left whes < 0, and resembles to the
symmetric reflected inverted gamma distribution wiaegoes to zero. Figure 1 shows the inverse refleftetistribution

and Figure 2 shows a variety of the ESWith different values for the skewness parameters

Proposition 21f X ~ ESI(8,571,k, €), then the cumulative distribution function(3, of X is Abdulah 2]

+|\J

F(x):{l E;F(k g(x)) forx> 8
I (k,h(x)) forx< @,

Figure 3 shows the cdf of ESldistribution.

3 Central Moments and First Four Moments for the ESII™ Distribution

In this section, we derive the central moments and first fooments of EST distribution by using the following
proposition.
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g. 2: ESII Density Functions for Different Values of the Skewness Ratar

Proposition 31f X ~ ESI (8,371 k, &), then the central moments, mean, variance, skewness atusisucoefficients,
and the coefficient of variation are, respectively

n__ Bnr(k_n) n n n
E(X—0) = [(—D"(1+e)" ™+ (11—, (4)
2B¢
E(X)=6— k1) (5)
2
Var(X) = (kﬁ—l) (ki2)+(k32_kill)£2 : (6)
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Fig. 3: CDF For ESI' Density Functions witle=-0.1
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The proof for all these moments are shown in Abdulgh [

4 Maximum Likelihood Estimation for the ESI T Parameters

In this section, we discuss the estimation of the paramefdtse ESI™ distribution via the maximum likelihood method
which provides estimators with asymptotic properties. @&iane the location parametet= 0, this means we standardize
the distribution and treat the other paramefgss, ande as unknown.

Let X ~ ESIF (0, 871,k &) with a pdf given in (), then the log likelihood function is Abdula][

logL = nklog(B) — nlog(2) — nlogl™ (k) — (k+ 1) ilog( 1Xi+£) - Bi(r}l_xi)
n X B(l+¢)
—(k+1) i;IOg(l—i—E) — ST (10)
where
N {Xi if i >0
i 710 o/w,
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and
D if i <0
=10 o/w.
Maximizing (10) leads to the MLE of3 ande, respectively
A= ks s
(1-8)5ax +(1+8) oK
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and the MLE ofk is solved numerically Abdulah?]. The MLEs possess attractive properties, when the sanigde s
increases, such that consistent, efficient and asymptotinality with variance equal to the inverse of Fisher infation
matrix as we will derive it in the next section.

5 Method of Moments Estimation (MME)
The ESTI distribution consists of four parameters, so for estintaiome of its parameters, we find the MME estimates

by considering the following case
Using 6) and @), and from first and second sample moments, we have the MMBsAtdulah P]

6 =x+ (kzésl) (11)
and the estimation for the scale parameter
B = (ikl; f)zgtk__%
_ sk-1)/k=2) 12)

V(k=1)—2(k—5)
substituting 12) in (11), we obtain the MME of location parameter as Abdulah [

. 2 /k-2)
Y/ =

wherex ands are the sample mean and standard deviation, respectively.

6 Fisher Information Matrix for the ESI " Distribution

In this section, we obtain a closed form expression of Figifermation matrix. This matrix equals the negative valfie o
the expectation of second partial derivatives with respeanknown parameters for the log of likelihood or for pdf

Proposition 4. Abdulah ] If X ~ ESIT (8, 371,k, &), then the Fisher information matrix for the random variablés

= |-3¥® = ,
0 ¢ (k+1)(1+€2)
1-e2 (1-¢)2(1+¢)?
wherey/' (k) = % is the trigamma function.
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Proof. We can obtain the elements of Fisher matrix taking straggttrd integration as

e [02Iogf(x; y)] k

gz | p¥
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e [02Iogf(x;y)} _ 1

dBIk B’
%logf(xy)]
_E{ dBde ] =0
and
e {dzlogf(x; V)] R
okoe C (1-€2)
7 Example

In this section we present a case study of thelE8lodel for a real data set of the eruption times and duration of
the eruption for the Old Faithful Geyser in Yellowstone NWatl Park, Wyoming state, USA. The data are taken from
Azzalini [6] in framework of time series analysis and have been usedardlEl[L3] in smoothing technique, by Olivero
[8], and by Ali [3] in the context of modeling one of the bimodality distritarts and skew inv-reflected Pareto distribution,
respectively. The data consist of 299 observations of thgngaimes (in minutes) for occurring the eruption, whehme t
analysis includes the data that were calculated from Augysisto August 15th in 1985. The BESldistribution interval
extends over the real line, therefore we standardize thereésons of the data. The estimated parameters, loghiéed
scores, AIC, and BIC criteria of the distributions, regulareflected™, ES ", ESI, and skew inv-reflected Pareto can be
used to select the best fitting model for these data. Thetsdaulable 1 reveals that the ESs a good proper distribution
for describing and fitting the waiting time of eruptions fbetOld Faithful Geyser data set since it has the lower valties o
AIC 865.7, BIC 8768, and highest value of ldg= —429.8651. Figure 4 reflects the density plots of the fitted diatidns
with the histogram of the waiting times of the eruption dtae plot results provide some evidence in favor B8
distribution since the histogram of our sample data is cles&S™. This conclusion is also supported by the results in
the Table 1.

Table 1: Results of the Parameter MLEs and Corresponding Valuegyf laIC, and BIC for the Five Fitted Distributions for Geyser
Data.

Distribution scale shape | skewness logL AIC BIC
regular 2.8672| 25.2211 -1217.7587| 2439.5| 2446.9
reflected” 0.7310| 1.1318 0 -448.2238 | 902.4 | 913.5
ES 0.4123| 2.1076 | -0.1179 | -429.8651 | 865.7 | 876.8
ESIC 0.1638| 0.7390 0.1704 -566.9228 | 1139.8| 1150.9
skewed inv-reflecteq 0.2217| 2.5878 | -0.1973 | -509.3197 | 1024.6 | 1024.6
Pareto

8 Discussion

In this paper, we consider ESIfamily of distributions which includes the ifiy; inverted reflected’, inv-x2, and ES .
It conducts the skewness, peakedness, and bimodalityrésaly its four parameters. It is quite similar to thelES

(@© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro3, No. 1, 1-7 (2014) iwww.naturalspublishing.com/Journals.asp NS = 7

[ IData Histogram
= ES|Gamma
o ESGamma

-0- Ref-Gamma

= = = Skew-Inv-Ref.Paret

Fitted pdfs
o
&
T

Fig. 4: Fitted Density Functions of the Distributions on the Higtog for Geyser Data.

distribution Abdulah 1] with most of its properties. The main motivation for regagisuch model is that in the statistical
literatures, there is a lack to fit skewed, peakedness ofojh@ft a distribution curve, and bimodal data sets. The main
properties and parameters estimation for this class withmethods are studied. Moreover, Fisher information masrix
derived and a case study has been applied to the Old Faitleftdes for the models regular, reflected, ES™, ESIT,

and skewed inv-reflected Pareto. We conclude that the B®etter than the alternative distributions for descigttine
waiting time of eruptions.
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