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Abstract: In this work, a new class of asymmetric probability densities, the Epsilon Skew Inverted Gamma (ESIΓ ) distribution, which
was first introduced by Abdulah [2], is applied to analyzing skewed and bimodality data. Basicproperties of this distribution, such
as the pdf, cdf, and moments are presented. In addition, computational forms of parameters estimation of MLE and MME are used.
Finally, we illustrate the theory of ESIΓ distribution by modeling some real data.

Keywords: Inverted Gamma Distribution, Epsilon Skew Distributions,Maximum Likelihood, Fisher Information Matrix, Bimodal
Distributions.

1 Introduction

The last three decades have witnessed a good attention with distributions that can capture skewness and leptokurtic
properties for some kind of data exhibiting skewness and/orpeakedness. Skewed technique is often utilized in an attempt
to requite the problem of long tailed and skewed data sets. The normal curve with such data fails to give an adequate
fitting. Therefore, many efforts have been motivated to build robust models, able to fitting the data even if it includes
outliers, see with this respect Azzalini [5], Fernández and Steel [11], Mudholkar [14], Arellano [4], Elsalloukh in [10]
and [9], Gómez [12], and Ali [3]. The inverse gamma (invΓ ) distribution is one of most used distributions for analyzing
skewed data and was introduced by Pearson [15] in 1901 and was known as Pearson type five. The invΓ distribution is
commonly used in freqentist and Bayesian analysis. It playsan important role as proper prior distribution for the
distributions with unknown scale parameter particularly,the normal distribution. Through our review of the literatures,
we are needing to parametric models which can control asymmetry, peakedness, and bimodality features. In this
research, we extend the reflected invertedΓ distribution, which is symmetric, to the Epsilon Skew Inverted Gamma
ESIΓ Abdulah [2] by adding a new skewness parameter. In the process, we make these models more flexible and rich
enough in their shapes by adding another shape parameter to the positive and negative orthants of the inverted reflectedΓ
distribution. The ESIΓ considers four parameters and provides great reliability in modeling skewed, tailed behavior, and
bimodality features on the positive and negative real line.These features are eligible and suitable for modeling skewed
data which come from different sources. Besides flexibility, we can fit a wide range of cases of this distribution, where
invΓ , and inv-χ2 distributions are two special cases of ESIΓ distribution and obtain reflectedΓ Borghi [7] distribution
via a transformation case. Typically, the distribution represents reciprocal of a variable distributed as the EpsilonSkew
Gamma (ESΓ ) distribution Abdulah [1].

The rest of this paper is organized as follows. In Section 2, we develop definitions and some basic properties. In
Section 3, the estimation for the model parameters are estimated using the MLE and MME methods. In Section 4, Fisher
information matrix is derived and finally, we present the ESIΓ model of the eruption times for the real data set of the Old
Faithful Geyser in Section 5.
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2 Definition and Basic Properties of the ESIΓ Distribution

Borghi [7] defined the pdf of the reflectedΓ distribution as

f (x;θ ,β ,k) =
1

2Γ (k)β k |x−θ |k−1e−
|x−θ |

β x∈ R,

whereθ ∈ R, β > 0, andk > 0 are the location, scale, and shape parameters, respectively. This distribution is symmetric
about the location parameterθ and has a heavier or lighter tails than the normal distribution depending on the value of the
shape parameterk. A formal definition of a pdf of an ESIΓ random variable comes by the following proposition

Proposition 1. If Y ∼ standard reflectedΓ (0,1,k), then the random variable X= 1/Y is said to have an Epsilon Skew
Inverted Gamma distribution, denoted by ESIΓ (θ ,β−1,k,ε), if it has the pdf

f (x;γ) =
β k

2Γ (k)







(

x−θ
1−ε

)−(k+1)
e−

β(1−ε)
x−θ if x ≥ θ

(θ−x
1+ε

)−(k+1)
e−

β(1+ε)
θ−x if x < θ ,

(1)

where γ = (θ ,β ,k,ε) and θ ∈ R, β , k > 0, and |ε| < 1 are the location, scale, shape, and skewness parameters,
respectively.

Proof. First we start with the pdf of the standard form of the reflected Γ distribution Borghi [7] with a random variable
Y

f (y;k) =
1

2Γ (k)
|y|(k−1)e−|y| .

Let x= 1
y , then we have| d

dx f−1(x)|= 1
x2 .

Thus, we have the pdf of a random variableX as

f (x;k) =
1

2Γ (k)
|
1
x
|(k−1)e−| 1

x |
1
x2 . (2)

We can redefine the symmetrization procedure of (2) which leads to the standardized form of the reflected invertedΓ
distribution, that is

f (x;k) =
1

2Γ (k)

{

x−(k+1)e−
1
x if x≥ 0

(−x)−(k+1)e−
1
−x if x< 0 .

(3)

We now generalize (3) to become the pdf (1).

Note that (3) represents the pdf of the standard form of the ESIΓ distribution. To satisfy the validity off (x;γ) is a pdf,
we can prooff (x;γ) ≥ 0 and

∫ ∞
−∞ f (x;γ)dx= 1. The ESIΓ distribution can be obtained by standing two inverted gamma

distributions back to back and adding a skewness parameterε for more description of the tail shape. The distribution is
sharply peaked near the location parameter, skewed to rightwhenε > 0, skewed to left whenε < 0, and resembles to the
symmetric reflected inverted gamma distribution whenε goes to zero. Figure 1 shows the inverse reflectedΓ distribution
and Figure 2 shows a variety of the ESIΓ with different values for the skewness parametersε.

Proposition 2.If X ∼ ESIΓ (θ ,β−1,k,ε), then the cumulative distribution function, F(x), of X is Abdulah [2]

F(x) =

{

1− (1−ε)
2Γ (k)Γ (k,g(x)) f orx≥ θ

(1+ε)
2Γ (k)Γ (k,h(x)) f orx< θ ,

Figure 3 shows the cdf of ESIΓ distribution.

3 Central Moments and First Four Moments for the ESIΓ Distribution

In this section, we derive the central moments and first four moments of ESIΓ distribution by using the following
proposition.
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Fig. 1: Inverse ReflectedΓ Density Function.
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Fig. 2: ESIΓ Density Functions for Different Values of the Skewness Parameter

Proposition 3.If X ∼ ESIΓ (θ ,β−1,k,ε), then the central moments, mean, variance, skewness and kurtosis coefficients,
and the coefficient of variation are, respectively

E(X−θ )n =
β nΓ (k−n)

2Γ (k)

[

(−1)n(1+ ε)n+1+(1− ε)n+1] , (4)

E(X) = θ −
2β ε

(k−1)
, (5)

Var(X) =
β 2

(k−1)

[

1
(k−2)

+ (
3

k−2
−

4
k−1

)ε2
]

, (6)
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Fig. 3: CDF For ESIΓ Density Functions withε= -0.1

γ1 =

{

1
(k−1)

[

1
(k−2)

+ (
3

k−2
−

4
k−1

)ε2
]}−3/2

[

−2εΓ (k−1)+ (1+3ε2)Γ (k−2)−4Γ (k−3)ε(1+ ε2)

Γ (k)

]

, (7)

γ2 =

{

1
(k−1)

[

1
(k−2)

+ (
3

k−2
−

4
k−1

)ε2
]}−2

[

−2εΓ (k−1)+ (1+3ε2)Γ (k−2)−4Γ (k−3)ε(1+ ε2)+2Γ (k−4)(1+10ε2+5ε4)

Γ (k)

]

, (8)

γ3 =

{

β 2

(k−1)

[

1
(k−2) +( 3

k−2 −
4

k−1)ε
2
]}1/2

|θ − 2β ε
(k−1) |

. (9)

The proof for all these moments are shown in Abdulah [2].

4 Maximum Likelihood Estimation for the ESI Γ Parameters

In this section, we discuss the estimation of the parametersof the ESIΓ distribution via the maximum likelihood method
which provides estimators with asymptotic properties. We assume the location parameterθ = 0, this means we standardize
the distribution and treat the other parametersβ ,k, andε as unknown.
Let X ∼ ESIΓ (0,β−1,k,ε) with a pdf given in (1), then the log likelihood function is Abdulah [2]

logL = nklog(β )−nlog(2)−nlogΓ (k)− (k+1)
n

∑
i=1

log(
x+i

1− ε
)−

β (1− ε)
∑n

i=1x+i

− (k+1)
n

∑
i=1

log(
x−i

1+ ε
)−

β (1+ ε)
∑n

i=1x−i
, (10)

where

x+i =

{

xi if xi ≥ 0
0 o/w ,
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and

x−i =

{

−xi if xi ≤ 0
0 o/w .

Maximizing (10) leads to the MLE ofβ andε, respectively

β̂ =
nk̂∑n

i=1x+i ∑n
i=1x−i

(1− ε̂)∑n
i=1x−i +(1+ ε̂)∑n

i=1x+i
,

ε̂ =
1±

√

1+ f 2

f
,

where

f =
1

n(k̂+1)

[

β̂
∑n

i=1x−i
−

β̂
∑n

i=1x+i

]

and the MLE ofk is solved numerically Abdulah [2]. The MLEs possess attractive properties, when the sample size
increases, such that consistent, efficient and asymptotic normality with variance equal to the inverse of Fisher information
matrix as we will derive it in the next section.

5 Method of Moments Estimation (MME)

The ESIΓ distribution consists of four parameters, so for estimating some of its parameters, we find the MME estimates
by considering the following case
Using (5) and (6), and from first and second sample moments, we have the MME’s of θ Abdulah [2]

θ̃ = x̄+
2β̃ ε

(k−1)
(11)

and the estimation for the scale parameter

β̃ 2 =
s2(k−1)2(k−2)
(k−1)− ε2(k−5)

=
s(k−1)

√

(k−2)
√

(k−1)− ε2(k−5)
(12)

substituting (12) in (11), we obtain the MME of location parameter as Abdulah [2]

θ̃ = x̄+
2sε

√

(k−2)
√

(k−1)− ε2(k−5)
,

wherex̄ andsare the sample mean and standard deviation, respectively.

6 Fisher Information Matrix for the ESI Γ Distribution

In this section, we obtain a closed form expression of Fisherinformation matrix. This matrix equals the negative value of
the expectation of second partial derivatives with respectto unknown parameters for the log of likelihood or for pdf

Proposition 4. Abdulah [2] If X ∼ ESIΓ (θ ,β−1,k,ε), then the Fisher information matrix for the random variableX is

I =









k
β 2 − 1

β 0

− 1
β ψ ′

(k) ε
1−ε2

0 ε
1−ε2

(k+1)(1+ε2)
(1−ε)2(1+ε)2









,

whereψ ′
(k) = Γ ′′(k)

Γ (k) is the trigamma function.
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Proof. We can obtain the elements of Fisher matrix taking straightforward integration as

−E

[

∂ 2 log f (x;γ)
∂β 2

]

=
k

β 2 ,

−E

[

∂ 2 log f (x;γ)
∂k2

]

= ψ
′
(k) ,

−E

[

∂ 2 log f (x;γ)
∂ε2

]

=
(k+1)(1+ ε2)

(1− ε)2(1+ ε)2 ,

−E

[

∂ 2 log f (x;γ)
∂β ∂k

]

=−
1
β
,

−E

[

∂ 2 log f (x;γ)
∂β ∂ε

]

= 0

and

−E

[

∂ 2 log f (x;γ)
∂k∂ε

]

=
ε

(1− ε2)
.

7 Example

In this section we present a case study of the ESIΓ model for a real data set of the eruption times and duration of
the eruption for the Old Faithful Geyser in Yellowstone National Park, Wyoming state, USA. The data are taken from
Azzalini [6] in framework of time series analysis and have been used by H¨ardle [13] in smoothing technique, by Olivero
[8], and by Ali [3] in the context of modeling one of the bimodality distributions and skew inv-reflected Pareto distribution,
respectively. The data consist of 299 observations of the waiting times (in minutes) for occurring the eruption, where the
analysis includes the data that were calculated from August1st to August 15th in 1985. The ESIΓ distribution interval
extends over the real line, therefore we standardize the observations of the data. The estimated parameters, log likelihood
scores, AIC, and BIC criteria of the distributions, regularΓ , reflectedΓ , ESΓ , ESIΓ , and skew inv-reflected Pareto can be
used to select the best fitting model for these data. The results in Table 1 reveals that the ESΓ is a good proper distribution
for describing and fitting the waiting time of eruptions for the Old Faithful Geyser data set since it has the lower values of
AIC 865.7, BIC 876.8, and highest value of logL=−429.8651. Figure 4 reflects the density plots of the fitted distributions
with the histogram of the waiting times of the eruption data.The plot results provide some evidence in favor theESΓ
distribution since the histogram of our sample data is closer to ESΓ . This conclusion is also supported by the results in
the Table 1.

Table 1: Results of the Parameter MLEs and Corresponding Values of logL, AIC, and BIC for the Five Fitted Distributions for Geyser
Data.

Distribution scale shape skewness logL AIC BIC
regularΓ 2.8672 25.2211 -1217.7587 2439.5 2446.9
reflectedΓ 0.7310 1.1318 0 -448.2238 902.4 913.5
ESΓ 0.4123 2.1076 -0.1179 -429.8651 865.7 876.8
ESIΓ 0.1638 0.7390 0.1704 -566.9228 1139.8 1150.9
skewed inv-reflected 0.2217 2.5878 -0.1973 -509.3197 1024.6 1024.6
Pareto

8 Discussion

In this paper, we consider ESIΓ family of distributions which includes the invΓ , inverted reflectedΓ , inv-χ2, and ESΓ .
It conducts the skewness, peakedness, and bimodality features by its four parameters. It is quite similar to the ESΓ
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Fig. 4: Fitted Density Functions of the Distributions on the Histogram for Geyser Data.

distribution Abdulah [1] with most of its properties. The main motivation for regarding such model is that in the statistical
literatures, there is a lack to fit skewed, peakedness of the top of a distribution curve, and bimodal data sets. The main
properties and parameters estimation for this class with two methods are studied. Moreover, Fisher information matrixis
derived and a case study has been applied to the Old Faithful Geyser for the models regularΓ , reflectedΓ , ESΓ , ESIΓ ,
and skewed inv-reflected Pareto. We conclude that the ESΓ is better than the alternative distributions for describing the
waiting time of eruptions.
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