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Abstract: Using workload shaping technology, we present an approach to remove hardware over-provisioning implementing task
buffers and scheduler, in terms of energy consumption. Task buffers reorder tasks with various priorities and routes them to appropriate
virtual machines. Scheduler monitors the task buffering and hardwareload status, and decides the optimal number of active physical
and virtual machines. In addition, we designed a mechanism wherein tasks with fast executing are routed in fast and high energy
consumption machines and slow tasks to slow and low energy consumption machines. As a result, our approach efficiently can shape
workloads and manage the optimal number of active virtual machines and physical machines, in terms of energy consumption. To
evaluate our approach, we generated synthetic workload data and evaluated it both in simulating and actual cloud environment. Our
experimental results demonstrate our approach outperforms in terms of energy consumption to when not using no workload shaping
methodology.
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1 Introduction

In recent times, cloud computing [1] has attracted
considerable attention as it provides a new paradigm for
the virtually unlimited provisioning of computing
infrastructure [2]. In the cloud, resources are
interconnected in parallel and virtually provisioned by the
cloud provider. Through cloud computing, users can
acquire and release required resources on demand and
access data without knowing the exact physical locations
and identifiers of the resources. By this means, customers
will be able to access applications and data transparently
all over the world.

An Internet Data Center (IDC) is a common platform
to provide virtualized services for cloud computing [3,4].
An IDC usually deploys hundreds or thousands of
densely packed blade servers to save server space.
Executing services using IDC servers provides customers
with alternatives to operating their own computers; hence,
an IDC can reduce the cost of system ownership and
system maintenance. The computing paradigm facilitates
the reduction of acquisition and management costs of
hardware and software resources.

However, the energy costs for operating and cooling
cloud resources have increased significantly, to the point

where they will surpass the cost of purchasing hardware
resources, as the energy consumed by IDCs is directly
related to the number of host servers and their workloads
[5,6,7]. Thus, reducing energy consumption can
significant reduce management costs. Moreover, the heat
generated from operating multiple computing devices
could increase the probability of system failure.
Therefore, reducing energy consumption can help reduce
costs by eliminating the need for heat cooling devices for
increased system reliability.

There are several approaches for reducing energy
consumption [8,9,10]. Existing works in the field of
energy management aimed at reducing energy
consumption is divided into three levels: physical
machine level, by controlling machine components [11];
network traffic level, by controlling network traffic to
reduce the number of operating nodes [12]; deployment
level, by controlling where to deploy nodes [13]. To
reduce energy consumption at the machine level
computer, components change their operating speed when
they are not in use. At the deployment level, computing
nodes in an IDC server farm can be switched to sleep
mode or active mode. At the network traffic level,
network traffic can be routed such that the number of
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operating nodes are minimized. Energy management at
the machine level relies on a single user’s local activity, at
the network traffic level it depends on incoming traffic,
and energy management at the deployment considers the
workload dynamics. All of these energy management
approach should ensure service availability and on-time
service delivery while reducing energy consumption.

One of the major problems of energy consumption in
cloud infrastructure is hardware over-provisioning.
Typically, cloud computing resources are
over-provisioned in order to maintain service availability
and prevent service delays. To maintain service
availability, the amount of service provisioning in the
cloud infrastructure should be able to handle the peak
level of incoming demands without resulting in service
delays for customers. However, usually, the number of
incoming service demands are much lower than the peak
level and hence a large portion of computing resources in
cloud infrastructure run idle most of time. Therefore, we
could achieve optimal energy consumption if we could
shut down, hibernate, or switch to idle unused physical
machines, while guaranteeing service availability and
on-time service delivery.

The basic approach we adopted for energy
consumption management is workload shaping [14,15,
16] where the workload of various concurrently running
applications is shaped to fit the available machine’s
capacity. Our approach exploits an energy optimization
strategy in the cloud infrastructure at the network traffic
level. Through workload shaping, the dynamic workloads
can be smoothed out to reduce the local peak level of
service requests, and the number of active physical
machines required to maintain service availability can
thus be reduced. The reduced number of operating nodes
can result in reduced energy consumption. In this paper,
we propose a workload shaping technique for the optimal
energy management scheme based on virtualization
technology [17] for cloud infrastructure. Virtualization
makes use of existing software and hardware, allowing
more than one service to operate on the same piece of
hardware, thereby improving hardware utilization. As
single machines with high loads consume less energy
than several lightly loaded machines, using virtualization
can reduce the cost of energy maintenance. Through
virtualization technology, the number of active physical
machines can be controlled dynamically. Dynamic
resizing of the number of active physical machines allows
optimal number of hosting nodes to be deployed in cloud
infrastructure, thereby improving energy efficiency.

To implement workload shaping technology in cloud
infrastructure, we use severaltask buffers that reorder
tasks with various priorities and route them to the
appropriate virtual machine. In our approach, we
implemented ascheduler to control the number of active
virtual machines and active physical machines
dynamically by relocating or turning on/off virtual
machines. Ourscheduler monitored the task buffering and
CPU load status of each physical machine and decided

which virtual machine to route a task to and whether to
turn on/off virtual machines and physical machines, so as
to reduce energy consumption.

This paper is organized as follows. The mathematical
energy consumption model is described in Section 2. We
present this model in order to provide evaluation
measurement that can evaluate that our shaping approach
works effectively in simulated environment in terms of
energy consumption in cloud infrastructure. Section 3
describes our workload shaping methodology usingtask
buffer and scheduler. Section 4 illustrates our simulated
results based on our own cloud simulator and our
experimental results for real cloud system configuration.
We compared our results to the typical threshold-based
cloud system configuration with no energy consumption
consideration. Finally, we present some contributions and
final discussions in Section 5.

2 Energy Consumption Model for Cloud
Environment

In this section, we present an energy model to evaluate
the effects on energy consumption in cloud infrastructure.
First, we define the energy consumption model in a single
physical machine through dynamic speed scaling. The
energy consumed by a single physical machine is
composed of base energy consumption independent of
CPU clock speed and dynamic energy consumption
dependent on CPU clock speed changes. Equation (1)
describes the energy consumption in a single physical
machine. Here, we assume there is steady energy
consumption by all hardware components except CPUs.

Pi =
∫ t1

t0
(xi(t) · (c +βi fi(t))dt (1)

In equation (1), Pi is the energy consumption of a
single physical machinei during the time spanning
t0 ≤ t ≤ t1. xi(t) denotes machine on-off states at timet
(when a machinei is in on statexi(t) = 1 and when a
machine is in off statexi(t) = 1). ci is the constant energy
consumption of the machinei. ci includes the CPU’s base
energy consumption and the energy consumption of all
the other components in the machinei. In equation1)
above,βi fi(t) is CPU’s consumption, which varies with
CPU operating frequencyfi(t). For efficient cloud server
consolidation, the system may use computer’s stand-by
option rather than turn off host nodes to reduce waiting
time spent on the host nodes booting. Considering
computer stand-by option, the energy consumption model
of a physical machine is defined in equation (2).

Pi =
∫ t1

t0
(xi(t) · si(t) · (c +βi fi(t)))dt (2)

+xi(t) · si(t) · sti dt
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Here,sti is the amount of energy that hardwarei in in
the stand-by mode consumes at timet. si(t) denotes
stand-by mode activation state at timet (when a machinei
is in stand-by mode, thensi(t) = 1, otherwisesi(t) = 0).
From equation (2), xi(t) = 0 when standby mode is
activated in a physical machinei. The energy
consumption of all the physical machines in a cloud
infrastructure can be expressed as follows.

Pall =
N

∑
i=1

Pi (3)

HerePall represents the sum of all physical machines’
energy consumption and is expressed with the sum ofPi
in equation (2). N is the number of available physical
machines in a cloud infrastructure.

The service availability conditions are represented as
follows.

N

∑
i=1

xi(t)λi(t) = λcloud(t) (4)

xi(t)(1− xi(t)) = 0, i = 1,2,3, . . . ,N (5)

sti(t)(1− xi(t)) = 1, i = 1,2,3, . . . ,N (6)

g(αi fi)> h(λi(t)), i = 1,2,3, . . . ,N (7)

where λi(t) is service requests for the machinei at
time t, λcloud is service requests from all the cloud clients
at timet, g(αi fi) is machinei’s processing capacity when
the machine’s CPU runs at frequencyfi, andh(λi) is the
required amount of CPU usage to process requestsh(λi)
without making delay of service delivery. Equation (4)
describes all the service requests should be processed in
one of active machines all the time. Equation (5)
describes all physical machines have either on or off state.
Equation (6) is presented to guarantee that the machine
should not be on state when the machine is in stand-by
mode. The final condition as shown in equation Equation
(7) is that the number of processing requests to machinei
must be less than machinei’s processing capacity.

The objective of the energy optimization problem is to
minimize Pall without breaking conditions for service
availability. This is reflected in our objective function
(Equation (8)).

Minimize Pall =
N

∑
i=1

Pi (8)

Subject to the following constraints:

N

∑
i=1

xi(t)λi(t) = λcloud(t)

xi(t)(1− xi(t)) = 0, i = 1,2,3, . . . ,N

sti(t)(1− xi(t)) = 1, i = 1,2,3, . . . ,N

g(αi fi)> h(λi(t)), i = 1,2,3, . . . ,N

Constraint represented with Equation (4) - (7) ensures
that the capacity of each physical machine is not exceeded,
and all service requests are processed during the given time
span.

3 Workload Shaping Approach to Prevent
Resource Over-provisioning

This section describes our workload shaping technique
employed to reduce energy consumption in a cloud
infrastructure composed of multiple resources. The
workload shaping involves shaping workloads to reduce
the peak service demands and routes tasks to active
resources, while each workload of every physical
resource fits the resource’s own processing capacity.

To this end, we implementedtask buffers and a
scheduler. The purpose of ourtask buffers in our
approach is to smooth out local peak levels of task
requests, while ensuring that each machine manages tasks
as per its capacity limit. Consequentlytask buffers in each
virtual machine holds off task execution by putting task
requests into thetask buffer rather than executing task
immediately, The scheduler takes charge of server
consolidation [18], by deciding the number of active
physical and active virtual machines without breaking
service availability. In addition, since a physical machine
can run one or more virtual machines in the cloud
environment, and a virtual machine can move from one
machine to another without interruption due to migration
technology [19], the scheduler dynamically locates
virtual machines in any of the available physical
machines on the fly, thus minimizing the number of active
physical machines.

Fig. 1 describes our approach using workload shaping
technology. Our approach maintains severaltask buffers
where eachtask buffer is associated with one virtual
machine and is labeled with a predetermined priority.
Tasks are identified in advance based on the task priority
and routed to atask buffer with the same priority. When
the system receives new request,job dispatcher first
identifies new request’s task priority and assigns it to the
appropriatetask buffer. Task buffer then holds the request
if it detects that processing any new task request breaks
CPU load threshold, in order to smooth out request
arrivals.Scheduler monitors thistask buffer’s status and
creates newtask buffers and activates a physical machine
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Fig. 1: Workload shaping approach in cloud infrastructure.

if it detects that there is any chance of the any task
execution delayed and breaking service availability.

As we do not know the number of requests in
advance, initially we activaten task buffers and n
corresponding virtual machines in a single physical
machine which consumes a low level of energy. Here,n
refers to the number of task priorities in a cloud
infrastructure. The number oftask buffers and virtual
machines increases or decreases based on the number of
tasks loaded in thetask buffer. Scheduler creates a new
task buffer and its associated virtual machine when it
detects that there is a chance of task execution delay and a
breakdown of service availability. Whenever a newtask
buffer and its associated virtual machine are activated, a
task priority is assigned to thetask buffer and tasks of that
priority are routed to the newtask buffer. If the CPU load
in a physical machine crosses the threshold limit,
scheduler activate new physical machine. Based on
processing capacity of physical machines,scheduler
decides which virtual machine is migrated to the new
physical machine. By defaultscheduler moves virtual
machines with high priority tasks to faster and high
energy consuming physical machines.

In our approach, the priority of tasks is determined
based on their expected execution time because typical
cloud tasks do not have any priority. Thus, tasks with
similar execution times are assigned to the sametask

buffer. This implies that a virtual machine always runs
tasks with similar expected execution times. To estimate
task execution time, we use the execution history
recorded in a log file. In our approach, we set the deadline
to all the tasks withρ × expected execution time, and
force all the tasks to complete satisfying the deadline. The
deadline is the time limit by which a task should be
completed. To accomplish this, we putscheduler to hold a
task request in thetask buffer until the request’s
suspended time reaches(ρ − 1) × expected execution
time.

The condition in which a new virtual machine is
allocated is based on thetask buffer’s status. Scheduler
investigates all thetask buffers to check if there is any
chance of breaking the deadline of a task through its
expected execution time.scheduler also considers the
number of tasks in thetask buffers to decide new virtual
machine allocation. Overflows intask buffers result in the
allocation of a new virtual machine and its associative
new task buffer. In addition, virtual machines are released
when the associated task buffers stay empty for
pre-defined periods.

The condition in which a new physical machine is
allocated is represented as follows.

∀i,hl(λi(t))> ψ ×gl(αi fi), i = 1,2,3, . . . ,k (9)

where k is the number of current active physical
machines for a task withl priority, h(λi(t)) is the physical
machine i’s utilization rate at timet, gl(αi fi) is the
physical machine capacity at the CPU clock frequencyfi
for a task withl priority, andψ is the threshold to avoid
service delay due to task saturation in the virtual machine.

The condition to withdraw the existing physical
machine is represented as follows.

∃i,hl(λi(t))< γ ×gl(αi fi)∧

∃ j, j 6= i,hl(λi(t))< ψ ×gl(αi fi), (10)

i, j = 1,2,3, . . . ,k

whereγ is the low level threshold where the existing
physical machine is deactivated when current CPU load is
under the threshold.

Scheduler withdraws physical machines when their
CPU load in a physical machine falls below the low level
threshold. At this point, new incoming task will not be
assigned to any of the virtual machines located on the
physical machine anymore and eventually virtual
machines and their associatedtask buffers will have no
tasks to run. Thenscheduler stops running the virtual
machine and removes the associatedtask buffer. Through
the migration technology, ideally virtual machines can
move or merge from one machine to another to reduce the
number of active physical machines. However, due to an
implementation problem, we could not finish
implementing ideal virtual machine migration.
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Applying our approach makes an idle physical server
active longer than using migration technology directly.
However, the delay time for using our approach is
estimated as at most the executing time of longest current
running task in the physical machine, and the amount of
energy consumption of delayed idle server would not
seems to be significant considering virtual machine
migration cost from one physical machine to another.

4 Evaluation

This section presents our experimental result both in
simulated environment and in the actual cloud
implementation.

4.1 Energy Consumption in a Simulated
Environment

We evaluate our approach using a custom-built simulator.
We assumed there are 100 physical machines in a cloud
infrastructure, where each physical machine can have
maximum 10 virtual machines, and all machines are of
equal processing capacity (100 load capacity) with
different CPU speedsfi (5-10). The energy consumption
of each active machine is calculated as 100+ β fi (β =
10). The energy consumption from the off-state machine
is set to 0 and that of the stand-by machine is set to 2. We
also set the CPU clock frequency level at two levels: 1)
when the machine is idle or runs slowly, it consumes 100
units of energy, and 2) when the machine runs at a normal
speed, the machine i consumes 100+β fi units of energy.

For the evaluation, we generated workload of 100,
200, 400, 800, 1600, and 3200 tasks (10 mean inter arrival
times). Task request intervals were modeled following
Poisson process. To generate the workload, we used three
types of task patterns: random, high, and low. In the
random pattern, the CPU utilization rate for each task is
generated at random and uniformly distributed between
5∼ 30 load units. In high pattern, the task utilization rate
is distributed in 20∼ 30 range, while the task utilization
rate is in the 5∼ 15 load unit range in the low pattern.
The execution time for each task is generated randomly
from 5 to 50 tick range. For the experiment, we set the
upper thresholdψ at 0.8 and the lower threshold at 0.2.

Fig. 2 - 4 shows the energy savings using various
parameters (m: task buffer size,ρ : smoothing deadline
parameter). To justify our approach, we compared our
work to the normal threshold based approach. In
threshold approach, there is no workload shaping: a new
virtual machine is created only when the CPU usage
become above upper threshold and new virtual machines
are released only when virtual machines are on idle. We
applied various parameter values fortask buffers to
determine the optimal configuration.

As can be seen in our experimental result shown in
Fig. 2 - 4, our approach proves to be more effective than

Fig. 2: Energy consumption with synthetic job request (random
task pattern)

Fig. 3: Energy consumption with synthetic job request (high task
pattern)

using a non-workload shaping approach in terms of
energy consumption. Especially when task requests are
uniformly distributed (Fig.2) or the requested tasks does
not require heavy CPU processing power (Fig.4), our
approach exhibits more energy saving gains. In addition,
we noticed large sized buffers and smoothing parameters
help in energy consumption saving. However, a large
buffer size and smoothing parameters may cause more
delays in service delivery as large-sized buffers can hold
off more task requests. Therefore we need to avoid using
very large parameters in order to provide faster service
delivery.
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Fig. 4: Energy consumption with synthetic job request (low task
pattern)

4.2 Energy Consumption in Actual Cloud
Infrastructure

We also implemented our workload shaping technology
approach in an actual cloud infrastructure. Our
implementation was based on CentOS 6.2 64bit, 10.04,
XenServer 6.0.201 [20] and Apache Cloud Stack 3.0.1
[21]. For the experiment, we implemented three host
servers and a management server in which each server has
dual core 2.5 GHz Pentium CPU with 8 GB memory.
Each host server is interconnected management server
and set to hold maximum 6 virtual machines.Job
Dispatcher, Scheduler, task buffers were implemented
and located in the management server.

To generate workloads, we developed a load generator
that spawns task requests to the management server in our
implementation. Fig.5 illustrates the number of job
requests generated by the load generator during a given
time span. For realistic playback of task request, we
executed several grid-based distributed indexing services
for 5, 10, 15, and 20 GB data; measured the execution
time for each external resource request or external
function calls; and recorded the execution time of external
resources or function calls in a log file. Based on the log
file, we built job request traces shown in Fig.5. Fig. 6
illustrates cumulative execution time distribution in our
experimental task request list. Using trace data shown in
Fig. 5, our load generator playbacks workloads to emulate
real clients’ task requests. For the experiment, we
identified the task priority based on the average execution
time in log traces, and route a task request to the
correspondingtask buffers by estimating the expected
execution time using the task’s average execution time.

For the evaluation we directly measured the energy
consumption every 20 minutes using power measuring

Fig. 5: The number of task requests generated from log traces

Fig. 6: Cumulative task distribution based on task execution time

device. Table 1 shows a comparison of energy
consumption between no workload shaping technology
and workload shaping technology. The energy
consumption here is the average energy consumption of
three host servers. As we can see in table1, our approach
can reduce energy consupmtion by up to 13 % with
appropriate parameter values. During the experiment, we
noticed task buffering size works as more deciding factor
for energy consumption saving. Larger buffers result in
greater energy saving as they can hold off more task
requests. Consequently larger buffers can suspend new
virtual machine’s activation and hence the number of
active physical machines can be further reduced. That
facilitates more effective energy consumption
management in cloud infrastructure.
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Table 1: Energy consumption comparison in actual cloud
environment

Energy Energy Energy
Management Consumption Saving

Strategy (avg. W) (%)

No workload shaping 621 100

m = 3, ρ = 3 582.3 93.7

m = 3, ρ = 5 568.7 91.6

m = 5, ρ = 3 559.1 90.0

m = 5, ρ = 5 542.3 87.2

5 Conclusion

We proposed an approach for energy consumption
optimization for the cloud environment. through
workload shaping. Our approach exploits virtualization
technology by utilizing virtual machines and server
consolidation. To enable energy-efficient cloud
infrastructure, we implemented a workload shaping
technique into the cloud infrastructure using task buffers
and scheduler. Task buffers reorder task requests to
smooth out the peak job requests and enable to host
minimum number of active virtual machines. Scheduler
monitors CPU loads of physical machines and maintains
an optimal size of active physical machines by deciding
when physical machines should be turned on/off. In
addition, we designed a mechanism wherein tasks with
fast executing are routed in fast and high energy
consumption machines and slow tasks to slow and low
energy consumption machines. As a result, we concluded
that our approach is useful and effective in reducing
energy consumption in cloud infrastructure.

In the future, we need to use more meaningful and
practical data for the cloud environment, in order to
justify our work. In addition, we need to compare existing
workload shaping algorithms and refine our algorithm to
provide a more optimal solution. Finally, we should add
more configurable option such as dynamic on-the-fly
virtual machine migration to further reduce energy
consumption.
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