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Abstract: Multivariate Quadratic Quasigroups (MQQs) as a suitable class of quasigroups for multivariate public key cryptography
recently have been an important mathematical tool in information security field. In this paper, we propose a necessary and sufficient
condition to verify whether a quasigroup given by its multiplication table is a bilinear MQQ, which shows that checking whether an
arbitrary quasigroup is a bilinear MQQ is equivalent to solving a simple matrixequation. Based on this condition, a deterministic
algorithm is proposed to judge whether a given quasigroup is a bilinear MQQand then obtain the corresponding Boolean functions if
it is. An example is given to show the validity of our results.
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1 Introduction

The most popular public-key cryptosystems rely on some
computationally intractable problems such as the
factoring of large primes in RSA [1] and the calculation
of the discrete logarithm in ECC [2]. These algorithms
are assumed to become insecure in the era of quantum
computers [3]. Therefore, several solutions for the
post-quantum cryptography have been proposed in
literatures such as hash-based [4], code-based [5],
lattice-based [6], and MQ-based
(multivariate-quadratic-equation-based)
cryptosystems [7]. Among these, MQ-based schemes are
promising candidates for post-quantum cryptography
since they are fast and suitable to devices that are short of
computing and memory resources. The current proposals
for MQ-based schemes basically can be classified into
four main categories: Matsumoto and Imai (MIA) [8],
Stepwise Triangular Scheme (STS) [9], Hidden Field
Equations (HFE) [10], and Unbalanced Oil and Vinegar
(UOV) [11]. However, though various MQ-based public
key cryptosystems have been proposed, only a few of
them are relatively safe and most have been broken.

Recently, based on multivariate quadratic quasigroups
(MQQs), Gligoroski et al. [12] proposed a new class of
MQ-based schemes called MQQ scheme [12] to counter
the weaknesses observed in the existing MQ-based

systems. The scheme combines the advantages of both the
MQ polynomials and quasigroups. On the one hand, as it
only needs the basic operations of XOR and AND
between bits during the encryption and decryption
processes, MQQ scheme performs several orders of
magnitude faster than the traditional public key
algorithms like RSA, DH or ECC [13]. On the other hand,
the key space of MQQ scheme is large enough against an
exhaustive key-search attack [12]. Moreover, this scheme
offers flexibility in its implementation from
parallelization point of view [13]. In a recent work [14],
MQQ scheme has been successfully used in wireless
sensor network. Though the original MQQ scheme is
considered broken now [15], a new proposed signature
scheme MQQ-SIG is not vulnerable on the existing
successful attacks on MQQ scheme [16] by removing
certain percentage of the public key.

As the basic step for MQQ scheme, the generation of
MQQs is an important and hard task. In order to increase
the security and speed up the process of encryption and
decryption, the order of MQQs is desired to be high. As
MQQs are a subclass of quasigroups, a natural idea is to
test whether quasigroups are MQQs. In the pioneering
work [12], Gligoroski et al. established a sufficient
condition of generating an MQQ for a given quasigroup.
Based on this condition, they brought out a randomized
generation algorithm for MQQs. However, this algorithm
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is time-consuming and can only generate MQQs of order
2d(d ≤ 5). Subsequently, Ahlawat et al. [17] proposed an
improved algorithm to generate MQQs, and checked the
existence of MQQs fromd = 2 to d = 14. Recently, Chen
et al. [18] simplified the sufficient condition in [12] and
gave an efficient algorithm for generating bilinear MQQs
(a subclass of MQQs) of any order 2d. In addition,
Samardjiska et al. [19] and Christov [20] also proposed
new algorithms and theory for generating MQQs
respectively.

Though several construction methods for MQQs have
been proposed, a basic question remains interesting: how
to judge whether or not an arbitrary quasigroup is a
bilinear MQQ and find the corresponding Boolean
functions if it is? This question was answered in [21],
where a standard method was proposed to determine the
unique Boolean representation of any function defined
over a set of 2d elements from the truth table. However,
this method is not specifically designed for MQQs and
does not make full use of the algebra relationships among
truth tables. Thus, there remains great room for
improvement. In this paper, we shall propose a necessary
and sufficient condition to determine whether a
quasigroup given by its multiplication table is a bilinear
MQQ. Then based on this condition, a deterministic
algorithm is proposed to check whether the given
quasigroup is bilinear and generate the Boolean functions
if it is. The advantages of this algorithm over the existing
algorithms can be summarized as follows: (i) In contrast
with the standard method [21], our algorithm is dedicated
to recognize bilinear MQQs and has a better running
time; (ii) Compared with the existing MQQs-generating
algorithms, it is suitable for quasigroups of any order 2d

and all the bilinear MQQs theoretically can be generated.
The rest of the paper is organized as follows. Section

2 recalls the original MQQ generation scheme [12].
Section 3 gives a necessary and sufficient condition and
an algorithm to determine whether or not a given
quasigroup is a bilinear MQQ. An explicit example is
presented in Section 4. Finally, we conclude the paper in
Section 5.

2 Original MQQ generation scheme

Unless otherwise defined in this paper, additions and
multiplications are operated in the binary field GF(2).

Definition 2.1 (Definition 1 in [18]) A quasigroup
(Q,∗) is a set Q with a binary operation∗ such that for
any a,b∈ Q, there exist unique x,y:

x∗a= b;a∗y= b. (1)

We call that a quasigroup(Q,∗) is of ordern if the set
Q hasn elements. Consider a finite quasigroup(Q,∗) of
order 2d. One can choose a bijectionQ → {0,1, · · · ,
2d −1} and representa ∈ Q by a uniqued−bit sequence

(x1,x2, · · · ,xd). Now the binary operation∗ on Q can be
considered as a vector valued operation
∗vv : {0,1}2d →{0,1}d defined as

a∗b= c⇔∗vv(x1, · · · ,xd,xd+1, · · · ,x2d) = (z1, · · · ,zd), (2)

where x1, · · · ,xd,xd+1, · · · ,x2d and z1, · · · ,zd are binary
representation ofa,b andc, respectively. It is easy to see
that eachzs(1≤ s≤ d) depends on the 2d bits x1, · · · ,x2d.
Thus eachzs can be regarded as a 2d−ary Boolean
functionzs = fs(x1, · · · ,x2d), here fs : {0,1}2d →{0,1} is
determined by∗. As stated in [12], we have the following
lemma.

Lemma 2.1 (Lemma 1 in [12]) For every quasigroup
(Q,∗) of order2d and for each bijection Q→{0, · · · ,2d−
1}, there are a uniquely determined vector valued Boolean
function∗vv and d uniquely determined2d−ary Boolean
functions f1, · · · , fd such that for each a,b,c∈ Q

a∗b= c⇐⇒∗vv(x1, · · · ,xd,y1, · · · ,yd) =

( f1(x1, · · · ,xd,y1, · · · ,yd), · · · , fd(x1, · · · ,xd,y1, · · · ,yd)).
(3)

In general, for a randomly generated quasigroup of
order 2d(d ≥ 4), the degrees of Boolean functions are
usually higher than 2. Such quasigroups are not suitable
for the construction of multivariate quadratic public-key
cryptosystem.

Definition 2.2 (Definition 3 in [12]) A quasigroup
(Q,∗) of order 2d is called Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d− k
of the polynomials fs are of degree 2 and k of them are of
degree 1, where0≤ k< d.

In [12], a sufficient condition is proposed for a
quasigroup(Q,∗) to be an MQQ.

Proposition 2.2(Theorem 2 in [12]) Let A1 = [ fst]d×d
and A2 = [gst]d×d be two d×d matrices of linear Boolean
expressions, and let b1 = [us]d×1 and b2 = [vs]d×1 be two
d×1 vectors of linear or quadratic Boolean expressions.
Let the functions fst and us depend only on variables
x1, · · · ,xd, and let the functions gst and vs depend only on
variables xd+1, · · · ,x2d. If

Det(A1) = Det(A2) = 1 in GF(2) (4)

and if
A1 · (xd+1,xd+2, · · · ,x2d)

T +b1
= A2 · (x1,x2, · · · ,xd)

T +b2,
(5)

then the vector valued operation

∗vv(x1, · · · ,x2d) = A1 · (xd+1, · · · ,x2d)
T +b1

defines a quasigroup(Q,∗) of order2d that is MQQ.
If the vector valued Boolean functions defining the

MQQ in Proposition 2.2 have no terms of the formxsxt
with s, t ≤ d or s, t > d [22], we call such MQQs as
bilinear MQQs in order to differ from other MQQs.

Proposition 2.2 not only proposes a sufficient
condition for a quasigroup to be an MQQ, but also
provides an approach to finding MQQs. According to
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Proposition 2.2, to find an MQQ, one needs the
appropriateA1,A2,b1, andb2, which are time-consuming
to choose. Later, Chen simplified this sufficient condition
such that only a matrix and a vector need to be
determined. However, as those methods are based on the
sufficient conditions for a quasigroup to be a bilinear
MQQ, the bilinear MQQs they generated are only a
subset of the bilinear MQQs. Thus, it is desirable to
establish such a necessary and sufficient condition, which
is the main job of the next section.

3 New algorithm for justifying and
generating bilinear MQQs

In this section, we give a necessary and sufficient
condition for a given quasigroup to be a bilinear MQQ,
and then use this condition to propose an algorithm for
verifying whether a quasigroup is a bilinear MQQ and
generating the corresponding Boolean functions if it is.

3.1 A necessary and sufficient condition

Definition 3.1 (see [23]) Given an m×n matrix A= (ai j ),
vec(A) is a vector defined as

vec(A) = (a11, · · · ,a1n,a21, · · · ,a2n, · · · ,am1, · · · ,amn)
T
.

Lemma 3.1 (see [23]) Let A∈ Rm×p,B ∈ Rq×n,X ∈
Rp×q, then

vec(AXB) = (A⊗BT)vec(X),

where⊗ denotes tensor product.
For convenience of presentation, we introduce some

notations as follows. Let a quasigroup(Q,∗) of order 2d

be given by the multiplication scheme in Table 1,

Table 1: A quasigroup(Q,∗) of order 2d
∗ 0 1 2 · · · 2d −1

0 q
(0)
0 q

(0)
1 q

(0)
2 · · · q

(0)
2d−1

1 q
(1)
0 q

(1)
1 q

(1)
2 · · · q

(1)
2d−1

2 q
(2)
0 q

(2)
1 q

(2)
2 · · · q

(2)
2d−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2d −1 q
(2d−1)
0 q

(2d−1)
1 q

(2d−1)
2 · · · q

(2d−1)
2d−1

whereq( j)
i ∈Q, (i, j = 0,1, · · · ,2d−1). For giveni and

∀ j 6= j ′, we haveq( j)
i 6= q( j ′)

i ; for given j and∀i 6= i′, we

haveq( j)
i 6= q( j)

i′ . Collect the elements of Table 1 into an
vector

(

q(0)0 ,q(0)1 , · · · ,q(0)
2d−1

,q(1)0 ,q(1)1 , · · · ,q(1)
2d−1

,

· · · ,q(2
d−1)

0 ,q(2
d−1)

1 , · · · ,q(2
d−1)

2d−1

)T (6)

and convert every element of the vector into ad-bit binary
sequence, then we obtain a 22d × d Boolean matrix

[b1, · · · ,bd], where every bs(s = 1, · · · ,d) is 22d

dimensional column vector.
According to Lemma 2.1, whether a given quasigroup

is a bilinear MQQ mainly lies in whether there is 2d-ary
bilinear Boolean function set{ f1, f2, · · · , fd}, which have
no terms of the formxsxt with s, t ≤ d or s, t > d,
satisfying Table 1. Note that,∀s(1 ≤ s ≤ d), bilinear
Boolean function fs(x1, · · · ,xd,xd+1, · · · ,x2d) can be
written in the form

fs = (1,x1, · · · ,xd)As









1
xd+1

...
x2d









,(s= 1,2, · · · ,d), (7)

where As is a matrix of orderd+1 over binary field
GF(2). By (3), (7), and Table 1, when(x1, · · · ,xd) and
(xd+1, · · · ,x2d)

T in fs are respectively assigned the
ergodic d-bit binary sequence of{0,1, · · · ,2d − 1} in
turn, we have









1 0 · · · 0
1 0 · · · 1
...

...
.. .

...
1 1 · · · 1









As









1 1 · · · 1
0 0 · · · 1
...

...
.. .

...
0 1 · · · 1









= (p ji )2d×2d , (8)

wherep ji is thesth bit of the binary representation ofq( j)
i .

Let

Qd =









1 0 · · · 0
1 0 · · · 1
...

...
.. .

...
1 1 · · · 1









2d×(d+1)

, (9)

then(8) can be rewritten by

vec(QdAsQ
T
d ) = bs. (10)

By Lemma 3.1, (10) can be reshaped into

(Qd ⊗Qd)vec(As) = bs. (11)

Thus, the given quasigroup in Table 1 is a bilinear MQQ
iff there is a set of matrices{A1, · · · ,Ad} satisfying the
following matrix equation

(Qd ⊗Qd)[vec(A1), · · · ,vec(Ad)] = [b1, · · · ,bd]. (12)

It is easy to see

rank(Qd ⊗Qd) = (d+1)2
.

So if the matrix equation (12) has solution, then the
solution matrix must be unique. Furthermore,
As(s = 1, · · · ,d) can be obtained by solving the matrix
equation (12), and then{ f1, f2, · · · , fd} can be achieved
by (7).

By now we have proved the following necessary and
sufficient condition that a given quasigroup is a bilinear
MQQ.
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Theorem 3.1For a given quasigroup(Q,∗) of order
2d and binary bijection Q→{0,1, · · · ,2d −1}, (Q,∗) is a
bilinear MQQ of type Quadd−kLink if and only if the
matrix equation (12) has solution. Furthermore,
fs(s = 1,2, · · · ,d) obtained by (7) are just d Boolean
polynomials of the bilinear MQQ, and their degrees are
not more than 2.

3.2 New algorithm for justifying and generating
bilinear MQQs

According to Theorem 3.1, the problem of checking
whether a given quasigroup is a bilinear MQQ is reduced
to solving the matrix equation (12). Thus the solving
algorithm can be chosen independently. In this
subsection, we give such an efficient algorithm according
to the special structure of Equation (12).

Using Gaussian elimination method,Qd ⊗Qd can be
simplified to a matrix with only(d+ 1)2 nonzero rows.
Noticing that the matrixQd ⊗ Qd is fixed for all the
quasigroups of order 2d, our algorithm only needs to
apply the above elimination steps to[b1, · · · ,bd]. Then we
can judge whether the matrix equation (12) has solution
and achieve the solution easily if it exists. Thus, for a
given quasigroup and binary bijection, whether the
quasigroup is a bilinear MQQ is determined and the
corresponding bilinear Boolean functions are obtained if
it is. The detailed algorithm is given as follows.

Algorithm 1: algorithm for checking whether a given
quasigroup is a bilinear MQQ and generating the cor-
responding Boolean functions if it is.

1. Write the given quasigroup in a vector with the form
of (6).
2. Convert every element of the vector into ad-bit binary
sequence, then a 22d ×d Boolean matrix[b1, · · · ,bd] is
obtained, where everybs(s= 1, · · · ,d) is 22d dimensio-
nal column vector. Letr i+ j·2d be on behalf of the(1+ i
+ j ·2d) th row vector of[b1, · · · ,bd], wherei, j = 0,1,
· · · ,2d −1.
3. For j = 1,2, · · · ,2d −1

for i = 0,1, · · · ,2d −1
DO r i+ j·2d := r i+ j·2d ⊕ r i ,

where⊕ represents addition modulo 2
4. For j = 0,1, · · · ,2d −1

if j = 2bt +2bt−1 + · · ·+2b1,
whered−1≥ bt > · · ·> b1 ≥ 0, t > 1
for i = 0,1, · · · ,2d −1

DO r i+ j·2d := r i+ j·2d ⊕ r i+2bt ·2d

⊕r i+2bt−1 ·2d ⊕·· ·⊕ r i+2b1 ·2d

5. For j = 0,1, · · · ,2d −1
if j = 2b or 0, whereb= 0,1, · · · ,d−1

for i = 1,2, · · · ,2d −1

DO r i+ j·2d := r i+ j·2d ⊕ r j·2d

6. For j = 0,1, · · · ,2d −1
if j = 2b or 0, whereb= 0,1, · · · ,d−1

for i = 0,1, · · · ,2d −1
if i = 2bt +2bt−1 + · · ·+2b1,

whered−1≥ bt > · · ·> b1 ≥ 0, t > 1
DO r i+ j·2d := r i+ j·2d ⊕ r2bt + j·2d

⊕r2bt−1+ j·2d ⊕·· ·⊕ r2b1+ j·2d

7. Fori, j = 0,1, · · · ,2d −1
if j 6= 2b or 0, or if i 6= 2b or 0, r i+ j·2d 6= 0

output “no bilinear MQQ”
else

pass
8. For j = 0,2d−1,2d−2, · · · ,2,1

for i = 0,2d−1,2d−2, · · · ,2,1
output“r i+ j·2d”

9. Write out[vec(A1), · · · ,vec(Ad)] and{A1, · · · ,Ad}.
10. Compute{ f1, · · · , fd} by (7).

3.3 The complexity of new algorithm

The algorithm amounts to perform a Gaussian elimination
on a 22d × d matrix [b1, · · · ,bd]. The operations used in
the algorithm are only addition modulo 2 (XOR), and
those operations are performed mainly in the third to sixth
steps. Specifically, for a quasigroup of order 2d, the third
step takes(22d − 2d) · d operations, the fourth step takes
(2d−1 − 1) · 2d · d2 operations, the fifth step takes
(2d − 1) · (d+ 1) · d operations, and the sixth step takes
(2d−1 − 1) · (d + 1) · d2 operations. Thus, the total
operations that the new algorithm needs is

d ·22d +d2 ·22d−1+(d3+d2) ·2d−1−d3−2d2−d.

Suppose that a computer can execute 109 basic operations
per second. Take the generation/judgment of MQQs of
order 25 for an example, the new algorithm only needs to
take 20140 times of operations, which cost about 20
microseconds. The speed is rather fast.
Remark 1 We mention a related work in [21], where a
standard method was proposed to determine the unique
Boolean representation of any function defined over a set
of 2d elements from the truth table. By splitting the
multiplication table of a given quasigroup of order 2d into
d truth tables,d functions fi(x1, · · · ,x2d)(i = 1, · · · ,d)
from GF(2)2d to GF(2) corresponding tod truth tables
can be found respectively. The standard method requires
O(d2 ·22d) operations to check whether a quasigroup is a
bilinear MQQ. As a comparison, our algorithm needs
only O(d2 ·22d−1) operations.
Remark 2 Compared with the existing MQQs-generating
methods which are based on sufficient conditions for a
quasigroup to be a bilinear MQQ, our algorithm is based
on such a necessary and sufficient condition. As a result,
more bilinear MQQs may be obtained by our algorithm.
For example, Chen [18] claims that they can find 256
bilinear MQQs of order 22, but using our algorithm we
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have checked that all 576 quasigroups of order 22 are
bilinear MQQs. However, we also mention that, with the
increasing of the order, the probability for a quasigroup to
be a bilinear MQQ is decreasing. In contrast with the fact
that all quasigroups of order 22 are bilinear MQQs, in a
numerical experiment we found 9 bilinear MQQs by
randomly trying 30000 quasigroups of order 23.

4 An example

In this section, we will use an example to show the validity
of our results. The example appeared in [12]. Here we use
it to show how Algorithm 1 works. A quasigroup(Q,∗) of
order 23 and its corresponding 3-bit binary sequences are
given in Table 2.

Table 2: A quasigroup(Q,∗) of order 23 and its binary
sequences

∗ 0 1 2 3 4 5 6 7
0 3 2 6 7 1 0 4 5
1 5 3 7 1 0 6 2 4
2 0 6 3 5 4 2 7 1
3 6 7 2 3 5 4 1 0
4 7 1 4 2 3 5 0 6
5 1 0 5 4 2 3 6 7
6 4 5 1 0 6 7 3 2
7 2 4 0 6 7 1 5 3

∗ 000 001 010 011 100 101 110 111
000 011 010 110 111 001 000 100 101
001 101 011 111 001 000 110 010 100
010 000 110 011 101 100 010 111 001
011 110 111 010 011 101 100 001 000
100 111 001 100 010 011 101 000 110
101 001 000 101 100 010 011 110 111
110 100 101 001 000 110 111 011 010
111 010 100 000 110 111 001 101 011

By Theorem 3.1, the problem of finding 6-ary
quadratic Boolean functions set{ f1, f2, f3} satisfying(3)
transforms into the problem of finding 4×4 matrices set
{A1,A2,A3}. Further, whether{A1,A2,A3} exists or
not relies on whether the matrix equation

(Q3⊗Q3)[vec(A1),vec(A2),vec(A3)] = [b1,b2,b3]

has solution. By our new algorithm for generating MQQs,
we get that

[vec(A1),vec(A2),vec(A3)] =



































0 1 1
0 1 0
1 0 1
0 0 1
1 0 0
1 1 0
1 1 0
1 1 1
0 1 1
1 1 0
1 1 0
1 1 1
1 1 0
1 1 1
1 1 1
1 1 1



































.

So, the corresponding bilinear Boolean functions are
achieved as follows:

f1 =
(

1, x1, x2, x3
)

A1







1
x4
x5
x6







=
(

1, x1, x2, x3
)







0 0 1 0
1 1 1 1
0 1 1 1
1 1 1 1













1
x4
x5
x6







= x1+x3+x1x4+x2x4+x3x4+x5+x1x5+x2x5

+x3x5+x1x6+x2x6+x3x6, (13)

f2 =
(

1, x1, x2, x3
)

A2







1
x4
x5
x6







=
(

1, x1, x2, x3
)







1 1 0 0
0 1 1 1
1 1 1 1
1 1 1 1













1
x4
x5
x6







= 1+x2+x3+x4+x1x4+x2x4+x3x4+x1x5

+x2x5+x3x5+x1x6+x2x6+x3x6, (14)

f3 =
(

1, x1, x2, x3
)

A3







1
x4
x5
x6







=
(

1, x1, x2, x3
)







1 0 1 1
0 0 0 1
1 0 0 1
0 1 1 1













1
x4
x5
x6







= 1+x2+x3x4+x5+x3x5+x6+x1x6+x2x6

+x3x6. (15)

This is a bilinear MQQ of typeQuad3Lin0. The above
result is coincident with the result in [12].

5 Conclusions

This paper reports new theory and algorithm of justifying
and generating bilinear Multivariate Quadratic
Quasigroups. We first establish a necessary and sufficient
condition to test whether a quasigroup given by its
multiplication table is a bilinear MQQ. Then, based on
this condition, we propose an algorithm to judge whether
the given quasigroup is a bilinear MQQ and obtain the
corresponding Boolean functions if it is. Moreover, an
example is given to show the validity of our results.

The new algorithm has a better running time than the
standard method [21] and theoretically can obtain all the
bilinear MQQs. The main problem for our algorithm is
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that the probability for a quasigroup to be a bilinear MQQ
is decreasing with the increasing of the order. Thus, our
algorithm can be a useful complement to the existing
MQQs-generating algorithms.
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