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Abstract: This paper presents a new cipher called the hexi cipher which makes useof a new class of codes called quasi cyclic partial
hexi codes. This hexi cipher is a modification of the Advanced Encryption Standard (AES). It alters the mixed column operation of the
AES and makes use of quasi cyclic partial hexi codes for error correction instead of the Maximum Distance Separable (MDS) code that
has no error correcting capacity within the AES. The hexi cipher has the capacity to detect 99% of the errors and correct nearly 25% of
the errors that occur, thus, it has a better error correcting capacity than existing error correcting ciphers.
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1 Introduction

This paper introduces a new class of codes that are
effective in enabling error correction in Advanced
Encryption Standard (AES) [5]. The mix column
operation of AES uses a Maximum Distance Separable
(MDS) code, it has no error detection capacity. Later,
researchers have modified the mix column module in
AES to produce error correction capacity and thus
increased security. In 2007, Mathur had introduced two
new ciphers namely high diffusion (HD) cipher and
pyramid cipher [3]. He had defined high diffusion codes,
which were used in the mix column operation instead of
the existing MDS code, to produce HD cipher. Czapski
and Nikodem in 2008 had created error detection and
error correction procedures for the AES, which detected
any byte error and over 99% of word errors [4]. A new
approach for the improvement of coding gain in channel
coding using AES and Maximum A Posteriori (MAP)
algorithm was proposed, by Ayyaz Mahmood in 2008 [1].
In 2009, Nakahara and Abrohao had replaced the shift
rows and mix columns operations by a new involutory
matrix operation in every round [8] and left an open
problem to determine larger involutory MDS matrices, for
AES/Rijndael of block length 160, 192 and 224. In the
same year, Cam and et al had embedded a turbo encoder
block in AES encryption block in the first round after sub
bytes block [2]. In 2011, Elumalai and Reddy had used a

8× 8 MDS matrix instead of the 4× 4 MDS matrix used
in AES [6]. The branch number was raised to 9 from 5 so
as to increase the diffusion.

The necessity to construct codes that are useful in
AES, is due to its lacking in error correcting capacity.
Mostly, codes used are not dependent on the hexadecimal
system, whereas AES operates on the hexadecimal
system. A new class of codes which are based on the
hexadecimal data is introduced in this paper to support
AES not only in security but also in error detection and
correction. Hexi cipher which has better error correcting
capacity than existing ciphers like HD cipher and pyramid
cipher is introduced in this paper. Hexi cipher corrects
nearly 12 bytes of 48 bytes transmitted whereas HD
cipher corrects 7 bytes of 36 bytes transmitted and
pyramid cipher corrects 4 bytes of 24 bytes transmitted.

The rest of the paper is organized as follows. Section
two introduces a new class of codes called hexi codes,
which are based on the hexadecimal system, Hamming
metric is defined on these new class of codes. Section
three deals with the error correction of these codes using
coset leader method. Hexi polynomial codes and quasi
cyclic partial hexi codes are defined in section four.
Section five provides the construction of hexi cipher,
which is a modification of AES, with error correction
capability. Concluding remarks and further directions are
given in section six.
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2 Hexi Codes

This section introduces a new class of codes called hexi
codes and their properties. LetS= {0,1,2, . . . ,F} be the
set of symbols of hexadecimal number system. Let the
operator ‘⊗’ denote multiplication modulox4 + x + 1, and
‘⊕’ denote XOR modulo 2. Then, (S, ⊕, ⊗) is a field of
order 16 and each element is inverse of itself with respect
to ⊕. Let Vn = {(x1, . . . , xn)|xi ∈ S; 1 ≤ i ≤ n} be an
n-dimensional vector space defined overS.

Definition 1.A block code of length n with (24)k

codewords is called a hexi (n, k) block code, denoted by
CH (n, k), if and only if its (24)k codewords form a
k-dimensional subspace of the vector space Vn of all the n
tuples over the field S modulo x4 + x + 1.

The method for generating theseCH(n,k) codes using
the generator matrixG is as follows. G is given in
Equation1.

G=









g00 g01 g02 . . . g0,n−1
g10 g11 g12 . . . g1,n−1
...

...
...

...
gk−1,0 gk−1,1 gk−1,2 . . . gk−1,n−1









(1)

gi, j ∈ S; for 0≤ i ≤ k−1 and 0≤ j ≤ n−1. Consideru
= (u0, u1, . . . , uk−1), the message to be encoded, the
corresponding codewordv is given by v = u.G. Every
codeword v in CH(n,k) is a linear combination ofk
codewords.

For example, let

G=





0 A 1 B 1 0 0
1 C 0 7 0 1 0
F 0 2 1 0 0 1





be the generator matrix of theCH (7, 3) hexi block code.
Consider the messageu = (A 0 1) to be encoded. The
codewordv = uG is given by (F 8 8 3 A 0 1). Since the
generator matrixG is in the standard formG= (A; I3×3),
the parity check matrix can be got in the standard form as
H = (I4×4, AT ),

H =







1 0 0 0 0 1F
0 1 0 0A C 0
0 0 1 0 1 0 2
0 0 0 1B 7 1






.

The generator matrix can be in any other form. The
parity check matrix can be found out by the usual
methods used for linear codes. The syndrome obtained
from the parity check matrixH helps one to detect the
error from the received word. The syndrome of the hexi
block code, functions in the same manner as in the case of
linear block code. The syndromes and error detection
described below are recalled from [9]. Whenr is received,
the receiver computess = r.HT = (s0, s1, . . . , sn−k−1)
which is called the syndrome ofr. Whens 6= (0), r is not

a codeword and the presence of errors has been detected.
When s = (0), r is a codeword, it need not be the
transmitted codeword. In certain cases, when the error
patterne is identical to a non zero codeword,r is the sum
of two codewords, which is a codeword, and consequently
r.HT = (0). These errors are not detectable. The receiver
acceptsr as the transmitted codeword. Error patterns of
this kind are called undetectable error patterns. In case of
hexi codes, the remaining (24)k− 1 non zero codewords
can lead to undetectable errors, so there are (24)k − 1
undetectable error patterns. The syndromes depends only
on e and not onv. Becauser is the vector sum ofv ande,
it follows from s = r.HT . That iss = r.HT = (v+e)HT =
v.HT +e.HT .

Howeverv.HT = 0. Sos= e.HT .
Let r = (r0, r1, r2, r3, r4, r5, r6) be the received vector.

Then the syndrome will be given bys= (s0, s1, s2, s3). The
syndrome digits usingH are

s0 = r0+ r5+ r6.F

s1 = r1+ r4.A+ r5.C

s2 = r2+ r4+ r6.2

s3 = r3+ r4.B+ r5.7+ r6.

Consider theCH (7, 3) hexi code given above for
illustration. Supposer = (5 8 8 3A 0 1) is the received
codeword,r.HT = (A 0 0 0). Sinces= r.HT 6= (0), the
received codeword has error.s0 = A, so the possible error
positions arer0, r5 and r6. This CH (7, 4) hexi code has
(24)3 hexi codewords and (24)3 − 1 undetectable error
patterns.

The Hamming metric of the hexi code is given.

Definition 2.For any 2 vectors x = (x1, . . . , xn) and y = (y1,
. . . , yn) in Vn, the Hamming distance d(x, y) and Hamming
weight w(x) are defined as follows:

d(x,y) =| {xi : xi 6= yi ;xi ∈ x;yi ∈ y} |

w(x) =| {xi : xi 6= 0;xi ∈ x} | .
(2)

For instance, letx = (F 8 8 3A 0 1) andy = (3 D 1 2 1 3
0), w(x) = w(y) = 6 andd(x,y) = 7.

SinceFn
24 = Sis akin toFn

q ; all theorems and definitions
in Fn

q holds good forFn
24. These notions are reformulated

to suit hexi codeCH = CH(n,k).
If CH is a hexi code, the sum of two codewords is also

a codeword inCH . It follows thatd(x,y) = w(x+ y), that
is the hamming distance between two codewords is equal
to the hamming weight of some other codeword.

Definition 3.The minimum distance dmin of a hexi code CH
is defined as

dmin = min
x,y∈CH

x 6= y

d(x,y). (3)
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Table 1: Standard Array for Syndrome decoding
Coset Leaders Codewords Syndrome

v1 = 0 v2 . . . v24k s= 0
e2 e2+v2 . . . e2+v24k e2HT

e3 e3+v2 . . . e3+v24k e3HT

...
...

...
el el +v2 . . . el +v24k el H

T

...
...

...
e24(n−k) e24(n−k) +v2 e24(n−k)HT

. . . e24(n−k) +v24k

Table 2: Example of Standard Array and Coset Leader
Coset leaders Syndrome

0000000 . . . 3D12130 EC26011 0000
1000000 . . . 2D12130 FC26011 1000
2000000 . . . 1D12130 CC26011 2000
0000010 . . . 3D12130 EC26001 1C07
A000000 . . . 9D12130 4C26011 A000
B000000 . . . 8D12130 5C26011 B000
0010100 . . . 3D02030 EC16111 A0B0
C000000 . . . FD12130 2C26011 C000
0000001 . . . 3D12131 EC26010 F021

3 Error Correction

The error correction capacity of hexi code is discussed in
this section.

Theorem 1.The number of errors a hexi code can correct
is t = ⌊(dmin− 1)/2⌋, and this code can detect l errors
where t+ l +1≤ dmin and l> t.

Proof.: Proof is similar to that of linear block code.

Correction of errors in any code is a complicated
process. There are 24k error patterns that result in same
syndrome and the true error patterne is just one of them.
Determining the true error vectore is not easy. The coset
leader method is used for error correction, by making use
of the standard array and syndrome decoding described
in [9]. The standard array is given by Table1.

Hereei ’s are coset leaders, 2≤ i ≤ 24(n−k); v j ’s are non
zero codewords, 2≤ j ≤ 24k. The corrected codewordv j is
obtained by using the syndrome of the received codeword
r. The coset leaderei , related to the syndrome, is added to
r to obtain the corrected codeword. A part of the table of
coset leaders for the above mentioned hexi code is given
by Table2.

Only a few codewords are dealt here since this code
has 163 codewords, it is not feasible to cover them fully.

Let the received codeword ber = (5 8 8 3A 0 1). The
syndromes = (A 0 0 0) and the related coset leader is (A
0 0 0 0 0 0). The coset leader is added with the received
codeword; (5 8 8 3A 0 1)⊕ (A 0 0 0 0 0 0) = (F 8 8 3A 0
1). The corrected codeword is obtained.

4 Hexi Polynomial Codes

Hexi polynomial codes are of two types,xn + 1 andxn + t
(t ∈ S and t 6= 1). Whenxn+ 1 is used, it forms a usual
cyclic code,g(x) is a polynomial which divides (xn+ 1)
and its coefficients are fromS. Since these class of hexi
polynomial codes are similar to usual cyclic codes, dual
code and other properties can be defined in the usual way
for these codes. To generate aCH(n,k) cyclic hexi code,
consider only the polynomial of the formxn + 1. Instead
of xn + 1, considerxn + t (t ∈ S); t 6= 1, thenxn + t = g(x)
× h(x), g(x) andh(x) are polynomials belonging toS[x].
Let G be the generator matrix associated with generator
polynomial g(x). Let H be the parity check matrix
associated with the parity check polynomialh(x). The
CH(n,k) code is not cyclic. ClearlyGHT = (0). If (x1
. . .xn) ∈ CH(n,k), then in general (xn x1 . . .xn−1) /∈
CH(n,k). CH(n,k), the hexi polynomial code generated by
the polynomialg(x) is defined as follows.

Definition 4.Let xn + t ∈ S[x], t ∈ S \{1}, be a hexi
polynomial in S[x]. If xn + t = g(x) h(x) where G is the
generator matrix associated with the hexi polynomial g(x)
and H is the parity check matrix associated with h(x). If
g(x) generates a code say CH (n, k), then CH (n, k) is the
hexi polynomial code associated with the hexi generator
polynomial g(x).

For example, consider the generator polynomial
g(x) = (x4 + Cx3 + Fx2 + A) and given
(x7 + F) = (x4 +Cx3 + Fx2 +A)(x3 +Cx2 + 8). Let the
generator matrixG be given byg(x).

G=





A 0 F C 1 0 0
0 A 0 F C 1 0
0 0 A 0 F C 1



 ,

G generates aCH (7, 3) hexi polynomial code. The
codewordv for the messageu = (A 3 F) is given by u.G =
(8 D 0 3 7 B F). Let H be the parity check matrix given
by the parity check polynomial (x3 + Cx2 + 8),

H =







0 0 0 1C 0 8
0 0 1 C 0 8 0
0 1 C 0 8 0 0
1 C 0 8 0 0 0






.

Let r be the received codeword. The syndrome ofr can
be calculated bys = r.HT . Let r = (8 D 0 3 7 B F), the
received codeword, without any error. Then the syndrome
should be all zeros;r.HT = (0 0 0 0).

This hexi polynomial code is not cyclic. Sincev1 = (8
D 0 3 7B F) is a codeword thenv2 = (F 8 D 0 3 7B) is also
supposed to be a codeword if this polynomial hexi code is
cyclic. To prove thatv2 is a codeword is to show thatv2.
HT = (0) i.e., the syndromes are zero. Butv2. HT = (0 0 0
5). The syndrome is not zero, hence it is not a codeword in
CH (7, 3).

The definition of quasi cyclic code is recalled from [9].
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Table 3: Codewords of (16, 4) quasi cyclic partial hexi code
Message Codewords Hexicodes
0
8
4
2
1
C
A
9
6
5
3
F
E
D
7
B

0000 0000 0000 0000
1111 0110 1000 0010
0010 1111 0110 1000
0110 1000 1111 0110
0110 1000 0010 1111
1101 1001 1110 1010
0111 0100 0111 0100
1001 1110 1010 1101
1010 1101 1001 1110
0100 0111 0100 0111
1110 1010 1101 1001
0011 0011 0011 0011
0101 1011 0001 1100
1011 0001 1100 0101
1100 0101 1011 0001
0001 1100 0101 1011

0 0 0 0
F 6 8 2
2 F 6 8
8 2 F 6
6 8 2 F
D 9 E A
7 4 7 4
9 E A D
A D 9 E
4 7 4 7
E A D 9
3 3 3 3
5 B 1 C
B 1 C 5
C 5 B 1
1 C 5 B

Definition 5. [9] A quasi cyclic code is a linear code for
which cyclically shifting a codeword, a fixed number n0 6=
1 (or a multiple of n0) of symbol; positions either to the
right or to the left results in another codeword.

The integern0 is called the shifting constraint. If the
shifting constraintn0 = 1, a quasi cyclic code is a cyclic
code. Consider the special case where the shifting
constraintn0 is 4. The definition of quasi cyclic partial
hexi codes is as follows.

Definition 6.A quasi cyclic partial hexi code is a quasi
cyclic code, where the shifting constraint n0 = 4 and the
symbols are represented in hexadecimal.

For example, consider the following quasi cyclic
partial hexi code, let the generating matrixG of the code
be given in the following

G=







1111 0110 1000 0010
0010 1111 0110 1000
1000 0010 1111 0110
0110 1000 0010 1111






.

This generator matrixGcan represented using symbols
from the fieldGF(24).

G=







F 6 8 2
2 F 6 8
8 2 F 6
6 8 2 F






. (4)

The codewords of (16, 4) quasi cyclic partial hexi code
generated byG are given in Table3, are cyclic and they
are unique.G−1 is used to get the message back.

G−1 =







E 9 A 3
3 E 9 A
A 3 E 9
9 A 3 E






. (5)

Some properties of these quasi cyclic partial hexi codes are
given below.

Remark.Any quasi cyclic partial hexi codeCH will be of
the formCH = (n42, n4) and the number of elements inCH
are 24n. Hence the quasi cyclic partial hexi codeCH (16,4)
generated by theG given in Equation (4) has 16 codewords
sincen = 1.

Remark.A (n42, n4) quasi cyclic partial hexi code will be
generated, only if the generator matrix is such that the 4n
rows are linearly independent, so that the codewords are
unique.

Proposition 1.If any quasi cyclic partial hexi code C be
generated by a matrix G having G−1 as its inverse, then
G−1 may not in general generate a quasi cyclic partial
hexi code.

Proof.The G−1 given in (5) above does not generate a
quasi cyclic partial hexi code even thoughG given in (4)
generates a quasi cyclic partial hexi code.

Encoding:Consider the messageA = (1 0 1 0), and the
generator matrix G given in (4) then the codeword is given
by A.G = (7 4 7 4).
Decoding:The received codeword is (7 4 7 4); to get the
message from the codeword, multiply the codeword with
the inverse of the generator matrixG−1 given in (5) i.e., (7
4 7 4)G−1 = (1 0 1 0).
Error Correcting Capacity:Since thedmin = 4 for quasi
cyclic partial hexi code, the error correcting capacityt =
⌊(dmin−1)/2⌋, will be 1.

5 Hexi Cipher

5.1 Structure and Design of Hexi Cipher

The mix column layer in the AES cipher design is
replaced with a hexi coding layer in round nine to enable
error detection and correction. This redesigned cipher is
called as hexi cipher. Hexi cipher has ten rounds like the
AES. Figure 1 gives the overall structure of the hexi
cipher. Round function has four different stages, namely

i. Substitute bytes / Inverse substitute bytes
ii. Shift rows / Inverse shift rows
iii. Mix column / Inverse mix column or Hexi coding

/Hexi decoding
iv. Add round key

Rounds one to eight of the hexi cipher, perform the
encryption procedure, round nine carries out the encoding
procedure and round ten does substitute bytes, shift rows
and add round key. The decoding and error correction is
done in round one on the receiver side. Decryption is
performed by the rounds two to nine; round ten does
inverse substitute bytes, inverse shift rows and add round
key.

Each stage of the round function is described in detail.
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Fig. 1: The Structure of Hexi Cipher

1. Add round key stage
The key expansion algorithm of the AES is altered to
suit the necessity of the hexi cipher. Since the last
round and the encoding round of the hexi cipher
makes use of 12 words for each key in this stage. The
original key expansion algorithm of the AES is easily
expandable. Hence the iterations are increased to 60,
so as to produce 60 key words.

2. Substitute bytes stage / Inverse substitute bytes stage
The substitute bytes stage and its inverse operation of
each round of the hexi cipher are same as in AES, their
functionality is left unaltered.

3. Shift row stage / Inverse shift row stage
The shift row stage and its inverse operation of each
round of the hexi cipher are same as in AES, their
functionality is left unaltered, while in the last two
rounds, it needs to deal with 4× 12 representation of
cipher state.

4. Mix column stage or Hexi coding stage / Inverse mix
column stage or Hexi decoding stage
In hexi cipher, rounds one to eight make use of the
already existing mix column function. The hexi
encoding function which is described in Section 5.2 is

used during round nine of the hexi cipher to carry out
encoding of the encrypted data. The last round does
not have this stage at all. During decoding process,
round one makes use of the hexi decoding which is
described in Section 5.2 to decode and preform the
error correction of the received data. Rounds two to
nine of the decryption make use of the already
existing inverse mix column, while the last round of
the decryption does not make use of this stage.

5.2 Hexi Encoding and Decoding

Hexi encoding and hexi decoding are discussed in detail.

5.2.1 Hexi Encoding

The output from the 8th round, in a 4× 4 representation
of the cipher state will be of the form given below, where
eachsx,y, 1≤ x≤ 4, 1≤ y ≤ 8 is an individual nibble of
the state.

s1,1 s1,2 s1,3 s1,4 s1,5 s1,6 s1,7 s1,8
s2,1 s2,2 s2,3 s2,4 s2,5 s2,6 s2,7 s2,8
s3,1 s3,2 s3,3 s3,4 s3,5 s3,6 s3,7 s3,8
s4,1 s4,2 s4,3 s4,4 s4,5 s4,6 s4,7 s4,8

Any (4, 4) quasi cyclic partial hexi code will have its
generator matrixG given by

G=







k1,1 k1,2 k1,3 k1,4
k2,1 k2,2 k2,3 k2,4
k3,1 k3,2 k3,3 k3,4
k4,1 k4,2 k4,3 k4,4







kx,y ∈ S; 1 ≤ x,y ≤ 4. This 4× 4 generator matrix G of
any quasi cyclic partial hexi code is used instead of the
MDS code that is used in AES. Eachsx,y is encoded by
sx,y.G resulting in a codeword of the formv1

x,y v2
x,y v3

x,y v4
x,y;

1 ≤ x≤ 4; 1≤ y≤ 8. However only the first three terms
namelyv1

x,y v2
x,y v3

x,y are utilized for the encoding. Any 4×
4 quasi cyclic hexi code can be used, it can also work as
secret key between the sender and receiver. The algorithm
for encoding a message row of the output of the eighth
round, takes four nibbles of the message row as the input
and produces an output of 12 nibbles is given in Algorithm
1. For the sake of notational convenience,sx,y is taken as
sy ands′x,y is taken ass′y as only one row is discussed. The
process is repeated for the next four nibbles of the row.

The output of the hexi coding function is of the
structure given below

s′1,1 s′1,2 s′1,3 s′1,4 s′1,5 s′1,6 ... s′1,23 s′1,24
s′2,1 s′2,2 s′2,3 s′2,4 s′2,5 s′2,6 ... s′2,23 s′2,24
s′3,1 s′3,2 s′3,3 s′3,4 s′3,5 s′3,6 ... s′3,23 s′3,24
s′4,1 s′4,2 s′4,3 s′4,4 s′4,5 s′4,6 ... s′4,23 s′4,24

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2066 K.Ilanthenral , K. S. Easwarakumar: Design of Hexi Cipher for Error...

Algorithm 1: ENCODE Algorithm for encoding
Input : s1,s2,s3,s4
Output : s′1,s

′
2,s
′
3,s
′
4,s
′
5,s
′
6,s
′
7,s
′
8,s
′
9,s
′
10,s

′
11,s

′
12

1 for j ← 1 to 12do
2 s′j ← 0

3 end
4 begin
5 for i← 1 to 4do
6 if si 6= 0 then
7 s′2i−1← s′2i−1⊕v1

i

8 s′2i ← v2
i

9 s′2i+1← v3
i

10 end
11 end
12 s′10← s′2⊕s′4⊕s′6⊕s′8
13 s′11← s′3⊕s′7
14 s′12← s′1⊕s′9
15 end

Note: The odd nibbles and even nibbles can be taken
separately and worked out, instead of taking the first four
nibbles.

The encoding of the message is done using a lookup
table like Table3 for generator matrix G given in (4). The
first term is encoded ass′1,s

′
2 and s′3, the second term is

encoded ass′3,s
′
4 ands′5, i.e., s′3 is the XOR of the third

term of the first codeword and the first term of the second
codeword. Similarlys′5 ands′7 are XOR of first and third
terms of successive codewords respectively. The even
terms, namelys′2,s

′
4, s′6 ands′8 are dependent only on one

codeword,s′10 serves as their parity byte,s′11 serves as the
parity of s′3 ands′7 terms. Alsos′12 serves as the parity of
s′1 ands′9 terms. The resultant of the hexi encoding is 48
bytes, so the add round key of round ten requires 12 word
key. The end result of the hexi cipher is 48 bytes.

5.2.2 Hexi decoding, error detection and error correction

The error detection and correction capacity of the hexi
cipher is analysed. The receiving side will get the
encrypted message, which may contain errors. When the
hexi decoding of the message begins the message will
contain errors due to the transmission in channel and
errors which are propagated due to the decryption
process. The generalised algorithm for decoding, error
detection and error correction of the received message is
given in Algorithm2.

It calls on the Decode procedure given in
Algorithm 3, which takes the received messagerm,
decodes it, stores the decoded message in global variable
msgand returns the reminder of the received messagerm.
TheDecodeprocedure uses the even bytes of the received
message, namelyrm[2i], 1 ≤ i ≤ 4 to createmsg. The
related codeword ofrm[2i] from the set of all codewords
code(a two dimensional array of size [16][3]) is obtained.

Algorithm 2: DECODEERROR Algorithm for
decoding, error detection and error correction.

Input : s′1,s
′
2,s
′
3,s
′
4,s
′
5,s
′
6,s
′
7,s
′
8,s
′
9,s
′
10,s

′
11,s

′
12

Output : msg
1 rmsg← s′1,s

′
2,s
′
3,s
′
4,s
′
5,s
′
6,s
′
7,s
′
8,s
′
9,s
′
10,s

′
11,s

′
12

2 om← rmsg
3 begin
4 rmsg← DECODE(rmsg, msg)
5 y← ERRORSTRING(rmsg)
6 if y 6= 0 then
7 om← ERRORCORRECTION(y, rmsg,om)
8 else
9 No Error

10 end
11 end

The Decode procedure calls onSubtractcodewhich
XORs the related codewordcode[relx] with the received
message i.e.,rm.

Algorithm 3: DECODE Algorithm for decoding the
message

Input : rm, code
Output : msg

1 begin
2 for i← 1 to 4do
3 x← rm[2∗ i]

// Refer Table 3

// Where x= v2
i the related

Hexicode code[relx][] = v1
i v2

i v3
i

// relx = Related Message;
4 msg[i]← relx
5 SUBTRACTCODE(code[relx][], rm[2∗ i−1],

rm[2∗ i], rm[2∗ i+1])
6 end
7 end

The related codeword ofrm[2i] is obtained from the
table of codewords whererm[2i] = v2

i , this related
codeword is XORed with rm[2i − 1], rm[2i] and
rm[2i + 1] to obtain the reminder. The decoded message
msgis obtained fromrm[2], rm[4], rm[6] and rm[8]. The
remaining bytes of the message form the error string. The
Errorstring procedure given in Algorithm4 is to convert
the rm to a string of 1’s and 0’s. Iferrorstring variable y
= 0 then there is no correctable error detected, else error is
detected and it calls on theErrorcorrectionprocedure for
error correction.

The Errorcorrectionalgorithm calculates the XOR of
even bytes, XOR ofrm[3] and rm[7] and the XOR of
rm[1] and rm[9]. If the resultant XOR matches with its
respective parity, then the parity variable (even, oddand
odd1) is given value 0, else 1. Based on the error string, it
is determined where error might have occurred. A sample
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Algorithm 4: ERRORSTRING(rm). Algorithm for
conversion of errorstring

Input : rm
Output : y

1 y← 0
2 x← 10000
3 begin
4 for i← 0 to 4do
5 if rm[2∗ i+1] 6= 0 then y← y+x
6 x← x / 10
7 end
8 Returny
9 end

Algorithm 5: MAKECODE(X, Y). Algorithm for
creation of new codeword

Input : X
Output : C[1..3]

1 begin
2 for i← 1 to 16do
3 if X = code[i][Y] then
4 C[1]← code[i][1]
5 C[2]← code[i][2]
6 C[3]← code[i][3]
7 end
8 end
9 ReturnC

10 end

table of the error string, possible error positions and the
parity variables is given in Table4. Since there are nearly
over 400 such possibilities only a few cases are given and
discussed. Depending on the parity variable and error
string the algorithm creates a new set of codewords for
the possible set of errors usingMakecodeprocedure given
in Algorithm 5. TheErrorcorrection procedure checks if
parity bytes are correct for the new set of codewords, if
found correct it returns the new corrected message and
exits; if else, checks for the next set of codewords. In case
parity bytes are correct for the two sets of codewords, it
quits since it is not able to find the correct corrected
codeword. It repeats till the end of all possible errors, if
none matches, it exits, since error correction is not
possible. The Errorcorrection algorithm given in
Algorithm 6 gives the error correction for a sample of
subcases of possible errors for the error string ‘1’.

For illustration; take a error string (1 0 0 1 0), the list
of possible errors is given in Table4. When all parity
variables are 0, then the error has occurred in 2, 4 and 6
i.e., rm[2], rm[4] andrm[6]; (2, 4, 6). If all parity variables
are 1, then the error has occurred in bytes 1, 7 and 10.
Whenevenis 0; the other parity variables are 0 or 1, then
error has occurred at bytes 1 and 7 i.e.,rm[1] andrm[7] or
1, 7, 11 or 1, 7, 12. In these cases where parity byte is
wrong, it is enough to correct only bytes 1 and 7. When

Algorithm 6: ERRORCORRECTION(y, rm,om)
Input : y, rm, om
Output : om

1 even,odd,odd1← 1
2 begin
3 if om[10] = om[2]⊕om[4]⊕om[6]⊕om[8] then

even← 0
4 if om[11] = om[3]⊕om[7] then odd← 0
5 if om[12] = om[1] ⊕ om[9] then odd1← 0
6 switch y do
7 case1
8 if even= 0 then
9 if odd= 0 and odd1 = 0 then

10 ch1← MC(om[9],3)
11 ch2← MC((om[7]⊕ch1[1]),3)
12 ch3← MC(om[4],2)
13 om[8]← ch1[2]; om[6]← ch2[2]
14 om[5]← (ch2[1]⊕ch3[3])
15 break
16 else
17 om[9]← (rm[9]⊕om[9])
18 break
19 end
20 else
21 if odd = 0 then
22 if odd1 = 0then // 5,6,8;

dealt as above
23 else// 9,10 or 9,10,12
24 else
25 if odd1 != 0 then
26 if (om[1]⊕om[12]) =

(rm[9]⊕om[9]) then
// 9,10,11;

27 else
28 om[7]← (om[3]⊕om[11])
29 ch1← MC(om[6],2)
30 ch2←

MC((om[7]⊕ch1[3]), 1)
31 om[8]← ch2[2]
32 om[9]← ch2[3]
33 break
34 end
35 else
36 ch1← MC(om[9],3)
37 ch2← MC(om[6],2)
38 om[8]← ch1[2]
39 om[7]← (ch1[0]⊕ch2[3])
40 break
41 end
42 end
43 end
44 Returnom
45 endsw

46
...

47 endsw
48 end
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Table 4: Possible errors for the error string and their parity
variable

Error String Possible Errors E O O1
1 5, 6, 8 0 0 0
1 9, 12 0 0 0
1 9 (or) 9, 12 0 0 1
1 9, 11, 12 0 1 0
1 7, 8, 10 0 1 0
1 9, 11 (or) 9, 11, 12 0 1 1
1 5, 6, 8 1 0 0
1 7, 8, 11 1 0 0
1 9, 10, 12 1 0 0
1 9, 10 (or) 9, 10, 12 1 0 1
1 7, 8 (or) 7, 8, 11 (or) 7, 8, 10 1 1 0
1 7, 8, 9 (or) 7, 8, 12 1 1 1
1 9, 10, 11 1 1 1
...

...
...

...
...

10010 2, 4, 6 0 0 0
10010 1, 7, 11 0 0 1
10010 1, 7, 12 0 1 0
10010 1, 7 (or) 1, 7, 11 (or) 1, 7, 12 0 1 1
10010 1, 8, 9 1 0 1
10010 1, 5, 6 1 0 1
10010 2, 4, 6 1 0 0
10010 2, 3, 7 1 0 0
10010 1, 8, 9 1 0 0
10010 2, 3, 7 1 1 0
10010 1, 7, 10 1 1 1

...
...

...
...

...
11111 1, 4, 8 1 0 1
11111 2, 6, 9 1 0 1

odd is 0; and the other two parity variables are 1, the error
has occurred at 1, 8, 9 or 1, 5, 6. First the error in byte 1 is
removed by the XOR of first byte of rm and om. The
parity variableodd1is recalculated, if it is 0, then possible
error is 1, 5, 6, else possible error is 1, 8, 9. Similarly the
other cases are dealt, though the logic of handling errors
works differently for different set of errors.

5.3 Error Correction Capacity of Hexi Cipher

The error correction capacity and the correctness of the
error correction of the hexi cipher is analysed in the
following theorems.

Theorem 2.Given one correct element and its position in
the quasi cyclic partial hexi codeword, the whole
codeword can be obtained.

Proof.By Remark 1 and Remark 2 for any given quasi
cyclic partial hexi CH (16,4) code there are only 16
codewords and these 16 codewords are cyclic and unique.
So if the position of one correct element is known, the
whole codeword can be retrieved.

If the error has occurred in the even bytes of the
message row, then the even parity is affected, else if the
error has occurred in the odd bytes of the message row,
the odd parity bytes are affected. The position of the error
is detected by the decoding of the message and the parity
bits.

Lemma 1.If error has occurred in bytes related to different
parities or if more than one error occurs in bytes related
to same parity, then there are cases where parity might
not show the error, but in all cases the decoding shows the
position of possible errors.

Proof.The decoding process, recreates the message by
using the even bytes, since they are independent of other
codewords. This decoding process produces a error string.
If there is no error, the error string is 0. In case of error,
the associated odd bytes reflect the error. By the
calculation of the parity variables, the possible positionof
error is detected.

This is explained clearly in the given illustration.

Theorem 3.In each row of the 4× 12 representation of
the cipher state, hexi decoding can detect all errors and
correct maximum of 3 byte errors.

Proof.By lemma1 the hexi decoding process can detect the
possible position of errors. By theorem2 once the correct
position is known, the whole codeword can be retrieved.
The correctness of the message can be rechecked using the
parity bits and the neighbouring bits.

Thus the hexi cipher has a error correction capacity of
nearly 25 percentage of errors.

5.4 Implementation Features

The implementation of the error detection and error
correction of a received message row was carried out.
Without loss of generality, the implementation works with
the assumption that all the three parity bytes are correct
and the errors are present in the message bytes alone.
Since the error in the parity will not affect the decoding
process. Assume the worst case scenario were the three
parity elements are wrong, then it implies that there is no
error in the message; hence error correction need not be
done. In case, error is in two parity elements, then there is
error in only one message element, which can be
corrected. Else one parity element has error, then two
message elements have error, and they can be corrected
using normal error correction, without help of parity.
Since handling nibbles is a tedious process, bytes have
been used for the implementation. Any correct message is
taken and errors are added to the message. Errors are
randomly generated. The generator matrix used for
implementation, is given in (4) and look up table for
codewords is given in Table3. In the implementation,
decoding and error correction was done for the following
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1. When the received message was same as the message
that was sent, i.e., no error was introduced. Only
decoding and error detection was done.

2. Error was introduced in only one byte, error detection
and error correction was carried. There are only 9 such
possible cases.

3. In two bytes, errors were introduced. 36 possible cases
were handled; successful error correction was carried
out.

4. Error was introduced in three bytes, there were 84
such possible combinations. Error detection and error
correction was carried.

The total 350 cases of errors, was grouped into 130
standard cases. These were dealt, error detection and error
correction was successfully carried out in all cases, other
than cases where the error added was itself a codeword, or
when two set of errors satisfied the parity.

5.5 Comparison with other existing cipher

The hexi cipher is as secure as the existing AES cipher,
since only one round is altered. It has error correcting
capacity of nearly 12 bytes of 48 bytes transmitted,
whereas the AES has no error correcting. Hexi cipher is
more space and time consuming. Hexi cipher has better
error correcting capacity than existing error correcting
ciphers like HD cipher and pyramid cipher. Hexi cipher
corrects nearly 12 bytes of 48 bytes transmitted whereas
HD cipher corrects 7 bytes of 36 bytes transmitted and
pyramid cipher corrects 4 bytes of 24 bytes transmitted.
The hexi cipher is an improvisation of the existing cipher,
with better error correcting capacity.

6 Conclusion and further directions

In this paper, hexi codes, hexi polynomial codes and quasi
cyclic partial hexi codes are defined using the fieldS.
Hamming metric and error correcting capacity of these
codes are discussed. The hexi cipher is a modified version
of the AES, with error detection and correction capacity.
It is constructed using theCH(16,4) quasi cyclic partial
hexi codes in the mix column layer of round nine, instead
of the MDS code used by the AES. Hexi cipher which has
better error correcting capacity than existing ciphers like
HD cipher and pyramid cipher.

The hexi cipher corrects upon 3 bytes of 12 bytes of
the message that is transmitted., i.e., 12 bytes of the 48
bytes transmitted as a state. It has a capacity of detecting
99% of errors and correcting nearly 25% of errors that
occur. The hexi cipher is also capable of correcting some
4-byte and 5-byte errors. The percentage of error
correction possible in case of 4-byte and 5-byte errors has
not been studied yet. A study in this direction remains
open.
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