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Abstract: This paper presents a new cipher called the hexi cipher which maked asew class of codes called quasi cyclic partial
hexi codes. This hexi cipher is a modification of the Advanced Encny@@tandard (AES). It alters the mixed column operation of the
AES and makes use of quasi cyclic partial hexi codes for erroection instead of the Maximum Distance Separable (MDS) code that
has no error correcting capacity within the AES. The hexi cipher hasahecity to detect 99% of the errors and correct nearly 25% of
the errors that occur, thus, it has a better error correcting capacityeitisting error correcting ciphers.
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1 Introduction 8 x 8 MDS matrix instead of the 4 4 MDS matrix used
in AES [6]. The branch number was raised to 9 from 5 so
This paper introduces a new class of codes that aré® t%:gc:\eeisees;?te dtlc]:f ucsc;ﬂgiruct codes that are useful in
effective in enabling error correction in Advanced . y L . .
AES, is due to its lacking in error correcting capacity.

Encryption Standard (AES)5]. The mix column p
operation of AES uses a Maximum Distance SeparabIeMOStly’ codes used are not dependent on the hexadecimal

(MDS) code, it has no error detection capacity. Later, system, Whereasl AESf opderatesh_or? thebhexgdecm;]al
researchers have modified the mix column module inﬁySteén' A r:e(\;v class o (éo ez\(v ";]. are based on the
AES to produce error correction capacity and thus exadecimal data Is Introduced In this paper to support
increased security. In 2007, Mathur had introduced two! == MOt only in security but also in error detection and
new ciphers namely high diffusion (HD) cipher and correction. HeX|_C|pher_Wh|ch has bettgr error correcting
pyramid cipher 3]. He had defined high diffusion codes, capacity than eX|st|ng_C|ph¢rs like HD mphgr and pyramid
which were used in the mix column operation instead ofClpher is introduced in this paper. He_X| Cipher corrects
the existing MDS code, to produce HD cipher. Czapski nearly 12 bytes of 48 bytes transmitted whereas HD
and Nikodem in 2008 had created error detection anac'pher. co.rr(ra]cts 7 bytes of 36fbytes transmlttgd and
error correction procedures for the AES, which detecteopyrarnId cipher corrects 4_bytes 0 .24 bytes transmltted_.
any byte error and over 99% of word errod.[A new The rest of the paper is organized as follows. Section

approach for the improvement of coding gain in channelmﬁcwt;c;gug;;’eg zﬁ\/\f{h(élarsl:xggggi?ﬁasl Za!?gmheﬁla(rf:]?ns'
coding using AES and Maximum A Posteriori (MAP) Y ' 9

: : metric is defined on these new class of codes. Section
algorithm was proposed, by Ayyaz Mahmood in 200B [ . . X
In 2009, Nakahara and Abrohao had replaced the shiffhree deals with the error correction of these codes using

rows and mix columns operations by a new involutory COSEt leader method. Hexi polynomial codes and quasi
matrix operation in every rounds] and left an open cyclic partial hexi codes are defined in section four.
problem to determine larger involutory MDS matrices, for Sﬁpt'ﬁr_‘ five prg\fl_ldes thef construc_ur(])n of hexi cipher,
AES/Rijndael of block length 160, 192 and 224. In the Wich IS a modification of AES, with error correction
same year, Cam and et al had em,bedded a turbo encod(é?pab'“ty' Concluding remarks and further directions are
block in AES encryption block in the first round after sub given in section six.

bytes block B]. In 2011, Elumalai and Reddy had used a
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2 Hexi Codes

a codeword and the presence of errors has been detected.
When s = (0), r is a codeword, it need not be the

This section introduces a new class of codes called hexiransmitted codeword. In certain cases, when the error

codes and their properties. L8t {0,1,2,...,F} be the

patterne is identical to a non zero codewondis the sum

set of symbols of hexadecimal number system. Let theof two codewords, which is a codeword, and consequently

operator &’ denote multiplication module® + x + 1, and
‘@’ denote XOR modulo 2. ThenS( @, ®) is a field of

r.HT = (0). These errors are not detectable. The receiver
acceptsr as the transmitted codeword. Error patterns of

order 16 and each element is inverse of itself with respecthis kind are called undetectable error patterns. In case of

to®. LetV" = {(xq, ..., X)|% € S 1<i <n} bean
n-dimensional vector space defined oger

Definition 1.A block code of length n with 2¢)%

hexi codes, the remaining {% — 1 non zero codewords
can lead to undetectable errors, so there af@¢(21
undetectable error patterns. The syndrandepends only
on e and not orv. Because is the vector sum of ande,

codewords is called a hexi (n, k) block code, denoted by follows from s=r.HT. That iss = r.HT = (V+eH' =
Cu(n, k), if and only if its 2 codewords form a T +eHT.

k-dimensional subspace of the vector spate¥all the n
tuples over the field S modul® % x + 1.

The method for generating the€g (n,k) codes using
the generator matrixG is as follows. G is given in
Equationl.

. gO,nfl
- O1n-1

Joo do1 Yoz
B dio 911 Q12

(1)
Ok-1,0 Ok-1,1 Ok—1,2 --- Ok—1.n-1

gi,jeSfor0<i<k—1and0< j<n-1 Consideu
= (Uo, U1, ..
corresponding codeword is given byv = u.G. Every
codewordv in Cy(n,k) is a linear combination ok
codewords.

For example, let

0A1B100O
1C07010
F021001

G:

be the generator matrix of th@y (7, 3) hexi block code.

Consider the message= (A 0 1) to be encoded. The
codewordv = uG is given by £ 8 8 3A 0 1). Since the

generator matrixXa is in the standard forn® = (A; 13x3),

HowevervHT =0. Sos=eH".

Letr =(ro, r1, r2, r3, r4, rs, rg) be the received vector.
Then the syndrome will be given &= (S, 1, S, S3)- The
syndrome digits usingl are

S =ro+rs+re.F
Sy =r1+r3.A+rs5.C
S =Tra+r4+r6.2
S3="r3+r4.B+r5.7+r6.

Consider theCy(7, 3) hexi code given above for

., Ux_1), the message to be encoded, theillustration. Suppose = (5 8 8 3A 0 1) is the received

codeword,r.HT = (A 0 0 0). Sinces=r.HT # (0), the
received codeword has erra@s. = A, so the possible error
positions arerg, rs andrg. This Cy(7, 4) hexi code has
(242 hexi codewords and 2> — 1 undetectable error
patterns.

The Hamming metric of the hexi code is given.

Definition 2.For any 2 vectors x = (X ..., %) and y = (\,
.., W) inV", the Hamming distance d(x, y) and Hamming
weight w(x) are defined as follows:

d(x,y) =[ {X 1% #VYi;X €XYi €Y} |

w(X) =| {Xi: % £ 0;x € x}|. @)

the parity check matrix can be got in the standard form as

H = (lax4, AT),

10000 1F
0100ACO
0010102
0001B71

H:

For instance, lex=(F 88 3A01)andy=(3D 1213
0), w(x) =w(y) =6 andd(x,y) = 7.

Sinc:eFZ']1 = Sis akin toF"; all theorems and definitions
in Fy' holds good for},. These notions are reformulated
to suit hexi code€€y = Cy (N, K).

If Cq is a hexi code, the sum of two codewords is also

The generator matrix can be in any other form. Thea codeword irCy. It follows thatd(x,y) = w(x+ ), that
parity check matrix can be found out by the usualis the hamming distance between two codewords is equal
methods used for linear codes. The syndrome obtaineto the hamming weight of some other codeword.

from the parity check matriH helps one to detect the

error from the received word. The syndrome of the hexiDefinition 3.The minimum distanceh of a hexi code &
block code, functions in the same manner as in the case df defined as
linear block code. The syndromes and error detection

described below are recalled fro®][Whenr is received,
the receiver computes = rH™ = (s, S1, ..., Snk_1)
which is called the syndrome of Whens # (0), r is not

min
XayECH
X#Yy

d(x,y). 3)

dmin =
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Table 1: Standard Array for Syndrome decoding 4 Hexi p0|ynomia| Codes
Coset Leaders Codewords Syndrome
vi=0 V2 . Vo SZ(T) Hexi polynomial codes are of two typeg! + 1 andx" + t
€ €2+ V2 ... 8+ Vou eZHT (t € Sandt # 1). Whenx"+ 1 is used, it forms a usual
€s €3+ V2 ... 834 Vou esH cyclic code,g(x) is a polynomial which dividesx(+ 1)
: : : and its coefficients are froi8. Since these class of hexi
q 8+ V... 8 Vo qHT polynomial codes are slmllar to usual cyc_llc codes, dual
) ] code and other properties can be defined in the usual way
: : : for these codes. To generat&€ga(n,k) cyclic hexi code,
€u(n-k) €unk + V2 e wHT consider only the polynomial of the form® + 1. Instead
-+ k) + Vouk of X" + 1, considex™ +1t (t € 9); t # 1, thenx" +t = g(x)

x h(x), g(x) andh(x) are polynomials belonging t§x.
Let G be the generator matrix associated with generator
Table 2: Example of Standard Array and Coset Leader polynomial g(x). Let H be the parity check matrix

Coset leaders Syndrome associated with the parity check polynomialx). The
0000000 ... 3D12130 EC26011 0000 Ch(n,k) code is not cyclic. ClearhGH™ = (0). If (x1
1000000 ... 2D12130 FC26011 1000 ... %) € Cx(n,k), then in general X X1 ...%_1) ¢
2000000 ... 1D12130 CC26011 2000 CH(n,k). Ci(n,k), the hexi polynomial code generated by
0000010 ... 3D12130 EC26001 1co7 the polynomialg(x) is defined as follows.

A000000 ... 9D12130 4C26011 A000

BOO000O ... 8D12130 5C26011 B00O Definition 4.Let ¥ + t € S[x], t € S\{1}, be a hexi
0010100 ... 3D02030 EC16111  AOBO polynomial in S[x]. If X + t = g(x) h(x) where G is the
C000000 ... FD12130 2C26011  COOO generator matrix associated with the hexi polynomial g(x)
0000001 ... 3D12131 EC26010 F021

and H is the parity check matrix associated with h(x). If
g(X) generates a code say(, k), then G(n, k) is the
hexi polynomial code associated with the hexi generator

3 Error Correction polynomial g(x).

For example, consider the generator polynomial

The error correction capacity of hexi code is discussed ing(x) = (x¥* + C¢ + Fx> + A) and given
this section. (X" +F) = (x*+Cx3 + Fx2 + A)(x3 + Cx* + 8). Let the
Theorem 1The number of errors a hexi code can correct 9EN€rator MatriG be given byg(x).

is t = [(dmin— 1)/2], and this code can detect | errors AOFC100

where t+1 +1 < dpin and | > t. G=|0AOFC1O0

O0OAOFC1

)

Proof. Proof is similar to that of linear block code.

Correction of errors in any code is a complicated G 9enerates & (7, 3) hexi polynomial code. The

process. There aré*2error patterns that result in same codewordfor the message = (A3 F)is given by uG =
syndrome and the true error pattesis just one of them. (8D 03 7B F). LetH be the parity check matrix given

Determining the true error vecteris not easy. The coset DY the parity check polynomiakt + Cx* + 8),
leader method is used for error correction, by making use

of the standard array and syndrome decoding described 8 8 (1)(:18 gg
in [9]. The standard array is given by Talle H= 01C0800
Hereg's are coset leaders,2i < 24" %) v;'s are non 1C08000

zero codewords,  j < 2%. The corrected codeworq is

obtained by using the syndrome of the received codeword.et r be the received codeword. The syndrome afan

r. The coset leades;, related to the syndrome, is added to be calculated by = r.HT. Letr = (8 D 0 3 7B F), the

r to obtain the corrected codeword. A part of the table ofreceived codeword, without any error. Then the syndrome

coset leaders for the above mentioned hexi code is giveshould be all zeros;H™ = (0 0 0 0).

by Table2. This hexi polynomial code is not cyclic. Singe = (8
Only a few codewords are dealt here since this codeD 0 3 7B F) is a codeword them, = (F 8D 0 3 7B) is also

has 168 codewords, it is not feasible to cover them fully.  supposed to be a codeword if this polynomial hexi code is
Let the received codeword lve= (58 8 3A0 1). The  cyclic. To prove thats, is a codeword is to show thas.

syndromes = (A 0 0 0) and the related coset leaderAs ( HT =(0) i.e., the syndromes are zero. BatH" = (000

0 00 0 0 0). The coset leader is added with the received). The syndrome is not zero, hence it is not a codeword in

codeword; (588 A01)® (A000000)=F883A0 Cu(7,93).

1). The corrected codeword is obtained. The definition of quasi cyclic code is recalled frofj.|
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Table 3: Codewords of (16, 4) quasi cyclic partial hexi code  5ome properties of these quasi cyclic partial hexi codes are

Message Codewords Hexicodes given below.

0 0000 0000 0000 0000 0000

8 1111 0110 1000 0010 F682 RemarkAny quasi cyclic partial hexi cod€y will be of

4 0010111101101000 | 2F68 the formCx = (n4?, n4) and the number of elements@n

2 011010001111 0110 82F6 are 2". Hence the quasi cyclic partial hexi co@g(16,4)

1 0110 1000 0010 1111 682F generated by thé given in Equation4) has 16 codewords
C 1101 1001 1110 1010 D9EA sincen=1.

A 0111 01000111 0100 7474

9 1001 1110 1010 1101 9EAD RemarkA (n42, n4) quasi cyclic partial hexi code will be
6 10101101 1001 1110 ADO9E generated, only if the generator matrix is such that the 4
5 0100 0111 0100 0111 4747 rows are linearly independent, so that the codewords are
3 111010101101 1001 EADO9 unique.

F 0011 0011 00110011 3333 . . . . .

E 0101 1011 0001 1100 5B1C Proposition 1If any quasi cyclic partial hexi code C be
D 1011 0001 1100 0101 B1C5 generated by a matrix G having & as its inverse, then
7 1100 0101 1011 0001 C5B1 G~1 may not in general generate a quasi cyclic partial
B 0001 110001011011 | 1C5B hexi code.

ProofThe G~1 given in ) above does not generate a
quasi cyclic partial hexi code even thou@hgiven in @)

Definition 5. [9] A quasi cyclic code is a linear code for generates a quasi cyclic partial hexi code.

which cyclically shifting a codeword, a fixed numberA  Encoding: Consider the message= (1 0 1 0), and the

1 (or a multiple of B) of symbol; positions either to the generator matrix G given imj then the codeword is given
right or to the left results in another codeword. by AG= (747 4).

. . s . Decoding:The received codeword is (7 4 7 4); to get the
The integemg is called the shifting constraint. If the messaggfrom the codeword, multipl)(/ the cozjewc?rd with

shifting constraining = 1, a quasi cyclic code is a cyclic . 1.5 : .
code. Consider the special case where the shiftingzhg L?)vgisie:o(flt rg)elgg)nerator mat®~ givenin () i.e., (7

constraintng is 4. The definition of quasi cyclic partial

hexi codes is as follows. Error Correcting Capacity:Since thedn, = 4 for quasi

cyclic partial hexi code, the error correcting capatity

Definition 6.A quasi cyclic partial hexi code is a quasi |(dmin—1)/2], will be 1.
cyclic code, where the shifting constraing 1 4 and the
symbols are represented in hexadecimal. L.
5 Hexi Cipher
For example, consider the following quasi cyclic
partial hexi code, let the generating mat@xof the code 5.1 Structure and Design of Hexi Cipher
be given in the following
The mix column layer in the AES cipher design is

1111 0110 1000 00T replaced with a hexi coding layer in round nine to enable
G | 00101111 0110 100¢ error detection and correction. This redesigned cipher is

1000 0010 1111 011 called as hexi cipher. Hexi cipher has ten rounds like the

0110 1000 0010 11 AES. Figure 1 gives the overall structure of the hexi

This generator matri can represented using symbols cipher. Round function has four different stages, namely

from the fieldGF(2%). i. Substitute bytes / Inverse substitute bytes
ii. Shift rows / Inverse shift rows

F682 iii. Mix column / Inverse mix column or Hexi coding
G 2F 68 4) /Hexi decoding
"1 82F6 | iv. Add round key
6 82F

Rounds one to eight of the hexi cipher, perform the
encryption procedure, round nine carries out the encoding
procedure and round ten does substitute bytes, shift rows
and add round key. The decoding and error correction is
done in round one on the receiver side. Decryption is

The codewords of (16, 4) quasi cyclic partial hexi code
generated byG are given in Table, are cyclic and they
are uniqueG1 is used to get the message back.

E9AS3 performed by the rounds two to nine; round ten does

1 3E9A inverse substitute bytes, inverse shift rows and add round
G =1A3E0Q ©) key.

9A3E Each stage of the round function is described in detail.
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used during round nine of the hexi cipher to carry out

[ xoie ) S, encoding of the encrypted data. The last round does
not have this stage at all. During decoding process,
round one makes use of the hexi decoding which is
- sl ];@ described in Section 5.2 to decode and preform the
! error correction of the received data. Rounds two to

nine of the decryption make use of the already

-

[ Plaintext

H

[ Add Round Key

=

Inverse Sub Bytes

2| (e | existing inverse mix column, while the last round of
E T |2 i the decryption does not make use of this stage.
i i OWsS 3 —
Mix Column E \v[.“]—} Add Round Key
iy Iverse M Col 5.2 Hexi Encoding and Decoding

2t09
NOLLdAYDHA

Inverse Sub Bytes

Rounds :

i

Sub Bytes T Hexi encoding and hexi decoding are discussed in detail.

Shift Rows
[ Add Round Key ]‘7[ w36, 47] H +~| Add Round Key

ONIAOONH

He Desoring 5.2.1 Hexi Encoding

ONIAODHA

The output from the 8th round, in a4 4 representation
of the cipher state will be of the form given below, where

Inverse Sub Bytes

i

SELRE Inverse ShiftRows eachs,y, 1 <x< 4, 1<y<8is an individual nibble of
the state.
Add Round Key %—! \\']48wuud Key S]_’l Sg_72 3173 31’4 51’5 3176 S:|_77 3178
192 | 34 | 56 | 728
3182 | B3B4 | SB536 | SB37B8

H

Ciphertext Siphertext 12 | U344 | 4546 | 47 48

Encryption Decryption

Any (4, 4) quasi cyclic partial hexi code will have its
Fig. 1: The Structure of Hexi Cipher generator matriG given by
ki1 kio kiz kia
G- | ik kskea
k31 ka2 K33 ks a
1. Add round key stage Kap ka2 kag kaa
The key expansion algorithm of the AES is altered to . )
suit the necessity of the hexi cipher. Since the lastxy € S 1 < xy < 4. This 4 4 generator matrix G of
round and the encoding round of the hexi cipher@ny guasi cycllc. partial heX| code is usgd instead of the
makes use of 12 words for each key in this stage. ThdIDS code that is used in AES. Eas}y is ezncoded by
original key expansion algorithm of the AES is easily Sy-G resulting in a codeword of the formg, V&, Vg, Vg ;
expandable. Hence the iterations are increased to 60, < X < 4; 1 <y < 8. However only the first three terms
s0 as to produce 60 key words. namelyvy, vz, V2, are utilized for the encoding. Any 4
2. Substitute bytes stage / Inverse substitute bytes stage? quasi cyclic hexi code can be used, it can also work as
The substitute bytes stage and its inverse operation oecret key between the sender and receiver. The alg(_)rlthm
each round of the hexi cipher are same as in AES, theifor encoding a message row of the output of the eighth
functionality is left unaltered. round, takes four nibbles of the message row as the input
3. Shift row stage / Inverse shift row stage and produces an output of 12 nibbles is given in Algorithm
The shift row stage and its inverse operation of eachl- For the sake of notational convenienegy is taken as
round of the hexi cipher are same as in AES, theirSy ands,, is taken as as only one row is discussed. The
functionality is left unaltered, while in the last two Process is repeated for the next four nibbles of the row.

rounds, it needs to deal with 4 12 representation of The output of the hexi coding function is of the
cipher state. structure given below
4. Mix column stage or Hexi coding stage / Inverse mix

column stage or Hexi decoding stage S11S12 | S135814 | Si5Si6 S1.23 S1.04

In hexi cipher, rounds one to eight make use of the 52,1 §2,2 §2‘3 52,4 5'2,5 5’2,5 23224
already existing mix column function. The hexi 3152 | 33534 | S35 S36 $323 324
encoding function which is described in Section 5.2 is H1%2 | 4344 | Sus Sue .23 S4.24
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Algorithm 1: ENcoDE Algorithm for encoding Algorithm 2: DECODEERROR Algorithm for
Input: s1,5,,S3, S decoding, error detection and error correction.
OUtpl‘It é.I. % d\’: §47% S,'G SI7 % ‘dg é.l.O’g.l.l"d’lZ InDUt: §175127§375217S’57s/6~,§7>5187%7§107§117§12

1 for j + 1to 12do Output: msg

2 | $0 L TmSge §, .. 8) 5,5, 10,511,512

3 end 2 0m<— rmsg

4 begin 3 begin

5 for i+ 1to4do 4 rmsg<«— DECODErmsg msg

6 if 5 # Othen 5 y <— ERRORSTRINGrmsg

7 S S @V 6 if y=£ Othen

8 Sy vy 7 | om« ERRORCORRECTIONy,rmsgorm)

i 8 else
13 enddz'“ oV 9 | No Error
10 end
11 end d
12 S o S B PKDp 11 en
13 | 5,505
14 | S50
15 end

The Decode procedure calls onSubtractcodewhich
XORs the related codeworcbdérelx] with the received
message i.erm.

Note: The odd nibbles and even nibbles can be taken
separately and worked out, instead of taking the first four.

nibbles. Algorithm 3: DecobDE Algorithm for decoding the
The encoding of the message is done using a lookup_Message

table like Table3 for generator matrix G given irdf. The Input: rm, code

first term is encoded as,s, ands;, the second term is Output: msg

encoded as}, s, ands;, i.e., s is the XOR of the third 1 begin

term of the first codeword and the first term of the second 2 | fori« 1to4do
codeword. Similarlys; ands, are XOR of first and third 3 X IM[2+1]
terms of successive codewords respectively. The even /1 Refer Table 3
terms, namelys,, s, s; ands, are dependent only on one /1 \ere x=v;' the related
codeword ), serves as their parity byte,, serves as the Hexi code coddrelX|[] = v v2' vg
parity of s; ands, terms. Alsos,, serves as the parity of Il relx = Rel ated Message;
s, ands, terms. The resultant of the hexi encoding is 48 4 msgi] « relx _
bytes, so the add round key of round ten requires 12 word ° SuBTRACTCODEcodérelx[], rm[2xi —1],
key. The end result of the hexi cipher is 48 bytes. . endrm[z*l]’ rm(2i +1])

7 end

5.2.2 Hexi decoding, error detection and error correction

The error detection and correction capacity of the hexi  The related codeword ain(2i] is obtained from the
cipher is analysed. The receiving side will get the table of codewords wherem|2i] = v»', this related
encrypted message, which may contain errors. When theodeword is XORed withrm[2i — 1], rm[2i] and
hexi decoding of the message begins the message wilim[2i + 1] to obtain the reminder. The decoded message
contain errors due to the transmission in channel andnsgis obtained fronrm(2], rm[4], rm[6] andrm[8]. The

errors which are propagated due to the decryptionremaining bytes of the message form the error string. The

process. The generalised algorithm for decoding, erroiErrorstring procedure given in Algorithrd is to convert
detection and error correction of the received message itherm to a string of 1's and 0’s. lérrorstring variable y

given in Algorithm2. =0 then there is no correctable error detected, else error is

It calls on the Decode procedure given in detected and it calls on tHerrorcorrection procedure for
Algorithm 3, which takes the received messagm, error correction.
decodes it, stores the decoded message in global variable The Errorcorrection algorithm calculates the XOR of
msgand returns the reminder of the received message even bytes, XOR ofm[3] and rm[7] and the XOR of
TheDecodeprocedure uses the even bytes of the receivedm[1] and rm[9]. If the resultant XOR matches with its
message, namelym[2i], 1 <i < 4 to createmsg The  respective parity, then the parity variabkvén, oddand
related codeword afm[2i] from the set of all codewords oddJ) is given value 0, else 1. Based on the error string, it

code(a two dimensional array of size [16][3]) is obtained. is determined where error might have occurred. A sample
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Algorithm 4: ERRORSTRINGrm). Algorithm for Algorithm 6: ERRORCORRECTIONy, rm, o)
conversion of errorstring Input: y, rm, om
Input: rm Output: om
Qutput:y 1 evenodd oddl + 1
1y«0 2 begin
2 X< 10000 3 if om10] = om[2] & om4] ® om[6] & om[8] then
3 begin evern— 0
4 for i + 0to 4do 4 if om11] = om[3] & om[7] then odd+« 0
5 if rm2xi+1] # 0then y+«+ y+Xx 5 if om12] = om[1] & om9] then oddl + 0
6 X<+ x/10 6 switchy do
7 end 7 casel
8 Returny 8 if even= 0then
9 end 9 if odd=0and oddl =0 then
10 chl < MC(om9],3)
11 ch2 «<— MC((om[7] & chl[1]),3)
- - 12 ch3 <+ MC(om4],2)
Algorithm 5. MAKECODE(X, Y). Algorithm for 13 om8] + ch1[2]; om{6] « ch2[2]
creation of new codeword 14 omi5] « (ch2[1] @ ch3[3))
Input: X 15 break
gutput: Cl1.3 16 else
1 begin
2 for i + 1to 16do i; 8:12}(F (/9] & om(S])
3 if X = coddi][Y] then
4 C[1] + coddf][1 z elsee”d
> Cl2) codq!][Z} 21 if odd = Othen
6 C[3] - codsil(3 22 if odd1 = Othen // 5, 6, 8;
! end deal t as above
8 | end 23 else// 9,10 or 9,10,12
9 ReturnC 24 else
10 end 25 if oddl =0 then
26 if (om1]®om12)) =
(rm[9] & om9]) then
/1 9,10, 11;
. . -, 27 else
table of the error string, possible error positions and the g omi7] + (omi3] @ omi11))
parity variables is given in Tabk:. Since there are nearly g chl « MC(om(6],2)
over 400 such possibilities only a few cases are given andg, ch2 ’
discussed. Depending on the parity variable and error MC((om7] &chi[3]), 1)
string the algorithm creates a new set of codewords forz; om8] «+ ch2[2]
the possible set of errors usiMpkecodeprocedure given 3 om9] + ch2[3]
in Algorithm 5. The Errorcorrection procedure checks if 33 break
parity bytes are correct for the new set of codewords, if 34 end
found correct it returns the new corrected message andss else
exits; if else, checks for the next set of codewords. In casess chl + Mc(om9],3)
parity bytes are correct for the two sets of codewords, it 37 ch2 + Mc(om(6],2)
quits since it is not able to find the correct corrected 3s om(8] +— ch1[2]
codeword. It repeats till the end of all possible errors, if 39 om7] + (ch1[0] & ch2[3])
none matches, it exits, since error correction is not 40 break
possible. The Errorcorrection algorithm given in 41 end
Algorithm 6 gives the error correction for a sample of 42 end
subcases of possible errors for the error string ‘1'. 43 end
For illustration; take a error string (1 0 0 1 0), the list 44 Returnom
of possible errors is given in Tabkk When all parity 45 endsw
variables are 0, then the error has occurred in 2, 4 and 6
i.e.,rm[2], rm[4] andrm[6]; (2, 4, 6). If all parity variables ~ *° j
are 1, then the error has occurred in bytes 1, 7 and 1047 | endsw
Whenevenis 0; the other parity variables are 0 or 1, then 48 end
error has occurred at bytes 1 and 7 iten[1] andrm([7] or
1,7,11 0r 1, 7, 12. In these cases where parity byte is
wrong, it is enough to correct only bytes 1 and 7. When
© 2013 NSP
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Table 4: Possible errors for the error string and their parity If the error has occurred in the even bytes of the
variable

Error String Possible Errors E o o1 Message row, then .the even parity is affected, else if the
error has occurred in the odd bytes of the message row,

i 59”61'28 8 8 8 fche odd parity bytes are gﬁected. The position of the error
1 9(or 9, 12 0o o 1 is detected by the decoding of the message and the parity
1 9,11, 12 0 1 0 bits.
1 9 117(;”8)‘ ;011 12 00 11 01 Lemma 1lf error has occurred in bytes related to different
1 ' 5 6, g 1 0 0 parities or if more than one error occurs in bytes related
1 7.8,11 1 0 0 to same parity, then there are cases where parity might
1 9,10, 12 1 0 0 not show the error, but in all cases the decoding shows the
1 9,10 (or) 9, 10, 12 1 0 1 position of possible errors.
1 7,8(or)7,8,11(or)7,8,10 1 1 0 .
1 7.8,9(on 7,8, 12 1 1 1 Pr(_)of.The decoding process, recreates the message by
1 9,10, 11 1 1 1 using the even bytes, since they are independent of other
. ) codewords. This decoding process produces a error string.
: : : If there is no error, the error string is 0. In case of error,
10010 2,4,6 0 0 © the associated odd bytes reflect the error. By the
10010 1,711 0 0 1 calculation of the parity variables, the possible positon
10010 1,712 0 1 0 error is detected.
10010  1,7(on1,7,11(or)1,7,12 0 1 1 This is explained clearly in the given illustration.
10010 1,8,9 1 0 1
10010 1,56 1 0 1 Theorem 3In each row of the 4x 12 representation of
10010 2,4,6 10 0 the cipher state, hexi decoding can detect all errors and
10010 2,3,7 10 0 correct maximum of 3 byte errors.
10010 1,8,9 1 0 0
10010 2,3,7 1 1 0 ProofBy lemmal the hexi decoding process can detect the
10010 1,7,10 1 1 1 possible position of errors. By theorethonce the correct
: position is known, the whole codeword can be retrieved.
11111 14,8 1 0 1 TheT correctness of the message can be rechecked using the
11111 269 1 0 1 parity bits and the neighbouring bits.

Thus the hexi cipher has a error correction capacity of
nearly 25 percentage of errors.

oddis 0; and the other two parity variables are 1, the error

has occurred at 1, 8,9 or 1, 5, 6. First the error in byte 1 is .

removed by the XOR of first byte of rm and om. The 5.4 Implementation Features

parity variableoddlis recalculated, if it is O, then possible . . .

error is 1, 5, 6, else possible error is 1, 8, 9. Similarly the | '€ _implementation of the error detection and error

other cases are dealt, though the logic of handling error orrection of a fece"’?d message row was carried out.

works differently for different set of errors. ithout loss _of generality, the |mplem¢ntat|on works with
the assumption that all the three parity bytes are correct
and the errors are present in the message bytes alone.

. . o Since the error in the parity will not affect the decoding

5.3 Error Correction Capacity of Hexi Cipher  process. Assume the worst case scenario were the three
parity elements are wrong, then it implies that there is no

The error correction capacity and the correctness of theerror in the message; hence error correction need not be

error correction of the hexi cipher is analysed in the done. In case, error is in two parity elements, then there is

following theorems. error in only one message element, which can be
corrected. Else one parity element has error, then two

Theorem 2Given one correct element and its position in message elements have error, and they can be corrected

the quasi cyclic partial hexi codeword, the whole using normal error correction, without help of parity.

codeword can be obtained. Since handling nibbles is a tedious process, bytes have
been used for the implementation. Any correct message is

ProofBy Remark 1 and Remark 2 for any given quasi taken and errors are added to the message. Errors are

cyclic partial hexi C4(16,4) code there are only 16 randomly generated. The generator matrix used for

codewords and these 16 codewords are cyclic and uniquémplementation, is given in4) and look up table for

So if the position of one correct element is known, the codewords is given in Tabl8. In the implementation,

whole codeword can be retrieved. decoding and error correction was done for the following
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1. When the received message was same as the messadgeferences
that was sent, i.e., no error was introduced. Only _ _ _
decoding and error detection was done. [1] M. Ayyaz, Method to improve channel coding using

2. Error was introduced in only one byte, error detection ~ cryptography, World Academy of Science, Engineering and
and error correction was carried. There are only 9 such __ TechnologyAl, 525-528 (2008). _
possible cases. [2] H. Cam, V. Ozduran and N O. Ucan, A combined

3. In two bytes, errors were introduced. 36 possible cases ~ €"cryption and error correction scheme: AES-TURBO,
were handled: successful error correction was carried Istanbul university Journal of Electrical and Electronic
out ’ Engineering, 891-896 (2009).

. . [3] N. M. Chetan, A Mathematical framework for combining
4. Error was introduced in three bytes, there were 84 error correction and encryption, Ph.D. diss, Stevens Institute

such possible combinations. Error detection and error Technology, Hoboken, NJ, USA, (2007).
correction was carried. [4] M. Czapski and M. Nikodem, Error detection and error

The total 350 cases of errors, was grouped into 130 correction procedures for the advanced encryption standard,
standard cases. These were dealt, error detection and error ?e;. Codes Cr;(;p{;)gégphw, %7'%32 .(2008]:)'R.. deal. AES
correction was successfully carried out in all cases, other [°) 2: Daémen, and V. Rijmen, The Design of Rijndeal, AES-

than cases where the error added was itself a codeword, 056] ;hEC?nVSQFZﬂ dERCgthelggdsﬁrrf;f\}iﬁgg?f?uesri’o(r?ggsv)ér of
when two set of errors satisfied the parity. ; P '

AES Rijndael with 8x 8 MDS matrix, International Journal

of Scientific & Engineering Research, 1-5 (2011).
[7]T. K. Moon, Error Correction Coding- Mathematical
5.5 Comparison with other existing cipher Methods and Algorithms, Wiley, (2005).

[8] J. Nakahara and E. Abrahao, A new involutory MDS matrix

The hexi cipher is as secure as the existing AES cipher, for the AES, International Journal of Network Securgy,
since only one round is altered. It has error correcting  109-116 (2009).
Capac|ty Of nearly 12 bytes Of 48 bytes transmnted, [9] S. Lin and D. J. COSte“O, Error Control C0d|ng, Pearson,
whereas the AES has no error correcting. Hexi cipher is (2005).
more space and time consuming. Hexi cipher has better
error correcting capacity than existing error correcting
ciphers like HD cipher and pyramid cipher. Hexi cipher
corrects nearly 12 bytes of 48 bytes transmitted whereas
HD cipher corrects 7 bytes of 36 bytes transmitted and
pyramid cipher corrects 4 bytes of 24 bytes transmitted.
The hexi cipher is an improvisation of the existing cipher,
with better error correcting capacity.
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