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Abstract: Multi-objective optimization (MO) has been an active area of research in the last two decades. In multi-objective genetic
algorithm (MOGA), the quality of newly generated offspring of the population will directly affect the performance of finding the
Pareto optimum. In this paper, an improved MOGA, named SMGA, is proposed for solving multi-objective optimization problems. To
increase efficiency during solution searching, an effective mutation namedsharing mutation is adopted to generate potential offspring.
Experiments were conducted on CEC-09 MOP test problems. The resultsshow that the proposed method exhibits better performance
when solving these benchmark problems compared to related multi-objective evolutionary algorithms (MOEA).
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1 Introduction

Multi-objective optimization (MO) problems contain
more than one objective that needs to be achieved
simultaneously. Such problems arise in many
applications, where two or more, sometimes conflicting
and/or incommensurable objective functions have to be
minimized concurrently. In such problems, there is no
single optimal solution; there is instead a set of potential
solutions for each of the objectives, considered alongside
the solutions for other objectives. Due to the multi-criteria
nature of MO problems, optimal solutions need to be
redefined. A set of potential solutions are called
Pareto-optimal or non-dominated solutions in
multi-objective optimization problems (MOPs). In
contrast to the singleobjective optimization case, MOPs
are characterized by trade-offs.

A solution x1 is said to dominate another solutionx2,
if both statements below are satisfied.

–The solutionx1 is no worse thanx2 in all objectives.
–The solutionx1 is strictly better thanx2 in at least one
objective.

The plot of the objective function whose
non-dominated vectors are in the Pareto optimal set is
called thePareto front.

2 Related works

Many evolution-based MO algorithms have been
proposed in last two decades. Hajela and Lin proposed a
Weight-based Genetic Algorithm (WBGA) [1], which
gives a weighted value for each objective function, and
accumulates them as the fitness value. This algorithm
possesses simple concepts, but had unsatisfactory
performance when the optimal solutions are distributed as
a non-convex Pareto graph. The Multi-Objective GA
(MOGA) [2] was proposed by Fonseca and Fleming. The
discovered non-dominated solutions are classified and
then ranked to enhance the searching abilities for finding
non-dominated solutions, and to maintain the diversity of
the discovered solutions. This method cannot ensure that
a solution with a poorer rank will always be mapped to a
lower fitness value. This attributes the algorithm with
slower convergence and more instability. Later, Srinivas
and Deb proposed a Non-dominated Sorting Genetic
Algorithm (NSGA) [3], which ranks populations
according to its characteristic of non-domination, and
gives higher fitness values for better non-dominated
solutions. The Niched Pareto Genetic Algorithm (NPGA)
[4] was proposed by Hornet al. It introduced a binary
tournament selection but does not assign a definite fitness
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value, and problems with more optimized objectives will
influence the computational efficiency of NPGA.

Several efficient strategies were then introduced based
on these algorithms, such as Elitism, external repository,
or archive. Zitzler and Thiele proposed the Strength
Pareto Evolutionary Algorithm (SPEA) [5], which
introduced an elitism strategy to store an extra population
that contains non-dominated solutions. New found
non-dominated solutions will be compared with the
auxiliary stored population, and the better solution is kept.
The SPEA2 [6] is an advanced version of SPEA. SPEA2
inherited the advantages from SPEA and improved fitness
assignment to take both dominated and non-dominated
solutions into account. SPEA2 also considered the
diversity of neighboring solutions to produce more
capable guides. Similar to MOGA, all these approaches
have the same problem; non-dominated solutions with the
same ranks may not have the same status. In [7], Knowles
et al. proposed Pareto Archive Evolution Strategy
(PAES), which employs (1+1) evolution strategy (ES) and
uses a mutation operator for local searches. A map of a
grid is applied in the algorithm to maintain the diversity
of the archive. Thus, there will be a trade-off to define the
size of both the external repository and grid of the map.
Deb proposed an enhanced NSGA named NSGA-II [8][9]
which employs a fast non-dominated approach to assign
ranks to individuals and crowded tournament selection for
density estimation. In the case of a tie in rank during the
selection process, the individual with a lower density
count will be chosen.

In recent years, many evolutionary algorithm based
multi-objective optimization (MOEA) methods have been
suggested and developed. In 2007, Campelo et al. [10]
suggested that the negative selection, danger theory and
other immune mechanisms may improve the existing
MOIAs. In the same year, Elaoud et al. proposed Pareto
fitness genetic algorithm (PFGA) [11]. It modified
ranking procedure and possessed a promising way of
sharing. Zhang and Li [12] proposed an interested MO
algorithm named MOEA/D. It decomposes a
multi-objective optimization problem into a number of
scalar optimization sub-problems and optimizes them
simultaneously. Recently, for many-objective problems
(when there are more than three objectives), Adra and
Fleming proposed diversity management mechanisms
[13] to investigate solution convergence of such problems.

Although mass MO approaches have been developed,
the efficiency of MO algorithms during solution searching
is still an important issue. In this paper, an efficient
mutation method calledsharing mutation (SM) is adopted
to assist multi-objective genetic algorithms in the
exploration for optimal solutions. It can significantly
improve the solution searching abilities of a
multi-objective optimizer. Chromosomes will be more
efficient, and discover more solutions located on or near
the Pareto front.

The rest of the paper is organized as follows; Section
2 describes genetic algorithm briefly, Section 3 describes

the proposed method, Section 4 presents the experimental
results and Section 5 of the paper contains the conclusion.

3 Genetic Algorithm

The traditional genetic algorithm (TGA) possesses the
following features:

–A bit string representation.
–Proportional selection.
–Cross-over as the primary method to produce new
individuals.

–Mutation for disturbing evolution to avoid solutions
falling into local search.

–Elitism policies employed.

A brief description of genetic algorithm will be
introduced in this section.

3.1 Chromosome Representation

Considering that a problem is presented asf (x1,x2...xN)
which consists ofN tunable parameters to be optimized.
The problem can be encoded by a vector representation in
GA (i.e., chromosome) asCm[x1,x2...xN ], m = 1,2, ..., p,
wherep denotes the population size. For high-dimension
or complex problems, GA will require a larger population
to ensure uniform distribution of population in the
searching space; otherwise potential solutions may go
unfounded. The value ofp is always given experimentally.

3.2 Initial Population

For most optimization techniques, the final solutions are
often restricted by the initialization. However, GA is able
to overcome this drawback with the cross-over and
mutation operation. Chromosomes can therefore be
scattered across an area in the first generation. The initial
population will be used to generatep chromosomes which
will be uniformly distributed across the searching space.

3.3 Cross-over

The purpose of the cross-over operation is to produce new
chromosomes (offspring) by mating two random parent
chromosomes, but it does not guarantee that the offspring
produced is fitter than the parent. However, after adopting
“exploration” and “exploitation” during the performance
of cross-over, optimal results can be ensured because the
offspring will be generated around fitter parents. The
detail of “exploration” and “exploitation” are described in
Section 4.1. The number of individuals which will be
joined during cross-over is based on a pre-defined
parameterrc which is calledcross-over rate. Thus, there
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will be round (p× rc) individuals (parents) joined to
perform cross-over.

For example, assume that two chromosomesC1, C2
are randomly picked from population for cross-over, and
C1 is better thanC2. The offspringOc can be obtained by
extrapolation cross-over using:

Oc = C1+α (C1−C2) (1)

whereα is a random value between [0, 1]. On the other
hand, the offspring Oc can also be obtained by
interpolation cross-over using:

Oc = C1−α (C1−C2) (2)

3.4 Mutation

The mutation operator exists to randomly alter some
subparts of a chromosome. When GA is learning, the
chromosomes will move to the nearest optimal solution to
itself, but that may be not a global optimization.
Therefore, some disturbances to aid in extending the
search range are quite important. In general, the offspring
of mutation Om is generated inside the search space
randomly as

Om = α (3)

where α denotes a mutation vector with random
components of uniform distribution in the search space.
The number of parents which joins mutation is based on a
predefined parameterrm which is calledmutation rate.
Thus, there areround (p× rm) individuals (parents) that
will be joined to perform mutation.

In general, the fitness of mutated offspring can be
better or worse than their parents and/or any cross-over
offspring. On the other hand, adopting the mutation
operation will extend the search range in order to explore
unsearched areas in the search space in order to find the
potential optimal solution.

3.5 Selection

After cross-over and mutation operations, all
chromosomes, including parents and offspring in a
population, will be larger than the initialization. In order
to produce better offspring, the elitism operation is
adapted to selectp better chromosomes which will
survive in the next generation.

The GA optimization is combined with operations
mentioned above and repeats the evolution process until it
reaches the pre-defined terminating conditions. The
pseudo code of GA is given as follows.

Initiate populationC(0)
Evaluate the fitness values ofC(0)
Repeatg = 1 : max generations
for each chromosome

Generate offspringOc using (1) or (2)
Mutate offspringOm by (3).
Evaluate the fitness values ofOc andOm.
Assemble all chromosomes includingC(g), Oc andOm,
Pick upM better chromosomes and namedC(g+1)
endfor
Until Terminating condition is met

4 Proposed Method

Although there are numerous approaches of MOGA,
premature convergence, diversity, and solutions located
on/near the Pareto front when solving MO problems are
still major deficiencies. In MO problems, more than one
conflicting objectives need to be optimized
simultaneously. Thus, non-dominated solutions which are
located on/near the Pareto front will be more than one.
Each non-dominated solution can provide its position
information to guide the current population in finding
better solutions.

4.1 Cross-over Operations

In general, cross-over operation in GA is employed to
generate new (better) offspring (chromosomes) based on
their parents. It combines the information of two
chromosomes, which were also generated by
chromosomes in a previous generation and evaluated by
the cost function. Finally, the better chromosomes will be
kept in the population. If a chromosome discovers a new
probable solution, its offspring will move closer to it to
explore the region deeply in the proceeding cross-over
process. Thus, in this paper, both the exploration and
exploitation are adopted to generate new offspring [14].
Exploitation strategies will restrict the searching range
and reduce its size, while the exploration strategies will
extend and expand the searching range. The exploration
and exploitation cross-over strategies are shown in Fig. 1.

Figure 1 Exploration and exploitation cross-over
strategies

The cross-over operation of proposed MOGA is that
all the genes,N-dimensions, are involved to produce new
chromosomes. Each pair of parents will produce two
offspring which are generated by either exploration or
exploitation randomly.
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4.2 Sharing Mutation

In general, mutation is adopted to generate new
chromosomes, mutating one or more genes, to prevent
chromosomes from falling into the local optimum. It can
help populations to better explore additional potential
search spaces and to produce more potential solutions.
Furthermore, it can also aid in the exploration of
unsearched solution space. The performance of mutation
will affect solution searching directly.

In order to improve mutation,sharing mutation (SM)
is adopted for increased efficiency while exploring the
solution space. The proposed sharing mutation can be
classified into two versions: local sharing and global
sharing. The activating probability of local and global
sharing is 2 to 1. The main difference between the local
sharing mutation and global sharing mutation is
dimension selection.

For the local version of sharing mutation, one of the
dimensions will be picked randomly; the mutating
chromosome’s corresponding dimension will be
perturbed and restricted as this dimension’s solution for
all chromosomes. For example, a randomly selected
dimension (d1) of the chromosomeiwill be perturbed in
the range between [Sd1min,Sd1max], whereSd1minand
Sd1maxare the minimal and maximal solution ofd1 of all
chromosomes respectively. In other words, the local
version is the sharing of searching ranges of selected
dimensions among chromosomes to efficiently generate
new solutions. This will ignore other dimensions but can
fine tune the solutions of specific dimensions one by one
in the chromosome.

The same principle applies for the global version of
sharing mutation; the current chromosome’s dimension
d1 will be perturbed and restricted as the initial boundary.
For example, the chromosomeiwill be perturbed in the
range between[XMin,XMax], whereXMin andXMax are the
minimal and maximal initial boundary respectively. The
global version of sharing mutation can prevent solutions
of a particular dimension from being trapped in the local
optimum.

Whether it’s the local version or the global version of
sharing mutation, they will ignore other dimensions but
can fine tune the solutions of chosen dimensions one by
one in the chromosomes.

Just as generic mutation rates in GA, different
mutation rates will affect the performance of solution
exploration directly. Subsequently, after numerous
generations, chromosomes will gather in several clusters,
and therefore increase the demands of SM. A lower SM
activating rate may be inefficient at rescuing
chromosomes trapped in local minimal, and a higher one
would deeply interfere with the convergence of
chromosomes. To ensure better solutions can constantly
be obtained efficiently and also to prevent chromosomes
from perform local searches, the concept of linearly
variation inertia weight for PSO [15][16] is adopted. The

mutation raterm for each generation is defined as follows:

rm(g) = 0.001+
0.009∗g
max gens

(4)

whereg denotes the generation number and maxgens is
maximum generations. The probability of mutation will
keep increasing linearly, from 0.001 to 0.01, during the
solution searching process.

4.3 Archive

The function of the repository controller is to make
decisions about whether certain solutions should be
included into the archive or not. The decision-making
process is stated as follows.

1.If the archive is empty, any new solutionNS found will
always be accepted and stored in archive (Case 1, in
Fig. 2).

2.If the new solution is dominated by any individual in
the archive, then such a solution will be discarded
(Case 2, in Fig. 2).

3.If none of the solutions contained in the archive
dominates the new solution, then such a solution will
be stored in the archive (Case 3, in Fig. 2).

4.Otherwise, if there are solutions in the archive that are
dominated by the new solution, then such dominated
solutions will be removed from the archive (Case 4, in
Fig. 2).

Finally, after updating all non-dominated solutions,
the cluster procedure will then be activated to eliminate
similar solutions to ensure a lower diversity of
non-dominated solutions.

Figure 2. Possible Cases for Archive Controller
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5 Experiments

5.1 Test Functions

Ten unconstrained (bound constrained) MOP test
problems of CEC 2009 technic report [17] were adopted
for testing the proposed method with the results compared
to MOEA/D [12] and NSGA-II [9]. The test problems are
listed as follows:

Problem 1

f1 = x1+
2
|J1| ∑

j∈J1

[

x j −sin(6πx1+
jπ
n )

]2

f2 = 1−√
x1+

2
|J2| ∑

j∈J2

[

x j −sin(6πx1+
jπ
n )

]2

J1 = { j| j is odd and 2≤ j ≤ n} and
J2 = { j| j is even and 2≤ j ≤ n}
search space is [0,1]x[−1,1]n−1

n = 30

(5)

Problem 2

f1 = x1+
2
|J1| ∑

j∈J1

y2
j

f2 = 1−√
x1+

2
|J2| ∑

j∈J2

y2
j

J1 = { j| j is odd and 2≤ j ≤ n} and
J2 = { j| j is even and 2≤ j ≤ n}
y j =

{

x j−[0.3x2
1 cos(24πx1+

4 jπ
n )+0.6x1]cos(6πx1+

jπ
n ) j∈J1

x j−[0.3x2
1 cos(24πx1+

4 jπ
n )+0.6x1]sin(6πx1+

jπ
n ) j∈J2

search space is [0,1]x[−1,1]n−1

n = 30

(6)

Problem 3

f1 = x1+
2
|J1| (4 ∑

j∈J1

y2
j −2 ∏

j∈J1

cos(20yiπ√
j )+2)

f2 = 1−√
x1+

2
|J2| (4 ∑

j∈J2

y2
j −2 ∏

j∈J2

cos(20yiπ√
j )+2)

J1 = { j| j is odd and 2≤ j ≤ n} and
J2 = { j| j is even and 2≤ j ≤ n}
y j = x j − x

0.5(1.0+ 3( j−2)
n−2 )

1 , j = 2,3,4,5, ...,n
search space is [0,1]n

n = 30

(7)

Problem 4

f1 = x1+
2
|J1| ∑

j∈J1

h(y j)

f2 = 1− x2
1+

2
|J2| ∑

j∈J2

h(y j)

J1 = { j| j is odd and 2≤ j ≤ n} and
J2 = { j| j is even and 2≤ j ≤ n}
y j = x j −sin(6πx1+

jπ
n ), j = 2, ...,n

h(t) = |t|
1+e2|t|

search space is [0,1]x[−2,2]n−1

n = 30

(8)

Problem 5

f1 = x1+( 1
2N + ε) |sin(2Nπx1)|+ 2

|J1| ∑
j∈J1

h(y j)

f2 = 1− x1+( 1
2N + ε) |sin(2Nπx1)|+ 2

|J2| ∑
j∈J2

h(y j)

J1 = { j| j is odd and 2≤ j ≤ n} and
J2 = { j| j is even and 2≤ j ≤ n}. N is an integer,ε¿0
y j = x j −sin(6πx1+

jπ
n ), j = 2, ...,n

h(t) = 2t2−cos(4πt)+1
search space is [0,1]x[−1,1]n−1

N = 10,ε = 0.1,n = 30
(9)

Problem 6

f1 = x1+max{0,2( 1
2N + ε)sin(2Nπx1)}

+ 2
|J1| (4 ∑

j∈J1

y2
j −2 ∏

j∈J1

cos(20yiπ√
j )+2)

f2 = 1− x1+max{0,2( 1
2N + ε)sin(2Nπx1)}

+ 2
|J2| (4 ∑

j∈J2

y2
j −2 ∏

j∈J2

cos(20yiπ√
j )+2)

J1 = { j| j is odd and 2≤ j ≤ n},J2 = { j| j is even and 2≤ j ≤ n}.
y j = x j −sin(6πx1+

jπ
n ), j = 2, ...,n

search space is [0,1]x[−1,1]n−1

N = 2,ε = 0.1,n = 30
(10)

Problem 7

f1 = 5
√

x1+
2
|J1| ∑

j∈J1

y2
j

f2 = 1− 5
√

x1+
2
|J2| ∑

j∈J2

y2
j

J1 = { j| j is odd and 2≤ j ≤ n},J2 = { j| j is even and 2≤ j ≤ n}.
y j = x j −sin(6πx1+

jπ
n ), j = 2, ...,n

search space is [0,1]x[−1,1]n−1

n = 30
(11)

Problem 8

f1 = cos(0.5x1π)cos(0.5x2π)+ 2
|J1| ∑

j∈J1

(x j −2x2sin(2πx1+
jπ
n ))2

f2 = cos(0.5x1π)sin(0.5x2π)+ 2
|J2| ∑

j∈J2

(x j −2x2sin(2πx1+
jπ
n ))2

f3 = sin(0.5x1π)+ 2
|J3| ∑

j∈J3

(x j −2x2sin(2πx1+
jπ
n ))2

J1 = { j|3≤ j ≤ n, and j−1 is a multuplication o f 3}
J2 = { j|3≤ j ≤ n, and j−2 is a multuplication o f 3}
J3 = { j|3≤ j ≤ n, and j is a multuplication o f 3}
search space is [0,1]2x[−2,2]n−2

n = 30
(12)
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Problem 9

f1 = 0.5[max{0,(1+ ε)(1−4(2x1−1)2)}+2x1]x2

+ 2
|J1| ∑

j∈J1

(x j −2x2sin(2πx1+
jπ
n ))2

f2 = 0.5[max{0,(1+ ε)(1−4(2x1−1)2)}+2x1]x2

+ 2
|J2| ∑

j∈J2

(x j −2x2sin(2πx1+
jπ
n ))2

f3 = 1− x2+
2
|J3| ∑

j∈J3

(x j −2x2sin(2πx1+
jπ
n ))2

J1 = { j|3≤ j ≤ n, and j−1 is a multuplication o f 3}
J2 = { j|3≤ j ≤ n, and j−2 is a multuplication o f 3}
J3 = { j|3≤ j ≤ n, and j is a multuplication o f 3}
search space is [0,1]2x[−2,2]n−2

n = 30,ε = 0.1
(13)

Problem 10

f1 = cos(0.5x1π)cos(0.5x2π)
+ 2

|J1| ∑
j∈J1

[4y2
j −cos(8πyi)+1]

f2 = cos(0.5x1π)sin(0.5x2π)
+ 2

|J2| ∑
j∈J2

[4y2
j −cos(8πyi)+1]

f3 = sin(0.5x1π)+ 2
|J3| ∑

j∈J3

[4y2
j −cos(8πyi)+1]

y j = x j −2x2sin(2πx1+
jπ
n ), j = 3, ...,n

J1 = { j|3≤ j ≤ n, and j−1 is a multuplication o f 3}
J2 = { j|3≤ j ≤ n, and j−2 is a multuplication o f 3}
J3 = { j|3≤ j ≤ n, and j is a multuplication o f 3}
search space is [0,1]2x[−2,2]n−2

n = 30
(14)

5.2 Parameter Settings and Initialization

All the MOGA algorithms were implemented using
MATLAB 2010a. The experiments were executed on
Core-2 Quad 2.66 GHz (Hyper Threading function
enabled) with 4GB RAM on Windows 7 professional
operating system. MOGAs’ parameters are listed in Table
I.

The maximal Number of Function Evaluations (FEs)
is set to be 300,000 for every problem. Each algorithm
was executed 30 times. Their mean values and standard
deviation for the results were recorded. The initial and the
variation of mutation rate (rm) for sharing mutation were
set as 0.001 and 0.009 respectively. Thus, the SM rate
will keep increasing linearly, from 0.001 to 0.01, while
the solution searching is in progress.

Table I Parameters’ Setting of MOGAs

Methods Cross-over rate Mutation rate
Proposed vary linearly from
Method 1.0 0.001 to 0.01

MOEA/D 1.0 0.005
NSGA-II 1.0 0.005

5.3 Performance Metric (IGD) [17]

Let P∗be a set of uniformly distributed points along the PF
(in the objective space). LetAbe an approximate set to the
PF, the average distance fromP∗to Ais defined as:

IGD(A, P∗) = ∑v∈p∗ d(v, A)

|P∗| (15)

where d(v, A) is the minimum Euclidean distance
betweenvand the points inA. If |P ∗ | is large enough to
represent the PF very well,IGD(A,P∗) could measure
both the diversity and convergence ofAin a sense. To
have a low value ofD(A,P∗), The setAmust be very close
to thePF and cannot miss any part of the wholePF.

Table II Results of Ten CEC 2009 Test Problems

Test Proposed MOEA/D NSGA-II
Problems Method [12] [8]

2.10e-01 3.85e-01 1.26e+00
P1 ± ± ±

9.70e-02 3.76e-02 2.30e-01
1.11e-01 3.17e-01 5.83e-01

P2 ± ± ±
4.36e-02 1.91e-02 1.28e-01
3.10e-01 6.89e-01 1.18e+00

P3 ± ± ±
2.89e-02 3.12e-02 6.77e-02
7.50e-02 1.13e-01 1.45e-01

P4 ± ± ±
1.14e-02 2.42e-03 3.43e-02
3.20e-01 2.67e+00 5.06e+00

P5 ± ± ±
9.00e-02 9.98e-02 9.42e-01
2.90e-01 1.65e+00 5.77e+00

P6 ± ± ±
7.61e-02 1.25e-01 6.64e-01
2.70e-01 3.99e-01 1.36e+00

P7 ± ± ±
1.85e-01 6.80e-02 1.61e-01
3.71e-01 1.29e+00 2.56e+00

P8 ± ± ±
1.01e-01 2.39e-01 1.00e+00
4.29e-01 1.47e+00 2.57e+00

P9 ± ± ±
6.69e-02 2.33e-01 9.22e-01
8.34e-01 8.39e+00 1.39e+01

P10 ± ± ±
3.15e-01 1.09e+00 2.92e+00
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Figure 3a. Convergence characteristics ofP1−P5 Figure 3b. Convergence characteristicsP6−P10
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5.4 Experimental Results

Table II presents the mean and standard deviation of 30
runs of the proposed MOGA, MOEA/D [12] and [8] on
the ten test problems. The best results among the three
approaches are shown in bold. From the results, it can be
observed that the proposed MOGA performed with better
results. The proposed method surpasses all other
algorithms in solving all functions and shows a significant
improvement on the results of problems 4, 5, 6, 8, 9 and
10. The convergence characteristics of each approach on
all test functions are shown in Fig. 3. The Proposed
method exhibits superior convergence than other
approaches on most test functions.

6 Conclusions

In this paper, the proposed method has been presented to
solve multi-objective optimization problems. Sharing
mutation was adopted to improve the searching abilities
of chromosomes. It also makes the proposed SMGA more
robust, and prevents chromosomes from falling into the
local optimum. Ten unconstrained (bound constrained)
MOP test problems from the CEC 2009 technical report
were selected for experiments. The experiment results
show that the proposed method can find more solutions
located on/near the Pareto front.
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