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Abstract:  
In the Bayesian analysis with a statistical model, it is inevitable to determine a prior distribution of 

the unknown parameter. Since we encounter more and more complicated models in practical use, we 

need simple criteria by which we know whether there exists a certain class of prior on the statistical 

model. Recently, Takeuchi and Amari obtained the geometrical condition that a statistical model 

admits an alpha parallel prior, one generalization of well-known Jeffreys prior. Matsuzoe, Takeuchi 

and Amari studied extensively the geometric condition in a curved exponential family. We formulate 
their result in terms of differential two form called curvature form on statistical model manifolds, 

which seems more suitable to evaluation of global properties of statistical model. While the trace of 

two form vanishes in general class of statistical model including exponential family, it does not 

vanish in the autoregressive moving average model, which is very fundamental and practically 

important in time series analysis. 
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1  Introduction 

Recently we encounter more and more complicated statistical models requiring numerical 

computation in various fields. Bayesian analysis could be helpful to practical user dealing with these 

models. However, as already known, there exists nontrivial problem of choosing a default prior 

distribution on the unknown parameter. We here call this kind of prior as a noninformative prior or 

an objective prior. 
As one candidate of the objective prior, we focus on the α -parallel prior. Historically speaking, 

it was proposed first by Hartigan [8, 9, 10]. Later, Takeuchi and Amari [18] clarified an interesting 

connection between the information geometrical properties of the statistical model and the existence 

of the α -parallel prior. Then, Matsuzoe et al. [13] further investigate the condition and obtain the 

geometrical result for curved exponential family. Although their arguments are restricted to i.i.d. 

models, we expect that similar consequences hold in the asymptotic setting of time series model. 
In the present paper, we formulate their result in terms of differential forms and obtain more 

concise form of their geometric condition. It is shown that a vanishing two form implies the 
existence of α -parallel priors on a given statistical model. Then we apply their arguments to non 
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i.i.d. cases. Generally speaking, it is extremely difficult to deal with non i.i.d. cases theoretically on 

prior selection. Even in the autoregressive moving average (ARMA) models [6], which is very 

fundamental and elementary time series model, prior selection has not been discussed theoretically so 

much. In the present paper, we focus on the Bayesian estimation of the spectral density of stationary 

Gaussian time series models according to Komaki [12]. Technically, it makes the problem more 

tractable and formally analogous arguments proceed to some extent. 

After the extension of i.i.d. arguments to the above setting, as a nontrivial example we 
investigate the ARMA models, where information geometrical quantities are explicitly calculated [15, 

12]. Thus, we obtain the explicit form of the trace of curvature two form in the ARMA models. As a 
consequence, we show that there exists no α -parallel prior except for the Jeffreys prior in the 

ARMA models. 

Structure of the present paper is as follows. First, an α -parallel prior on the statistical model 

manifold is defined and some necessary and sufficient conditions of the existence are reviewed. Then, 
we define the trace 2-form and another necessary and sufficient condition is given. Then, we 

consider Bayesian estimation of unknown spectral densities and extend the i.i.d. arguments to 
stationary Gaussian time series. As a typical example, we take the ARMA model manifolds and 

calculate the trace 2-form, which is written in a very simple form. Finally, we mention the 
consequence of the main result, mainly from the statistical viewpoint. 

 

2  Alpha parallel prior and trace 2-form 

         In the statistical model manifolds of dimension d, the affine volume element is defined by d-

form (differential form of degree d). When model manifolds have good properties, such a volume 

element can be regarded as an extension of the invariant measure, which yields a prior distribution 

on the parameter space. Here we briefly review the above argument according to Takeuchi and 

Amari [18]. 

Let us consider the d-dimensional orientable smooth manifold M with an affine connection 

∇. We shall say that an affine connection ∇ is locally equiaffine if around each point x of M 

there is a parallel volume element, that is, a nonvanishing d-form ω such that ∇ω = 0 on a 

neighborhood of each x. 

Definition 1.  By an equiaffine connection ∇ on M we mean a torsion-free affine connection that 

admits a parallel volume element ω on M. If ω is a volume element on M such that ∇ω = 0, 

then we say that (∇, ω) is an affine structure on M. 

Now we assume that a statistical model manifold is simply connected. Then, for locally 

equiaffine connection ∇, there exists a volume element ω defined on M such that ∇ω = 0 on M. 

In a statistical model manifold }R,0)|(,1)|(:)|({: ∫ ⊆Θ∈≥== d
xpdxxpxpM θθθθ , for an 

arbitrary α ∈ R fixed, a (symmetric) affine connection 
)(α
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where ij
g  is the inverse matrix of the Fisher metric ijg , l := log p(x| θ) denotes the log 

likelihood function and E[ ] denotes the expectation with respect to the observation x (see, e.g., 

Amari and Nagaoka [3] for details). Note that we used Einstein’s summation convention. It is 

shown that
)(α

∇ is equiaffine for some 0≠α  if and only if it is equiaffine for all R∈α  [18]. Thus, 

we shall say that a statistical model manifold M is statistically equiaffine if the above equivalent 

conditions are satisfied. In the statistically equiaffine manifolds, we may represent the α-parallel 

volume element ω as 

dθθθπω dd)( 1 ∧∧= L  

for a certain coordinate dd R),,( 1 ⊆Θ∈= θθθ K . Since π  is positive on the whole manifold, we 

take this as a prior distribution on the parameter space Θ . 

Definition 2.  In a statistically equiaffine manifold, for fixed α ∈ R, we call the above form of π  

an α -parallel prior. 

Note that it could be an improper prior. For properties of α -parallel prior, see Takeuchi and 

Amari [18]. When α  = 1, 1-parallel prior is so-called “MLE prior” proposed by Hartigan [10]. 

We also note that there always exists a 
)0(

∇ -parallel  volume element d
g θθθω dd)( 1 ∧∧∝ L , 

where g  is the determinant of the Fisher metric, the invariant volume element in a Riemannian 

manifold ),( ijgM . This prior distribution )(θπ g∝  is called the Jeffreys prior, well-known in 

Bayesian statistics. As Jeffreys himself pointed out, it is not necessarily reasonable to adopt the 

Jeffreys prior as an objective prior in a higher dimensional parametric model. (See, for example, 

Robert [16] and references therein.)  

Now we consider the necessary and sufficient condition that there exists an α -parallel prior 

( 0≠α ) on the statistical model manifold. Hartigan derived the following condition 

)()(log θθπ jj q=∂ ,    ijk

e
ik

j gq ;

)(

)( Γ=θ , 

which is a necessary and sufficient condition for the existence of the MLE prior. Later, Takeuchi 

and Amari pointed out the above condition is invariant under reparametrization and they derived 

more geometrical condition, that is, 

0=∂−∂ ijji TT ,  kl

ikli gTT =: , 

is a necessary and sufficient condition that there exists an α -parallel prior ( 0≠α ).  

In the present paper, we take another form of the above condition. Before proceeding, we 
introduce some notions like the connection 1-form and the curvature 2-form (for general 

definitions of them, see, e.g., Kobayashi and Nomizu [11]). For simplicity, we adopt concise 

definitions using the coordinate vectors








∂

∂
=∂

jj
θ

: . (Note that usual statistical model manifolds 

are covered with only one coordinate system.) The connection 1-form is defined by ik

ijj
k θω d: Γ= , 

where { }k

ijΓ are affine connection coefficients and { }iθd  are dual basis of coordinate vectors, i.e., 
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l

mm

l δθ =∂ )(d . Note that { }j
kω  are 2d  1-forms. Then, so-called curvature 2-form is defined by 

j
l

l
k

j
k

j
k ωωω ∧+=Ω d: . Now we define the trace of the curvature form, the sum of the diagonal 

components. 

Definition 3. We call  j
jΩ=Ω=Ξ :Tr:  as a trace 2-form in the present paper. 

For another coordinate system, say { }kξ , we obtain the following transformation rule.  
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Thus, it is easily seen that a trace 2-form is invariant under the coordinate transformation. In 
general, if we take an invariant polynomial f on matrices like AAAf det,Tr)( = , then the 

corresponding differential form )(Ωf  becomes an invariant differential form over the manifold. 

In other words, such differential forms are always independent of parametrization. 

,d
2

)(
T

αα −=Ξ  

where i

iTT θd:= , which is called the Tchebychev form in affine geometry [17]. We obtain the 

following proposition.  

Theorem 4.  In the statistical model, for fixed α , there exists an α -prior distribution if and only 

if 0)( =Ξ α  on the model. 

The above statement is one geometrical representation of Hartigan’s condition using 

differential forms, which yields a coordinate free expression. For trace 2-form with respect to α  

connection, the parameter α  is only a multiplication factor. Thus we also obtain the following. 

Corollary 5.  In the statistical model, there existsα -prior distributions for all α  if and only if the 

Tchebychev form is closed, 0d =T  on the model. 

The above statement is the same one derived by Matsuzoe et al. (Proposition 3.2 in [13].) 

 

3  Trace 2-form of the ARMA(p,q) model 

In the Bayesian analysis of the time series model, it is a considerable obstacle to select an 

objective prior that is based on a certain justification. In econometrics, we often see the Bayesian 
analysis using an ad hoc prior (see, e.g., Zellner [21]). Even in the most simple model like the 

AR(1) model, objective prior selection is very challenging as is discussed in Phillips [14]. 

Seeking for an objective prior based on a certain theoretical argument, Berger and Yang [4] 

focused on the reference prior, which was proposed first by Bernardo [5] in the i.i.d. cases. They 
managed to derive the explicit form of the prior in the AR(1) model, but it seems more difficult to 

obtain the reference prior when 2≥p . 
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Here, we deal with ARMA models as an application of the above theory. First we define 
geometrical quantities in a parametric family of spectral densities according to Amari [2]. Then, 

we calculate information geometrical quantities on the ARMA models by using the root 
coordinate. As a result, we obtain the explicit form of the trace two form in the ARMA models. 

 

3.1 Information geometry on the spectral densities 

When we have time series data subject to an unknown stationary Gaussian process, the 

estimation of the spectral density is equivalent to that of the original stochastic process. Although 

we do not enter the general theory of the estimation of spectral densities, the Fisher metric on the 

parametric families of spectral densities is given below. The Fisher metric of a model specified by 
a parametric family of spectral densities }:)|({: Θ∈= θθωSM  , where θ  is a finite-dimensional 

parameter, is defined by 

)|(log)|(log
4

d
,: θωθω

π

ω

θθ

π

π
SSgg jijiij ∂∂=








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∂

∂

∂
= ∫−                                               (1) 

(Amari [2]). 

The above metric is defined such that it coincides with the usual Fisher information as the 
sample size goes to infinity. Other geometrical quantities are defined in the same manner. For our 

purpose, we only present the following tensor. 

∫ ∂∂∂= )|(log)|(log)|(log
2

d
: θωθωθω

π

ω
SSST kjiijk . 

Note that α -connection is determined by ijg , ijkT  like i.i.d. cases.  

We expect that asymptotic theoretical arguments based on the information geometrical 

quantities like Fisher metric (1) in the i.i.d. cases are applied to parametric models of stationary 
Gaussian processes with large length of time series data. Thus, from the viewpoint of the prior 

selection, it is significant to investigate the existence of the α -parallel prior on the parametric 

models of spectral densities. In the present paper, as a typical model of stationary time series, we 

deal with the ARMA(p, q) model. It is already known that there exists the α -parallel prior on the 

AR(p) models (ARMA(p, 0) model) and MA(q) models (ARMA(0, q) model) because they are 

e(m)-flat (affine connection vanishes). However, as far as the author knows, it has not been 
investigated yet in the proper ARMA(p, q) models (p, q > 0). 

3.2 Geometrical quantities on the ARMA(p,q) model manifold 

Here, we briefly summarize the ARMA(p, q) model.  It consists of random variables { }tX  

satisfying  

∑ ∑
= =

−− +−=
p

i

q

j

jtjitit WbXaX
1 0

,  
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where { }tW  is a Gaussian white noise with mean 0 and variance 2σ . For basic notions and 

notations concerning the ARMA(p, q) model see [6].  

The explicit form of the spectral density of the ARMA(p, q) model is  

,
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where )(zLa  and )(zM b  are the characteristic polynomials and satisfy  

,)()( tbta WZMXZL =  

where Z  is the shift operator that is defined by 1+= tt XZX  and 
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Now we adopt another coordinate system. Equation pp

pp

a

p
azazazzLz ++++= −

−
1

1

1)( L  is a 

polynomial of degree p and has p complex roots, pzzz ,,, 21 K (Note that 1|| <iz  from the 

stationarity condition). Since paaa ,,, 21 K  are all real, it consequently has the conjugate roots. 

Thus, these roots are rearranged in the order like, ,C,,,,, 211 ∈+ sss zzzz KK  

,R,, 212 ∈++ rss zz K prs =+2 and jjs zz =+ ( sj ≤≤1 ) (for simplicity, we assume that there are 

no multiple roots). The roots pzzz ,,, 21 K  correspond to the original parameter paaa ,,, 21 K  one-

to-one. Likewise, qq

qq

b

q
bwbwbwwMw ++++= −

−
1

1

1)( L  is a polynomial of degree q and has q 

complex roots, qwww ,,, 21 K . Note that 1|| <iw  from the invertibility condition. The same 

argument follows. Now we introduce a coordinate system ),,,( 10 qp+= θθθθ K  using these roots  
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The formal complex derivatives are defined by  
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where x and y are both real part and imaginary part of θ. Since the conjugate complex 

coordinates iθ and iθ correspond to ix  and iy  one-to-one, each quantity is evaluated in the 

original real coordinate if necessary. (See, for example, Gunning and Rossi [7].)  

In the coordinate system given above, the Fisher metric on the ARMA(p, q) model IJg  is 

written in the following way:  
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where iε  is defined by  
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In the above coordinate, we easily obtain 
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3.3 Trace 2-form of the ARMA(p,q) model 

Now we investigate the existence of the α -parallel prior for the ARMA(p, q) model by 

calculating its trace 2-form. The calculation of trace 2-form seems straightforward in a specific 
model, but we emphasize that it is not trivial in higher dimensional models. First we show the 

explicit form of the inverse matrix of the Fisher information IJg , which is given by 

,0,)(2 002000 === ii
ggg θ  

and  

.
)()(

)1()1()1(

∏ ∏
∏ ∏

≠ ≠

≠ ≠

−−

−−−
=

hl ml

lmlh

hl ml

hlmlhm

hm

mhg
θθθθ

θθθθθθ
εε  

Dealing with the summation of the terms multiplied with the inverse matrix like ∑ kj

jk

ijk gT
,

 is 

very cumbersome. By making use of some calculation techniques developed by author [19, 20], 

we obtain the following result. 

Theorem 6.   For the ARMA(p, q) model, the trace 2-form is given by  

,
)1(

dd
4

1 1
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)( ∑∑
= = −

∧
−=Ξ
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i
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j ji

ij

wz
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where 1|| <iz and 1|| <jw . 

From theorem 6, we see that the trace 2-form on the ARMA(p, q) model manifold vanishes 

when p = 0 or q = 0. It implies that there exist α -parallel priors on the AR(p) model and the 
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MA(q) model. On contrary, there is no α -parallel prior ( 0≠α ) in the proper ARMA(p, q) model 

(i.e., p > 0 and q > 0). 

4  Concluding Remarks 

 

We introduced the trace 2-form as a geometrical quantity on the statistical model. Until 
now, statistical applications of differential forms have not been considered so much, while other 

geometrical notions like metric, geodesics, curvature have been investigated considerably [1, 3]. 

Although our approach to the existence of the α -parallel prior is not outstanding, and equivalent 

to others already known, but it implies the possibility of applying the differential form to the 

statistical methods mainly related to the global properties of the statistical model. 

Practically more and more complicated statistical models requiring numerical computation 

appear in various fields and the model manifolds may have nontrivial topology or other global 

properties. It is known that the differential form is a useful tool to analyse the global properties of 

differential manifolds. Thus, further development of the analysis of statistical manifolds based on 

the differential form is expected to become important. 
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