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Abstract: This paper is devoted to study the 1D model of invasive avascular turoaitty which takes into account cell division,
death, and motility, proposed by Kolobov and collaborators in 2009. Fiesgxamine the existence and uniqueness of the solution to
this model. Second, we studied qualitatively and numerically the traveling s@utions. Finally, we show some numerical simulations
for the cell density and nutrient concentration.
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1 Introduction representation of an avascular tumor with necrotic region
in the center. The mathematical tool that models the

Cancer is a leading cause of death worldwide and
accounted for 7.6 million deaths (around 13% of all Avasculaigl }-
deaths) in 2008,1]. On the other hand, in Brazil, the wmorcells «—~ }_
National Cancer Institute (NCI) released estimates of f

cancer incidence for 2012, which will be valid also for necrotic

\ -
/ normal tissue }—

2013. They point to the occurrence of approximately regiel
518,510 new cases of cance?].[The tumors principals live cells «—— §_
in males are due to non-melanoma skin cancer and v

death cells

prostate cancer. For females stand out from the blood vessel }—
non-melanoma skin cancer and breast cancer.

It is considered a tumor as a colony of cancer cells Fig. 1: Schematic illustration showing the 2D avascular tumor.
(live and dead) that grow uncontrollably, surrounded by
normal tissue. Among the various types of tumors, thegrowth of tumors are the partial differential equations of
most common are: solid tumors and invasive tumors, theparabolic type. In the case of invasive avascular tumors
difference is in the consistency of the expansive powerare considered cell division, death and motility, as
Solid tumors grow expanding as a compact mass withessential variables in the dynamics of cell density and
well-defined edge between cancer cells and normal tissuautrient concentration governed by reaction-diffusion
however, the invasive tumors grow rapidly expanding butequation.
the fraction of cancer cells in the tissue is low. The modeling of the avascular tumor growth is the
The tumors are generally vascular, i.e, there are a networkirst step towards building fully vascularized tumor
of blood vessels in it, with great possibilities to develop models. Some references regarding the qualitative
angiogenesis. Initially these tumors can be considerednalysis of the dynamics of solid avascular tumor growth
without the presence of blood vessels, which are calledcare found in B, 4]. Sherratt and Chaplairb] formulate a
avascular tumors. Thus, the concentration of nutrientsmew mathematical model for avascular tumor growth.
(oxygen) diffuses to tumor cells from remote enough Ferreira et al. §] use the equation of reaction-diffusion
blood vessels. In Figure 1 we showed a schematiamodel for the growth of a tumor avascular with numerical
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results. Jiang et al7] provide a multiscale model (levels: This model was obtained with the following
cellular, subcellular and extracellular) for growth of assumptions:

avascular tumors with numerical results. Roose e8hl [
show an review outline of a number of illustrative normal tissue. do not prevent the movement of live
mathematical models describing the growth of avascular I d lif pt'

tumors. Bresch et al9] reported a viscoelastic model for tumor cells and prolitera '9”' ] o

the growth of a avascular tumor that describes the 2.The growth of the tumor, in normal tissue, is without
evolution of three components: sane tissue, cancer cells the development of capillary networks.

1.The surroundings of the tumor, corresponding to

and extracellular medium. Kolobov et all(] study the 3.Although cell division requires a large variety of

autowaves in a model of invasive avascular tumor growth  nutrients, this model assumes that the oxygen is the

with 1-d numerical results. Again, Bresch et all] only nutrient and, the missed him, causes the death of

studied the growth an solid avascular tumor in two and  live tumor cells.

three dimensions with a focus on numerical methods. 4.The diffusion of oxygen begins in blood vessels distant
This work continues the studies of Kolobov et dl0] from the tumor, as shown in Figure 1.

adding the part of mathematical analysis: existence and
uniqueness of the solution, and continues dependence of
the initial data. Finally, we present other numerical 3 Mathematical analysis
results, also.
The organization of this work is as follows. In Section In this section we study the existence and uniqueness of
2 we present the mathematical model for invase avasculathe solution, and continues dependence of the initial data.
tumor growth. Section 3 is devoted to show the problemAlso, we analyze qualitatively the solutions traveling wav
(1) - (2) is well posed in a suitable function space and, intype.
particular we study the traveling waves. Finally, in Settio
4, we present some numerical simulations for the problem
1) - (2). 3.1 Well-posed problem

We consider the systent)(with initial conditions
2 The model a(x,0) = ap(x) >0, s(x,0) =s(x) >0, VxeR. (3)

According Kolobov et al. in10] the system of nonlinear For 1< p < o we define the Banach spakg by
partial differential equations that models the growth of an -

one-dimensional invasive avascular tumor is given by theXp = {U: R — R; uis bounded, uniform continuous and

reaction-diffusion equation ueLP(R)}
a = Dadyc— P()a+Ba, —0 <X < 4, t>0 endowed with the norm
(1) Fo 1/p
Julp =suplu(ol + ([ ur)Par) .
S = DsSix—ga, —00 < X< 400, t>0 TeR —o
subject with the boundary conditions For p > q we have the continuous inclusioN™9(R) C
(a,s) — (0,0) whenx — —oo ) Xp. Now, letn € N and denote by<,(3”) the Banach space
(a,s) — (0,1) when x — 4o, @ X5V = {ueXp:u, 0", u™ e LP(R)} with the norm

where

n .
| . Ul = 3 o, ue x5,
a=a(x,t) : cell density (density of live tumor cells) =

s= s(xt) : nutrient concentration The equation 1) joint with (3) can be rewrite in the

and the parameters are defined by spaceX = X, x Xp as an abstract evolution equations
D5 : diffusion coefficient of tumor cells U = Au+ F(u)
Ds : diffusion coefficient of oxygen u(0) = uo, (4)

B : division rate of live cells ) . . ) (
P.. - maximal death rate whereF : X — X is a nonlinear function given by (u) =
e . . (—P(s)a,—qga), u= (a,s), Ugp = (a9, ) andA: D(A) C
Serit - critical nutrient concentration X — X is given by
€ : characteristic deviation of from st @
q: nutrient consumption rate of live tumor cells D(A)={(as) e X ase X", (a5s) = (0,0),x— —o,
. Pm S— Scrit (a? S) — (07 1)7X — +°°}
P(s) : cell death rateP(s) = ?[1—tank(T)]. Au= (Dadyy+ Ba, DsScy).-
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Using variation of constants formula, the solution of
(4) is given by

t
u(t) = *up+ / AR U(T))dT, t =0 (B)
0

where

(Tat)%0) (%) = [ Fa(tx-Y)so(y)dy
R

The functionsl; and > are the heat kernel associated
with the parabolic equationg = Dgaxx and & = DsSx
respectively.

Note that the equationsay = Djaxx + Ba and
s = Dssyx generate the linear semigroupgt) and Ty (t),
respectively.

Thus, the equatiorbf, fort > 0, take the form

t
a(-t,uo) = Ta(t)ag — /Tl(t _1)P(s(1))a(T)dr,

. (6)

S(-,t,Uo) = Ta(t)S0 — q/Tg(t _1)a(1)dr
0

Definition 1.We say that the function:|0, +) — X is a
mild solution of(4) if u € C([0, ), X) and satisfie$5).

We have the following result on existence and
unigueness ofl)-(2).

Theorem 1Assume that F is global Lipschitz continuous.
For any w = (a9,%) € X the system(1) with the
boundary conditions(2) has a unique mild solution
u(x,t,ug) = (a(xt,up),s(x,t,up)) for all t > 0 with
u(-,0, Up) = Uo.

Proof. ~ From the definiton of P and
F(u) = (—P(s)a,—qa), it is not difficult to see that there
is L > 0 such that||F(u) — F(v)|| < L|ju—v|| for all

For any(to, ) € [0,%0) x X we have

ITt)(@) =T (o) @l < [TOE-T Ol +
ITt)@—T(to)w|

From the inequality &), follows thatT (t)@ is continuous
at (to, @), and thus the solution(x,t, ) of (1) depends
continuously on respect to initial data.

From the definition of {T(t) : t > 0} it follows
immediately that
i) T(0)up = u(-,0,up) = Up.
i) T(ta+1t2)ug = T(t1) T (t2)uo, Vt1,t2 > O, this property is
a consequence of uniqueness of solutionldf (
iii) The map[0,e) x X > (t,ug) — T(t,ug) = u(t,ug) € X
is continuous, this follows of inequality).

®)

3.2 Traveling waves

A travelling wave of (), (2) is a solution of the type
(a(xt),s(x.1)) = (A(€),S(¢)) € C¥(R) x C2(R) where
& = x—ct, the functionsA and S are the profile of the
travelling wave and € R is the speed of propagation of
the wave. The existence of this kind of solutions can be
found in [12-14] among others.

The functionsA and S reduce system1j in the
following systems of ODEs of second order

{

where—o < & < +00, with the boundary conditions

{

whereo is a constant corresponding to the limit oxygen
concentration af — —oo.

Note that the pointg0,0) and (0,1) are stationary
points of @). Now, linearizing the systen®) around the
stationary point0, o) we have

{

where —co < & < +o0. Also, linearizing the systenm9]
around the stationary poi®, 1) we have

DaA"(&)+CA (&) —P(SA(§)+BA({) =0

D:S/(€) +¢S(¢) —qad) =0

(A,S)(&) = (0,0) asé — —co

(A,9)(&) — (0,1) asé — +oo, (10)

DaA” (§)+CA(&)+(B—P(0))A-(¢)

4 0
DsS’ (§)+cS (§) —gA-(§) =0

(11)

u,v € X. Thus, as a consequence of the abstract results

of [12)], there exists a unique mild solution fak)( O

Now, define the family of operatorsT (t) : t > 0} on
X by

(T)p)(x) =" o(x)
=u(xt, Q)
= (a(xt,9),s(x,t,9)), VXER, t > 0.

(7)

{DaA1(5)+C/’~’+(5)+BA+(f) Y

DsS{ () +¢8.(¢) AL () =0

where—co < & < +oo.

Introducing a vector with the components = A_,
xo=A_,X3=S_,x4=98, the system1) can be written
as a system of ODEs of first order

X = AX (13)
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where
0O 100 ki =k, k3 =k;
POB _c o 0
A= dd 0a 0 1 ’ (14) _C(DS—ZDa)—i—DS\/A+
4 0 o0-¢ 20Da
T
X = (X1, X2, X3, %a) - ¢(Ds—Da) (c+ VAT) — 2BD,Ds
Similarly, puttingy; =A,,y>=A,,y3=S;,y2=S,, the ki = 2qD3 (19)
system {2) can be written as a system of ODEs of first
order ~ 2Dq
y==zy (15) c+ VAT
where 1
0 1 00
_ _D% _DLa 00 ~ C(Ds—2Da)—DsvA*
-1 0 001} (16) 29D,
& 0 0-g
° ° ¢(Ds—Dg) (c—VA+) —2BD,D
y= (Y1»YZ>YB»Y4)T ka ( S a)( 2qD2 ) aws
The matriceg\ and= have eigenvalues respectively 4 2
2D,
_ _ (3 _ —CtVA~ _
= 0, 1 = po Ha= c+ VAT
S a (17)
oyt — ¢ —eEvAT 1
u1:U1aN2:“27U374:T ’ )
a Thus, for the system1@), we have the following linear
where independent solutions
A~ =c?+4(P(0)—B)D, (€)= ke e =14 (20)
At =c?—4BD, ,
and the corresponding eigenvectors are given, respeagtivel From @0) we ha"egl'ﬂxl(a = ki, %(8) = ket
by D and x4(&) = k;e%¢ are unbounded solutions when
k; = (0,0, 170)T7 k, = (07077£,1)T & —» —o if ¢ > 0 and P(o) > B respectively. And,
¢ x3(€) = ky €3 ¢ is bounded whed — —co.
_ ¢(Ds—2Da) +DsvA~ If u5 is areal positive (negative) number the stationary
29Da point (0,0) of (11) is saddle (stable) node andf is a
complex number the stationary poif@, o) of (11) is a
Da {c(c— VA~-)+2(P(o)—-B) Ds} stable focus.
- And for the system15), we have the following linear
ks = 2 18) yS
s 2903 (18) independent solutions
2D, +
_ § () =kedé i=1....4 21
C+\/F yl(é) I I ) ) ( )
From Q1) we have limyi(&) =k, lim y»(&)=0and
1 £ too £ too
¢(Ds— 2Da)— DsvV/A~ the other solutiong; () = k; e ¢, i = 2,3 also remains
- 2qD bounded wheg — 4+ if ¢ > 2,/BD,. Thus, we have that
a the stationary point0, 1) of (12) is either a stable node or
a stable focus.
(-C"‘ VA7)|:—C(DS_2D3)+D3\/A7:|
ks = 4907 |
4 Numerical results
2D,
- cr VA In this section we will find numerically by finite difference
method, a solution of type traveling wave, and full solution
1 of our problem {) - (2).
@© 2013 NSP
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4.1 Dimensionless equations

The units of measurements for the cell density and

nutrients concentration is, respectively, 0015 ¢

clcell/cm®] and s[mol/cn?).

The values and units of measurement of the parameters ar

taken from Kolobov et al.]0], 0.01

Da=25x108cn?/g, Ds=25x 10 °[cn?/s| A
B=10"[1/g, Pn=02x10"%[1/g
Serit = 0.3 x 10~ /[mol/cm?], &= 10~%[cm®/mol] 0.005 |

q=10"2%mol/s-cell.
The characteristic scales are:

Length scaletg=5x 1072 [cm| 000 500 0 500 1000

Time scale To = 1P [g]

Density scale amax= 10" [cell/cn] Fig. 2: Cell density profileA(£).
Concentration scalesyax = 10~ [mol/cn?).

The independent and dependent dimensionless variables

are given by
X" =X/Lo, t* =1t/Tp, @ = a/@max, S = S/Smax ir
We have used the following dimensionless data:
D; =10, D;=10% B*=101, P;=0.2, s, =0.3, 08

=102, =1, Cnin=2V2, C=Cmin, 0=0.18

Henceforth, the equations are written in dimensionless

form. oer

4.2 Traveling waves 04l

Rewriting the equationd] in the following form

A" =piA+q1(SA (22) Ojo};o 500 0 500 1000
S = pS + A g
where Fig. 3: Nutrient concentration profil(&).

c 1

PL="—p QS = D (P(S-B),

p ¢ q d

2 — — < > 2 = 5 H H

Ds Ds 4.3 Numerical solution

For the numerical solution of probleni)(- (2) we used

joint with the boundary conditions the classic and unconditionally stable Crank-Nicolson

A(-L)=0=A(L) M_ethod. The domairf—L,L) is discretized with u_niform
S-L)=o, SL)=1 (23)  grid of N = 1200 elements antl = 2000. The sizes of
- - spatial and temporal steps are, respectiiely, 2L /N and
whereé € (—L,L) andL > 0 is large. k =vph/c, wherevy = 0.26. The initial condition is given

Taking L = 1000 and using finite difference method by gaussian functioa(x,0) = 0.1e-0.9025% and constant
we have a numerical solutions for cell density and functions(x,0) = 1.

nutrient concentration which are showed in the Figare The asymptotic behavior of live cell density, at each
and3, respectively. point where it reaches its maximum value, is showed in
@© 2013 NSP
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the Figure4. Note that of stationary state is attained in
t =~ 200, i.e, in approximately.6 years. In Figur& and6

I )
0 50 100 150 200

Fig. 4: Asymptotic behavior of maximal live cell densiay

we showed, in 3D, the density profile of live tumor cells
and nutrient concentration profile, respectively, the fong

7 A

==
= 2@4

Fig. 6: The profile of nutrient concentration density for long-time

5 Conclusion

The problem of growth of an invasive avascular tumor,
one dimensional, is well-posed. Physically, we observe in
figures and in numerical simulations that the tumor grows
in the direction where there are nutrients (oxygen). It is

time. We note that at steady state, the density profile ofobserved that it is invasive and aggressive from the
live tumor cells approaches the solution of type travelingbeginning to about = 60 (2 years), immediately after a

wave, given, in the Figurg.

1500

1000
150 500
100 °
e 500 *

50 -1000
1500
0 -2000

Fig. 5: The profile of live cell density the long-time.

relaxation which is going to reach steady state, at
approximatelyt = 200 (65 years), where the density of
live tumoral cells is very low. The tumor grows because
the tumor cells die. Thus, the volume of necrotic region
increases.
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