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Abstract: This paper is devoted to study the 1D model of invasive avascular tumor growth, which takes into account cell division,
death, and motility, proposed by Kolobov and collaborators in 2009. First,we examine the existence and uniqueness of the solution to
this model. Second, we studied qualitatively and numerically the traveling wave solutions. Finally, we show some numerical simulations
for the cell density and nutrient concentration.
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1 Introduction

Cancer is a leading cause of death worldwide and
accounted for 7.6 million deaths (around 13% of all
deaths) in 2008, [1]. On the other hand, in Brazil, the
National Cancer Institute (NCI) released estimates of
cancer incidence for 2012, which will be valid also for
2013. They point to the occurrence of approximately
518,510 new cases of cancer, [2]. The tumors principals
in males are due to non-melanoma skin cancer and
prostate cancer. For females stand out from the
non-melanoma skin cancer and breast cancer.

It is considered a tumor as a colony of cancer cells
(live and dead) that grow uncontrollably, surrounded by
normal tissue. Among the various types of tumors, the
most common are: solid tumors and invasive tumors, the
difference is in the consistency of the expansive power.
Solid tumors grow expanding as a compact mass with
well-defined edge between cancer cells and normal tissue,
however, the invasive tumors grow rapidly expanding but
the fraction of cancer cells in the tissue is low.
The tumors are generally vascular, i.e, there are a network
of blood vessels in it, with great possibilities to develop
angiogenesis. Initially these tumors can be considered
without the presence of blood vessels, which are called
avascular tumors. Thus, the concentration of nutrients
(oxygen) diffuses to tumor cells from remote enough
blood vessels. In Figure 1 we showed a schematic

representation of an avascular tumor with necrotic region
in the center. The mathematical tool that models the

Fig. 1: Schematic illustration showing the 2D avascular tumor.

growth of tumors are the partial differential equations of
parabolic type. In the case of invasive avascular tumors
are considered cell division, death and motility, as
essential variables in the dynamics of cell density and
nutrient concentration governed by reaction-diffusion
equation.

The modeling of the avascular tumor growth is the
first step towards building fully vascularized tumor
models. Some references regarding the qualitative
analysis of the dynamics of solid avascular tumor growth
are found in [3, 4]. Sherratt and Chaplain [5] formulate a
new mathematical model for avascular tumor growth.
Ferreira et al. [6] use the equation of reaction-diffusion
model for the growth of a tumor avascular with numerical
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results. Jiang et al. [7] provide a multiscale model (levels:
cellular, subcellular and extracellular) for growth of
avascular tumors with numerical results. Roose et al [8]
show an review outline of a number of illustrative
mathematical models describing the growth of avascular
tumors. Bresch et al. [9] reported a viscoelastic model for
the growth of a avascular tumor that describes the
evolution of three components: sane tissue, cancer cells
and extracellular medium. Kolobov et al. [10] study the
autowaves in a model of invasive avascular tumor growth
with 1-d numerical results. Again, Bresch et al. [11]
studied the growth an solid avascular tumor in two and
three dimensions with a focus on numerical methods.

This work continues the studies of Kolobov et al. [10]
adding the part of mathematical analysis: existence and
uniqueness of the solution, and continues dependence of
the initial data. Finally, we present other numerical
results, also.

The organization of this work is as follows. In Section
2 we present the mathematical model for invase avascular
tumor growth. Section 3 is devoted to show the problem
(1) - (2) is well posed in a suitable function space and, in
particular we study the traveling waves. Finally, in Section
4, we present some numerical simulations for the problem
(1) - (2).

2 The model

According Kolobov et al. in [10] the system of nonlinear
partial differential equations that models the growth of an
one-dimensional invasive avascular tumor is given by the
reaction-diffusion equation










at = Daaxx−P(s)a+Ba, −∞ < x<+∞, t > 0

st = Dssxx−qa, −∞ < x<+∞, t > 0
(1)

subject with the boundary conditions

(a,sx) → (0,0) when x→−∞
(a,s) → (0,1) when x→+∞,

(2)

where

a= a(x, t) : cell density (density of live tumor cells)

s= s(x, t) : nutrient concentration

and the parameters are defined by

Da : diffusion coefficient of tumor cells

Ds : diffusion coefficient of oxygen

B : division rate of live cells

Pm : maximal death rate

scrit : critical nutrient concentration

ε : characteristic deviation ofs from scrit

q : nutrient consumption rate of live tumor cells

P(s) : cell death rate. P(s) =
Pm

2
[1− tanh(

s−scrit

ε
)].

This model was obtained with the following
assumptions:

1.The surroundings of the tumor, corresponding to
normal tissue, do not prevent the movement of live
tumor cells and proliferation.

2.The growth of the tumor, in normal tissue, is without
the development of capillary networks.

3.Although cell division requires a large variety of
nutrients, this model assumes that the oxygen is the
only nutrient and, the missed him, causes the death of
live tumor cells.

4.The diffusion of oxygen begins in blood vessels distant
from the tumor, as shown in Figure 1.

3 Mathematical analysis

In this section we study the existence and uniqueness of
the solution, and continues dependence of the initial data.
Also, we analyze qualitatively the solutions traveling wave
type.

3.1 Well-posed problem

We consider the system (1) with initial conditions

a(x,0) = a0(x)> 0, s(x,0) = s0(x)> 0, ∀x∈ R. (3)

For 16 p< ∞ we define the Banach spaceXp by

Xp = {u : R→ R; u is bounded, uniform continuous and

u∈ Lp(R)}
endowed with the norm

‖u‖p = sup
τ∈R

|u(τ)|+
(

∫ +∞

−∞
|u(τ)|pdτ

)1/p
.

For p > q we have the continuous inclusionW1,q(R) ⊂
Xp. Now, let n ∈ N and denote byX(n)

p the Banach space

X(n)
p = {u∈ Xp : u′,u′′, · · · ,u(n) ∈ Lp(R)} with the norm

‖u‖(n)p =
n

∑
j=0

‖u( j)‖p, u∈ X(n)
p .

The equation (1) joint with (3) can be rewrite in the
spaceX = Xp×Xp as an abstract evolution equations

{

ut = Au+F(u)
u(0) = u0,

(4)

whereF : X → X is a nonlinear function given byF(u) =
(−P(s)a,−qa), u = (a,s), u0 = (a0,s0) and A : D(A) ⊂
X → X is given by

D(A) = {(a,s) ∈ X : a,s∈ X(2)
p , (a,sx)→ (0,0),x→−∞,

(a,s)→ (0,1),x→+∞}
Au= (Daaxx+Ba,Dssxx).
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Using variation of constants formula, the solution of
(4) is given by

u(t) = etAu0+

t
∫

0

e(t−τ)AF(u(τ))dτ , t > 0 (5)

where

etA =

(

T1(t) 0
0 T2(t)

)

(T1(t)a0)(x) = eBt
∫

R

Γ1(t,x−y)a0(y)dy

(T2(t)s0)(x) =
∫

R

Γ2(t,x−y)s0(y)dy.

The functionsΓ1 and Γ2 are the heat kernel associated
with the parabolic equationsat = Daaxx and st = Dssxx
respectively.

Note that the equationsat = Daaxx + Ba and
st = Dssxx generate the linear semigroupsT1(t) andT2(t),
respectively.

Thus, the equation (5), for t > 0, take the form

a(·, t,u0) = T1(t)a0−
t

∫

0

T1(t − τ)P(s(τ))a(τ)dτ ,

s(·, t,u0) = T2(t)s0−q

t
∫

0

T2(t − τ)a(τ)dτ

(6)

Definition 1.We say that the function u: [0,+∞)→ X is a
mild solution of(4) if u ∈C([0,∞),X) and satisfies(5).

We have the following result on existence and
uniqueness of (1)-(2).

Theorem 1.Assume that F is global Lipschitz continuous.
For any u0 = (a0,s0) ∈ X the system(1) with the
boundary conditions(2) has a unique mild solution
u(x, t,u0) = (a(x, t,u0),s(x, t,u0)) for all t > 0 with
u(·,0,u0) = u0.

Proof. From the definition of P and
F(u) = (−P(s)a,−qa), it is not difficult to see that there
is L > 0 such that‖F(u) − F(v)‖ 6 L‖u− v‖ for all
u,v ∈ X. Thus, as a consequence of the abstract results
of [12], there exists a unique mild solution for (1). �

Now, define the family of operators{T(t) : t > 0} on
X by

(T(t)φ)(x) = etAφ(x)
= u(x, t,φ)
= (a(x, t,φ),s(x, t,φ)), ∀x∈ R, t > 0.

(7)

For any(t0,φ0) ∈ [0,∞)×X we have

‖T(t)(φ)−T(t0)φ0‖6 ‖T(t)φ −T(t)φ0‖+
‖T(t)φ0−T(t0)φ0‖

(8)

From the inequality (8), follows thatT(t)φ is continuous
at (t0,φ0), and thus the solutionu(x, t,φ) of (1) depends
continuously on respect to initial data.

From the definition of{T(t) : t > 0} it follows
immediately that
i) T(0)u0 = u(·,0,u0) = u0.
ii) T(t1+ t2)u0 = T(t1)T(t2)u0, ∀t1, t2 > 0, this property is
a consequence of uniqueness of solution of (1).
iii ) The map[0,∞)×X ∋ (t,u0) 7→ T(t,u0) = u(t,u0) ∈ X
is continuous, this follows of inequality (8).

3.2 Traveling waves

A travelling wave of (1), (2) is a solution of the type
(a(x, t),s(x, t)) = (A(ξ ),S(ξ )) ∈ C2(R) ×C2(R) where
ξ = x− ct, the functionsA and S are the profile of the
travelling wave andc ∈ R is the speed of propagation of
the wave. The existence of this kind of solutions can be
found in [12–14] among others.

The functions A and S reduce system (1) in the
following systems of ODEs of second order

{

DaA′′(ξ )+cA′(ξ )−P(S)A(ξ )+BA(ξ ) = 0
DsS′′(ξ )+cS′(ξ )−qA(ξ ) = 0 (9)

where−∞ < ξ <+∞, with the boundary conditions
{

(A,S)(ξ )→ (0,σ) asξ →−∞
(A,S)(ξ )→ (0,1) asξ →+∞,

(10)

whereσ is a constant corresponding to the limit oxygen
concentration atξ →−∞.

Note that the points(0,σ) and (0,1) are stationary
points of (9). Now, linearizing the system (9) around the
stationary point(0,σ) we have

{

DaA′′
−(ξ )+cA′

−(ξ )+(B−P(σ))A−(ξ ) = 0
DsS′′−(ξ )+cS′−(ξ )−qA−(ξ ) = 0 (11)

where−∞ < ξ < +∞. Also, linearizing the system (9)
around the stationary point(0,1) we have

{

DaA′′
+(ξ )+cA′

+(ξ )+BA+(ξ ) = 0
DsS′′+(ξ )+cS′+(ξ )−qA+(ξ ) = 0 (12)

where−∞ < ξ <+∞.
Introducing a vector with the componentsx1 = A−,

x2 = A′
−, x3 = S−, x4 = S′−, the system (11) can be written

as a system of ODEs of first order

ẋ = Λx (13)
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where

Λ =









0 1 0 0
P(σ)−B

Da
− c

Da
0 0

0 0 0 1
q

Ds
0 0− c

Ds









,

x = (x1,x2,x3,x4)
T.

(14)

Similarly, puttingy1 = A+, y2 = A′
+, y3 = S+, y4 = S′+, the

system (12) can be written as a system of ODEs of first
order

ẏ = Ξy (15)

where

Ξ =









0 1 0 0
− B

Da
− c

Da
0 0

0 0 0 1
q

Ds
0 0− c

Ds









,

y = (y1,y2,y3,y4)
T.

(16)

The matricesΛ andΞ have eigenvalues respectively

µ−
1 = 0, µ−

2 = − c
Ds

, µ−
3,4 =

−c±
√

∆−

2Da

µ+
1 = µ−

1 , µ+
2 = µ−

2 , µ+
3,4 =

−c±
√

∆+

2Da

(17)

where

∆− = c2+4(P(σ)−B)Da

∆+ = c2−4BDa

and the corresponding eigenvectors are given, respectively,
by

k−
1 = (0,0,1,0)T, k−

2 = (0,0,−Ds

c
,1)T

k−
3 =

































−c(Ds−2Da)+Ds
√

∆−

2qDa

Da

[

c
(

c−
√

∆−)+2
(

P(σ)−B
)

Ds

]

2qD2
a

− 2Da

c+
√

∆−

1

































(18)

k−
4 =

































−c(Ds−2Da)−Ds
√

∆−

2qDa

(

−c+
√

∆−)
[

−c
(

Ds−2Da
)

+Ds
√

∆−
]

4qD2
a

− 2Da

c+
√

∆−

1

































k+
1 = k−

1 , k+
2 = k−

2

k+
3 =

































−c(Ds−2Da)+Ds
√

∆+

2qDa

c
(

Ds−Da
)(

c+
√

∆+
)

−2BDaDs

2qD2
a

− 2Da

c+
√

∆+

1

































(19)

k+
4 =

































−c(Ds−2Da)−Ds
√

∆+

2qDa

c
(

Ds−Da
)(

c−
√

∆+
)

−2BDaDs

2qD2
a

− 2Da

c+
√

∆+

1

































Thus, for the system (13), we have the following linear
independent solutions

xi(ξ ) = k−
i eµ−

i ξ , i = 1, · · · ,4 (20)

From (20) we have lim
ξ→−∞

x1(ξ ) = k−
1 , x2(ξ ) = k−

2 eµ−
2 ξ

and x4(ξ ) = k−
4 eµ−

4 ξ are unbounded solutions when
ξ → −∞ if c > 0 and P(σ) > B respectively. And,
x3(ξ ) = k−

3 eµ−
3 ξ is bounded whenξ →−∞.

If µ−
3 is a real positive (negative) number the stationary

point (0,σ) of (11) is saddle (stable) node and ifµ−
3 is a

complex number the stationary point(0,σ) of (11) is a
stable focus.

And for the system (15), we have the following linear
independent solutions

yi(ξ ) = k+
i eµ+

i ξ , i = 1, · · · ,4. (21)

From (21) we have lim
ξ→+∞

y1(ξ ) = k+
1 , lim

ξ→+∞
y2(ξ ) = 0 and

the other solutionsyi(ξ ) = k+
i eµ+

i ξ , i = 2,3 also remains
bounded whenξ →+∞ if c> 2

√
BDa. Thus, we have that

the stationary point(0,1) of (12) is either a stable node or
a stable focus.

4 Numerical results

In this section we will find numerically by finite difference
method, a solution of type traveling wave, and full solution
of our problem (1) - (2).
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4.1 Dimensionless equations

The units of measurements for the cell density and
nutrients concentration is, respectively,

c[cell/cm3] and s[mol/cm3].

The values and units of measurement of the parameters are
taken from Kolobov et al. [10],

Da = 2.5×10−8[cm2/s], Ds = 2.5×10−5[cm2/s]
B= 10−7[1/s], Pm = 0.2×10−6[1/s]

scrit = 0.3×10−7[mol/cm3], ε = 10−9[cm3/mol]

q= 10−20[mol/s·cell].

The characteristic scales are:

Length scale :L0 = 5×10−2 [cm]

Time scale :T0 = 106 [s]

Density scale :amax= 107 [cell/cm3]

Concentration scale :smax= 10−7 [mol/cm3].

The independent and dependent dimensionless variables
are given by

x∗ = x/L0, t∗ = t/T0, a∗ = a/amax, s∗ = s/smax

We have used the following dimensionless data:

D∗
a = 10, D∗

s = 104 , B∗ = 10−1 , P∗
m = 0.2, s∗crit = 0.3,

ε∗ = 10−2 , q∗ = 1, cmin = 2
√

2, c= cmin , σ = 0.18

Henceforth, the equations are written in dimensionless
form.

4.2 Traveling waves

Rewriting the equation (9) in the following form
{

A′′ = p1A′+q1(S)A
S′′ = p2S′+q2A

(22)

where

p1 =− c
Da

, q1(S) =
1

Da

(

P(S)−B
)

,

p2 =− c
Ds

, q2 =
q

Ds
,

joint with the boundary conditions

A(−L) = 0= A(L)

S(−L) = σ , S(L) = 1,
(23)

whereξ ∈ (−L,L) andL > 0 is large.
Taking L = 1000 and using finite difference method

we have a numerical solutions for cell density and
nutrient concentration which are showed in the Figure2
and3, respectively.

-1000 -500 0 500 1000
0

0.005

0.01

0.015

A

ξ

Fig. 2: Cell density profileA(ξ ).

-1000 -500 0 500 1000
0.2

0.4

0.6

0.8

1

ξ

S

Fig. 3: Nutrient concentration profileS(ξ ).

4.3 Numerical solution

For the numerical solution of problem (1) - (2) we used
the classic and unconditionally stable Crank-Nicolson
Method. The domain(−L,L) is discretized with uniform
grid of N = 1200 elements andL = 2000. The sizes of
spatial and temporal steps are, respectively,h= 2L/N and
k= v0h/c, wherev0 = 0.26. The initial condition is given
by gaussian functiona(x,0) = 0.1e−0.0025x2

and constant
functions(x,0) = 1.

The asymptotic behavior of live cell density, at each
point where it reaches its maximum value, is showed in
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the Figure4. Note that of stationary state is attained in
t ≈ 200, i.e, in approximately 6.5 years. In Figure5 and6

t

a

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4: Asymptotic behavior of maximal live cell densitya.

we showed, in 3D, the density profile of live tumor cells
and nutrient concentration profile, respectively, the long-
time. We note that at steady state, the density profile of
live tumor cells approaches the solution of type traveling
wave, given, in the Figure2.

x

-2000

-1500

-1000

-500

0

500

1000

1500

2000

t

0

50

100

150

200

0

0.2

0.4

0.6

a

Fig. 5: The profile of live cell density the long-time.

x

-2000

-1500

-1000

-500

0

500

1000

1500

2000

t

0

50

100

150

200

0

0.5

1

s

Fig. 6: The profile of nutrient concentration density for long-time

5 Conclusion

The problem of growth of an invasive avascular tumor,
one dimensional, is well-posed. Physically, we observe in
figures and in numerical simulations that the tumor grows
in the direction where there are nutrients (oxygen). It is
observed that it is invasive and aggressive from the
beginning to aboutt = 60 (2 years), immediately after a
relaxation which is going to reach steady state, at
approximatelyt = 200 (6.5 years), where the density of
live tumoral cells is very low. The tumor grows because
the tumor cells die. Thus, the volume of necrotic region
increases.
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