
Appl. Math. Inf. Sci.7, No. 5, 1789-1801 (2013) 1789

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070517

Watermarking Generative Information Systems for
Duplicate Traceability

Erik Sonnleitner1,∗ and Josef K̈ung2

Institute for Application-Oriented Knowledge Processing, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria

Received: 10 Jan. 2013, Revised: 13 May. 2013, Accepted: 14 May. 2013
Published online: 1 Sep. 2013

Abstract: This document outlines a watermarking scheme applicable to generative information systems in general, and dynamic web-
page content delivered by a HTTP server in particular. The approachfocuses on tracability of potential duplicates of previously served
informational content. The suggested procedures are non-intrusive, resilient, blind, robust, reversible and suitable for large amounts of
textual content. In order to do so, non- or semi-printable characters are inserted at syntactically and semantically valid places within the
payload data.

Keywords: watermarking, digital steganography, web-page watermarking, generative information systems, tracability, copyright

1 Introduction

Steganography is the process of hiding secret information
within other information, such that the secret’s very
existence is concealed [5]. The application of
steganographic techniques in nowadays technological and
economical landscape is primarily reflected by the
emerging interests of the international entertainment
industry, sustaining excessive research on the
containment of copyright infringement on large scale.
This particular steganographic application is commonly
referred to as watermarking and follows similar, yet
differently prioritized approaches in terms of technical
theory and practical implementation.

Watermarking, as variant of steganography, outlines
its main focus especially on robustness of the watermark
itself, rather than the hiding aspect and the watermarking
capacity [6] (the proportion of the secret bits which can
be hidden within the bit stream of a given non-selective
carrier medium). Within traditional steganography, it is
attempted to maximize the capacity in order to hide as
much information as possible within a relatively small
data set of carrier bits. Moreover, it is utterly important
that the steganographic message is subject to high
concealment.

In terms of watermarking, the priorities shift towards
high robustness of the watermark (the steganographic
message), at the expense of hiddenness (although the

latter remains highly attractive for most cases). A typical
watermark consumes a rather low amount of
informational bits, but is embedded more frequently, to
ensure recovery and verifiability even if large portions of
the carrier data are damaged, lost or inaccessible. While
watermarking has undergone excessive research within
the frame of multimedia data like images and videos, the
scope of application within dynamic webpages constitutes
a rather young scientific research field.

With respect to the dynamic nature of the content
available in the World Wide Web, we can take advantage
of the fact, that every document is separately requested by
the client, wherein the server may introduce small, hardly
noticeable changes within every document served.
Moreover, in contrast to broadcasting an immutable static
document (e.g. a newspaper), a HTTP server is normally
aware of a considerable amount of information
concerning its clients (e.g. originating IP address, date
and time of request, requesting browser, operating
system, rendering engine and granular versioning
information), but static watermarking schemes do not
allow to reproduce such information even if the existence
of the watermark can be securely verified.

This paper is structured as follows:

–Section 1 shortly introduces to the subject of
watermarking in general, and describes its motivation.

∗ Corresponding author e-mail:esonnleitner@faw.jku.at

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070517

1790 E. Sonnleitner , J. K̈ung: Watermarking Generative Information Systems...

–Section2 gives an outline of related work towards
watermarking in information systems in general.

–Section 3 shows particular challanges regarding
watermarking for back-tracing purposes.

–Section4 gives an in-depth illustration of the presented
watermarking proposals.

–Section 5 aims to deal with experimental results,
based on prototype implementations of the proposed
techniques.

–Section 6 discusses advantages, disadvantages and
further considerations on the proposed algorithm.

–Section7 draws a conclusive statement concerning the
presented schemes.

2 Related work

2.1 General watermarking

During the past two decades, numerous research papers
have been published on digital multimedia watermarking
techniques, including image [7] [8] [9], audio [10] [11]
and video [12] data as carrier. The watermarking
technique we are proposing is closely related to the
research field of relational database watermarking, which
represents a rather young scientific research field.

2.2 Database watermarking

Distortion-based watermarking follows the traditional
approach in information hiding, whereas certain attribute
values are slightly modified in order to embed a
watermark.

In [13], the least significant bits (LSB) of numerical
attributes are used for hiding information. This technique
is well-known from the field of image watermarking, but
implies the serious disadvantage of numeric attribute
modification which cannot be tolerated in numerous cases
(e.g. timestamps, money quantities, military purposes,
prescription provisions, etc.).

A different approach is shown in [14], where the
authors embed a digital watermark into multi-word
textual attributes by swapping the word order within
given sentences, according to the watermark bits to be
hidden. While providing considerable resistance against
certain types of attacks, it is highly vulnerable to raising
suspicion among third parties.

A mixed approach for hiding bits in numerical and
textual data simultaniously is shown in [25], where Zhang
et al propose a scheme which concurrently makes use of
the LSB technique for numerical values, and insert
carriage return and linefeed characters in textual values
for bit hiding.

Our contribution is loosely based on [15], where a
binary image is used as watermark, and hidden within
multiple textual multi-word attributes of a database

relation by inserting duplicate whitespaces between
words, used to determine bit values of the watermark.

In addition, we introduce a tuple partitioning scheme
which constitutes the basis for the introduced secret
stegano-key, the security of the entire algorithm is based
on. The tuple partitioning scheme embeds one bit of the
watermark per partition, wherein every tuple contains this
bit, as shown in [18].

3 Utilizing watermarks for back-tracing
purposes

In order to trace back the origin of a particular portion of
potentially duplicated data, it is essential to establish a
scheme for distignuishing between differently
watermarked data portions, even if its informational
content is identical. Within the frame of a generative
information system (like a World Wide Web service),
every request served to a client has to be watermarked
differently in order to create distinguishable data portions.

Conclusively, we have to design a watermarking
algorithm whose extraction and verification processes do
not rely on the knowledge of (all of) its secret parameters
beforehand. Otherwise, we would not be able to initiate
the extraction algorithm.

Although the subsequent approaches are similarly
applicable to relational data, we will focus on the data as
it is served by the HTTP server, as plain text data stream
rather than focusing on the tuples of a database relation
(although we will introduce a scheme for generating a
virtual delimiter-based tuple set). This not only
substantially enlarges the application areas for the
proposed watermarking technique, but is also easily
adaptable for modern non-relational database systems,
commonly referred to as NoSQL (Not-Only SQL)
databases which are especially used for data which does
not rely on being stored in a relational manner on the one
hand, and (partly) unstructured data whose applicability
within traditional relational databases is limited.

For the algorithms and experiments of this proposal,
we suppose that our carrier data is a reasonably sized,
simple plain text document, constituted of a
human-readable text written in English language.
Furthermore, we assume the document to be served via
HTTP and hence, is stateless and publicly available to an
unrestricted number of semi-anonymous clients, whereas
only information typically enclosed within a regular
HTTP GET or HTTP POST request is available for
further processing (e. g. target host, referer, browser type
and version, et cetera).

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 5, 1789-1801 (2013) /www.naturalspublishing.com/Journals.asp 1791

4 The proposed algorithm

4.1 Objectives

The main aims we have focussed on during development
of the subsequently outlined watermarking technique are
the following [16]:

–BlindnessThe watermarking process shall beblind,
meaning that it’s not necessarily required to have
knowledge about the original, unwatermarked
document data for watermark verification.

–RobustnessThe watermark shall be robust against
various attack types, such as subset alteration- and
subset deletion attacks. The experimental results on
how different types of attacks affect the verifiability of
the watermark are shown in Section5.

–ReversibilityIt shall be possible to easily remove the
watermark of a document, without corrupting or
loosing original information. This prerequisite implies
that all distortions made to the original document are
lossless procedures.

–Tracability of watermarked documentWithin the
extraction process of a watermarked document, the
recovery of certain parameters from the (possibly
duplicated) document should be easily possible. In
this paper, this includes the IP address the original
HTTP request was sent from, and the exact timestamp
when the request has been initiated.

–Security Only the owner of the document himself
should be able to extract and verify a given
watermarked document. This is accomplished using a
secret key in order to determine watermarked tuples,
partitions and the watermark itself.

4.2 Notation used in this paper

The notation of variables, sets, parameters and operators
used in this paper is listed in Table1.

Furthermore we use CAPITALIZED words for
variable names, double-slashes // for comments and
square brackets [] for array indexes within the
pseudo-code listings contained in this paper.

4.3 Document deconstruction

We are assuming a sufficiently large unstructured textual
documentΦ which is supposed to represent the plain
source being included in a dynamic web-page. The
document is split into tuple setT = {τ1,τ2, ...,τn}
according to a delimiterδ which is a full stop period in
our example (UTF-8 encoding0x2e). The tuple setT
therefore represents the set of sentences within the text.
Note that anyτi may include multiple newlines or other
non-word characters. Theδ delimiter may be set to
virtually any character which is repeatedly found within

Table 1 Notation of symbols

Symbol Description
Φ Source document
|X| Number of items in set or sequenceX
T Set of tuples (sentences) in document
τi ith tuple (sentence) in document
ω Watermark
σ Secret key
bω

i ith bit of watermarkω
Π Set of partitions
πi ith partition withinΠ
⊕ Concatenation operator
h Cryptographic hash function
δ Delimiter character
α Source IP address of HTTP request
β Timestamp of HTTP request
θ Word within a tuple/sentence
ζ Function to calculate syllable positions

the source document, and may be adapted according to
the source document’s nature, structure and properties.

The process of document deconstruction is targeted on
generating a virtual tuple set, which does not alterΦ , so
we can easily reconstruct the original document from its
tuples according to Equation (1).

Φ = τ0⊕ τ1⊕ . . .⊕ τn (1)

Therefore, the length|τi | of tuplesτ ∈ T may variy
greatly, depending on the statistical distribution
characteristics of delimiterδ within Φ . Although the
choice and definition ofδ is not crucial for the proposed
aglorithm to succeed, certain unfavorable properties
regarding the delimiter may have a significant positive or
negative impact on watermark extraction and verification:

–δ should split Φ into tuples, so that the statistical
variance in length of eachτi ∈ T regarding the
standard deviation is reasonably small. Therefore, the
more equally sized the tuples become, the better the
embedding process can be performed.

–δ should be chosen, so that the tuplesτi ∈ T are
reasonably sized, since our approaches assumes every
tuple to contain multiple textual words, whereas at
least some of them should have more than two
syllables.

Therefore, although the selection ofδ remains
unrestricted in theory, we will get better results, the closer
we can stick to the guidelines above. For example, if we
define δ :=′ e′, the average tuple size|τi | will be 7.8
characters assuming a source document in English
language, whose relative occurrence frequency of the
letter ’e’ is roughly 12.7 % according to [20].

Accordingly, punctuation letters are probably most
interesting for the definition ofδ . The exact selection
depends on structure and properties ofΦ whatsoever, and
can’t be asserted in general.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1792 E. Sonnleitner , J. K̈ung: Watermarking Generative Information Systems...

When the source document has been successfully
deconstructed, the collective of tuplesT is split into
multiple equally sized partitionsπi of tuples. The process
of partitioning is strongly dependent on a secret keyσ ,
known solely to the creator of the watermark. Within the
embedding process, for allτi ∈ π j the very same
particular bitbω

i is embedded.

4.4 Watermark generation

Our watermarkω is of dynamic nature, and changes on
every HTTP request served. The particular watermark
found within a previously watermarked document, in
turn, enables us to exactly reproduce the circumstances in
which this specific watermark has been used for
embedding. This fact can be exploited within the frame of
back-tracing details of the duplication.

In more detail, a document is watermarked with a
dynamically calculated bit-string, which is generated
upon every HTTP request based on a a three-tuple
Σ = {σ ,α,β}, with σ being our secret key,α being the
source IP address the HTTP request originates from, and
β being the timestamp the HTTP request has been sent.

The generated watermark is calledω, and is
persistently and securely stored on a server-side
sequential list or database relation, together with the
source parameters withinΣ . The purpose of storing the
mapping σ → Σ is to enable the document owner to
lookup σ after the watermark extraction process in order
to acquire the original values forΣ , and therefore the
parameters which allow backtracing.

Let h be cryptographic hash function so that we can
compute an HMAC1 according to [3], and ⊕ be the
concatenation operator. The calculation of the dynamic
per-request watermarkω is subsequently shown in
Equation (2).

ω = h(σ ⊕h(σ ⊕α ⊕β)) mod |ω| (2)

Onceω has been calculated,Σ ∪{ω} is stored on the
server and kept private.

4.5 Data partitioning

The proposed partitioning process will split the total
number of tuplesτi ∈ T into (almost) equally sized tuple
subsets (thepartitions) π j ∈ Π for further processing
while strictly maintaining the conditions shown in
Equations (3) and (4).

|Π |

∑
j
|π j |= |T| (3)

1 Hash-based message authentication code

∀π j ∈ Π : π j ∩T = π j ∧π j ∪T = T

∀π j∀πk ∈ Π : π j ∩πk = /0
(4)

The partitioning process offers two main benefits:

–Primarily, the partitioning scheme described below
represents the most important factor of influence
regarding accurate extractability of the watermark.

–Secondly, partitioning initially introduces the
utilization of the secret keyσ ∈ Σ , which is
represented by a bit vector of arbitrary but fixed
length|σ |. Therefore, extracting and/or verifyingω is
not possible withoutσ , since knowledge about how
data has been partitioned in the first place is strictly
inevitable.

In order to assign all tuplesτi ∈ T to disjoint
partitionsπ j ∈ Π , let ⊕ be the concatenation operator,τi
be the textual sentence, wherein the watermark bits are
embedded, andh be a cryptographic hash function, so that
we can compute an HMAC for each tupleτi whoseq least
significant bits determine the number of the partitionπ j
the corresponding tuple is assigned to, so that|Π |= 2q:

∀τi ∈ T :

{

τi ∈ π j if h(σ ⊕h(τi ⊕σ)) modq≡ j
τi /∈ π j otherwise (5)

Implicitly, q = log2 |Π | which should be carefully
chosen according to the size of the tuple set|T|, and has
been set to a value of 3 to 5 in our experiments, as
described in Section5.1. Therefore,Π consists between 8
and 32 tuple sub-sets, which are expected to contain
roughly the same number of elements sinceh is supposed
to provide uniformly distributed results, although this is
not a strict constraint whatsoever. In our proof of concept
implementation, we use MD5 for hashing.

4.6 Watermark insertion process

The watermark insertion process involves several steps:

–First, split the source document into tuplesτi according
to the pre-defined delimiterδ

–Second, partition the tuple set according to Equation
(5)

–Third, iterate all partitionsπi ∈ Π and embed the
corresponding watermark bit multiple times within all
τ j ∈ πi , at the string positions dynamically calculated
by the ζ function. Note, that all watermark bit
positions withinτ j ∈ πi contain the very same bitbω

n .

The watermark insertion process is done via character
insertion at certain predefined places. Hereby, we take
advantage of the fact, that most modern computer systems
preferably use (and, if not, at least sufficiently decode) the
Unicode text encoding, which offers multiple characters

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 5, 1789-1801 (2013) /www.naturalspublishing.com/Journals.asp 1793

which are not directly visible in the text flow. We chose
two characters representing the stegano-bits zero and one,
which also have a well-defined and common HTML tag
encoding, shown in Table2.

Table 2 Substitution characters

Character name UCS entity HTML entity Bit value
Soft-hyphen U+00AD ­ 0
Zero-width joiner U+200D ‍ 1

The soft-hyphen is a character which is not visibly
printed by default. It suggests a place where a word-break
can happen, and is normally interpreted by the font
rendering engine (e. g. by browsers). Only if the word is
being broken, a hyphen is printed at the place where the
soft-hyphen appears.

The zero-width joiner is a special character which
represents a space with zero length. It is not used in the
majority of Western languages, nor is it represented
visually by a rendering engine. According to the HTML
standard, the character is interpreted by rendering engines
as a 0-em space, which therefore allows line- and
word-wrapping at places where the character occurs.

In order to break words according to its syllables, we
utilize the the same algorithm as LATEX does for breaking
words, which is based on Franklin Liang’s pioneering
dissertationWord Hy-phen-a-tion by Com-put-er[1] from
1983. This is done by theζ function, which returns a list
of character positions where the function’s argument may
be split for layouting purposes.

For the sake of inconspicuousness, we insert
soft-hypens at every word position returned byζ , except
for two-syllable words: Hereby, we distinguish between
dividing the word by a soft-hyphen character only, and by
a soft-hyphen followed by a zero-width joiner character,
according to the bit value we want to embed. Note:
Although anyπi ∈ Π is assumed to contain roughly the
same number of tuples, the steganographic capacity of a
particular πi may vary greatly, due to the fact that
sentences may be utterly different in size, and we are only
hiding bits in two-syllable words.

The watermark insertion process is done using the
algorithm shown in Listing1.

Listing 1 Watermark insertion algorithm

1 Split Φ in tuples τi by delimiter δ
2 partitionize(Φ) //according to Equation

(5)
3
4 ForAll πi ∈ Π :
5 b := ωi mod |ω | //Current watermark bit
6 ForAll τ i

j ∈ πi :

7 ForAll θ j
k ∈ τ i

j :

8 Calculate ζ //according to [1]
9 if |ζ | = 1, then

10 Insert bit bω
i in position ζ within

θ j
k

11 EndFor
12 EndFor
13 EndFor

A more detailed explanation of the pseudo-code shown
in Listing 1 is discussed the following listing:

1.Initially, the source documentΦ is deconstructed to
acquire the collective of virtual tuplesT by splitting
according to the delimiterδ .

2.Once the tuple set is generated, it is splitted into
equally sized partitions as shown in Equation (5).

3.Next, all partitionsπi ∈ Π are sequentially iterated.
4.For each partition, we pre-define the watermarking bit

b which is subsequently embedded multiple times
within πi .

5.Furthermore, all tuplesτ i
j ∈ πi are iterated for further

processing.
6.Similarly, every token (word)θ j

k ∈ τ i
j is iterated, and

serves as basis for performing the actual embedding
process.

7.For bit embedding, we initially calculate theζ value
according to [1], which represents the total number of
syllables in the currently examined token.

8.If |ζ |= 1, then the current bitbω
i is inserted at position

ζ within θ j
k .

Once the embedding process finished, the entire source
document has been successfully watermarked and is ready
for being transmitted to the requesting client.

4.7 Watermark extraction process

After document deconstruction and tuple set partitioning,
the watermark bits can be extracted without the
knowledge of further secret parameters, simply by
iterating the tokens within tuples within partitions, and
extracting the bit information of all two-syllable words as
defined in Table2.

Similar to our first proposal published in [19],
majority voting is utilized for reconstructing the
embedded watermarkω. Once the extraction has been
accomplished, the private parameter setΣ is looked up by
the extractedω value.

Nevertheless, it has to be taken into account that the
extracted value of ω may be slightly corrupted,
depending on various factors concerning the watermark
extraction success probability, like modifications to the
duplicated source document, like size and detail of the
investigated document excerpt.

The watermark extraction algorithm contains of
several steps:

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1794 E. Sonnleitner , J. K̈ung: Watermarking Generative Information Systems...

1.Split the source document into tuplesτi according to
the pre-defined delimiterδ .

2.Partition the watermarked document according to
Equation (5).

3.On per-partition basis, deconstruct the tuples into
words, which are used as argument for theζ function.
If ζ returns only one element (which suggests a
two-syllable word), go to next step.

4.Extract bitbω
i according to Table2.

5.Perform majority voting for bits ofω.

The algorithmic watermark extraction is shown in
Listing 2.

Listing 2 Watermark extraction algorithm

1 split Φ in tuples τi by delimiter δ
2 partitionize(Φ) //according to Equation

(5)
3
4 //(1) extract watermark bits
5 define EXT[|Π |] //array for extracted

bits
6 ForAll πi ∈ Π :
7 ForAll τ j ∈ πi :

8 ForAll θ j
k ∈ τ i

j :
9 Calculate ζ //according to [1]

10 if |ζ | = 1, then set CHAR := θ j
k [ζ]

11 if CHAR = U+00AD then EXT[i] := EXT
[i] ⊕ 0

12 if CHAR = U+200D then EXT[i] := EXT
[i] ⊕ 1

13 EndFor
14 EndFor
15 EndFor
16
17 //(2) perform majority voting on elements

in EXT
18 set WM := ""
19 For i := 0.. |Π |:
20 set ONES := ZEROES := 0
21 For j := 0..|EXT[i]|:
22 if EXT[i][j] = U+00AD then ONES :=

ONES + 1
23 if EXT[i][j] = U+200D then ZEROES :=

ZEROES + 1
24 EndFor
25 if ONES > ZEROES
26 then WM = WM⊕ 1
27 else WM = WM⊕ 0
28 EndFor
29
30 //(3) lookup Σ by WM from server-side

list

If the lookup procedure, fetchingΣ from the securely
stored server-side parameter list fails, we slightly

untighten the conditional search parametrization by using
a string similarity measurement metric.

The larger the co-domain ofω has been initially set
to, the lower the chance for identifying aΣ record as false
positive. For example, if|Σ | = 32, its co-domain is
232 = 4294967296. Assuming that the source document
has been served several thousand times within a specific
timeframe, the probability for watermark collisions
remains sufficiently low, even if the watermark similarity
coefficient has been untightend to drop below 100 %, in
caseω isn’t fully extractable.

4.8 Reversibility

In order to fully delete an embedded watermark from a
document, we simply process the document
character-wise and delete all occurrences of characters
within Table2, assuming that none of them occur in the
original, unwatermarked source document. This
restriction is strongly dependent on the particular
insertion characters used for watermark embedding.

Listing 3 shows the Bash2 command for entirely
removing the watermark, without taking care of
characters belonging to the original document.

Listing 3 Watermark removal for proposal 2

1 DOCUMENT="˜/carrier.txt"
2 ZERO="\x00\xad"
3 ONE="\x20\xad"
4 sed -i ’s/$ZERO//g’ $DOCUMENT # in-

place substitution of zeroes
5 sed -i ’s/$ONE//g’ $DOCUMENT # in-

place substitution of ones

If the characters used for watermark insertion are
known to be contained in the original document, the
preceeding process is insufficient since original data will
get lost. Alternatively, the watermark insertion process
could create a insertion character map, which accurately
keeps track of all byte offsets within the file stream of the
document where watermark-related characters are
inserted.

Another way which doesn’t directly interfere with the
watermarking algorithm itself, is to automatically createa
binary3 change set immediately upon finishing the
insertion process. This technique requires a temporary
backup of the original, unwatermarked carrier document
for computing the changes. For this purpose, standard
Unix tools likediff or cmp can be used.

2 The Bourne-again Shell, the default shell environment on
most Linux distributions.

3 Depending on the characters used for representing bits of the
watermark, also string-based change sets may be used.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 5, 1789-1801 (2013) /www.naturalspublishing.com/Journals.asp 1795

Both methods must keep the change set mapping up
to date on every modification of the carrier. For security
purposes, calculated change sets should be stored securely,
e. g. by utilizing cryptographic routines.

Reversibility itself is a contrary topic among
watermarking, whereas certain application scenarios, like
for medical [23] or military purposes, strictly require the
possibility of reverting changes introduced by watermark
insertion [21].

4.9 Additionally encoding watermark identifiers

An interesting adjustment of the proposed algorithm is
the utilization ofmagic numbers. A magic number is a
plain random integer number of arbitrary but reasonable
and fixed size, which serves as sole reference between the
embedded watermark and the necessary private
parameters used for watermark generation.

Hereby, the server-side list does not contain the
generated watermark at all, but adds the magic number to
the parameter setΣ . The watermark can subsequently be
recalculated, if the magic number has been successfully
extracted from a watermarked document. In order to do
so, the magic number has to be embedded within the
target carrier, in addition to the actual watermark.

This procedure adds a new layer of abstraction
betweenσ and Σ \ {σ}, which may be useful for some
corner cases, e. g. if the dynamic watermarks must not be
stored on the server. Section6 shows several ways of how
to additionally embed a magic number, while focusing on
high-grade extractability. Subsequent experiments with
magic numbers, however, show a significant decrease in
robustness and extractability and is therefore not
discussed further.

4.10 Alternate definitions of the private
parameter set

The set of private parametersΣ has been declared to
contain a private keyσ , and two variable parametersα
and β . While σ is of high importance to the overall
security of the proposal and is therefore necessarily
needed,Σ may contain a theoretically unlimited number
of additional parameters which will subsequently
influence the generation of the actual watermarkω.

Aside from its previous declaration ofα being the
source IP of the incoming request andβ being the
corresponding timestamp, any other values may also be
chosen.

Within the frame of the use-case referring to a HTTP
service, especially the user-agent string can be of
significant importance in order to increase the degree of
uniqueness of certain parameters and therefore ease the
mapping of a server-side list entry ofΣ to the actual
client. The HTTP user-agent usually contains:

–The web-browser type (e. g.Mozilla or MSIE),
–the web-browser engine version (e. g.5.0),
–detais about the platform in use (e. g.X11or iPhone),
–the Operating System (e. g.Ubuntu or Windows NT
6.1),

–the system’s locale definitions (e. g.en USor de AT),
–the rendering engine the browser uses (e. g.
AppleWebKitor Gecko),

–web-browser version details (e. g.Firefox/18.0)

The user agent is an independent key-value string in
the HTTP request header, which is normally crafted and
sent automatically by the web-browser. It is, however,
very easy to spoof user-agent strings either by setting the
corresponding browser preferences or by utilizing
particular add-ons or browser extensions which will do
so. The user agent is therefore not to be seen as
trustworthy.

Despite the fact that user-agent string can easily be
manipulated, it can be assumed that the vast majority of
user-agent strings processed by a web-server are valid,
due to the fact that many web-pages will modify the
contents of the delivered web-pages according to certain
fields within the user-agent string, like the web-browser
(e. g. for different CSS style options to be compatible
with legacy browsers) or the platform (e. g. to deliver
mobile web-pages optimized for smaller screens and/or
touch input devices like tablets and smart-phones).

5 Experimental results

5.1 Content & parametrization

Since our proposal has been designed with respect to
watermarking non-relational data (or more precisely,
textual data which has already been fetched from a
database and pre-processed for being served to a client),
we have chosen one chapter from a well-known mundane
prose text document, namelyA Christmas Carolby
Charles Dickens, first published in 1843 and freely
available without copyright restrictions. The selected
excerpt of the document which is used for watermarking
contains 613 sentences (12624 words).

Although the original document is of non-relational
structure, our algorithm introduces a document
deconstruction scheme, which results in the generation of
pseudo-tuples. This approach enables us to simulate the
very same tuple-based attacks as for attack scenarios
towards database watermarking.

All conducted experiments have been made with
various different parametrizations of the proposed
algorithm, especially regarding the number of partitions
and the size of the embedded watermark, with

–the partition exponentq set to 3, 4 and 5 (generating 8,
16 and 32 partitions, respectively), and

–the size of the watermark|ω| set to 8, 16 and 32 bits.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1796 E. Sonnleitner , J. K̈ung: Watermarking Generative Information Systems...

Since the total size of the original document is
significantly smaller than the carrier data used in [19],
both, the number of partitions and the size of the
embedded watermark have been shortened accordingly to
offer high-grade extractability and a sufficiently large
detection rate.

The experimental results of this proposal are
visualized differently, due to the different characteristics
of the algorithmic approaches. The graphs show the
relationship between the altered tuple base after the attack
has been performed, and the hamming distance of
incorrectly extracted watermarks, if any inconsistencies
occured.

5.2 Simulated attacks

Three types of attacks have been simulated on
watermarked content:

–Subset deletion attack:Hereby, the attacker tries to
delete or heavily distort the embedded watermark by
removing information from the document, with the
intent of making the watermark unextractable. In our
experiment, the deletion process randomly removes
sentences from the document until a minimum
remnant of 5% of its original size has been reached.

–Subset alteration attack: The attacker tries to
destroy or heavily distort the embedded watermark by
modifying contents of existing text without actually
deleting entire sentences. In our experiment, we
randomly substituted roughly half of the characters
within a watermarked sentence.

–Insertion attack: Hereby, the original watermarked
sentences are left unaltered, but new (and therefore
unwatermarked) sentences are consecutively added to
the document. In our experiment, we consecutively
add new ones until the size of the document increases
to about 150% of its original size.

5.3 Subset deletion attack

The subset deletion attack has been simulated by deleting
tuplesτi ∈ Φ from a previously watermarked document in
steps of 5 % of the original tuple base. The results of attack
and watermark extraction are shown in Figure5.3.

The watermark extraction process can consistently
verify the correct value ofω for every simulated
parametrization, even when 80% of the original document
has been deleted (or is not available at the time of
extraction). This corresponds to a total number of 122
sentences.

The further trend constitutes, that lower values forl
andq result in lower hamming distances of the extracted
watermark, as opposed to the correct watermark (stored
on the server). Note, Equation (6.1) incorporate
fundamental parametrization constraints, for assuring all

Fig. 1 Subset deletion attack

watermark bits to be fully embedded at least once across
the whole document, since all tuples of a certain partition
contain the very same bit.

|Π | ≥ |ω| ⇔ 2q ≥ l (6)

Being the least favourable result, hiding a 32 bit
watermark in 32 partitions shows the highest hamming
distance at a deletion rate greater than 80 %, ultimately
expanding to a peak of 17 when 95 % of the tuples have
been deleted.

The experiment suggests, that the results tend to be
significantly better when the watermark is embedded
more than once across all partitions. Therefore,
embedding a 16 bit watermark within 32 partitions shows
a noticable flatter increase rate, providing a hamming
distance of 1 with 85 %, 3 with 90 % and 10 with 95 %
deleted tuples.

The best result is reached when utilizing only
8 partitions and an 8 bit watermark, which allows fullly
correct watermark extraction even when 90 % of the
tuples have been deleted. Choosing a short watermark
also offers major drawbacks, which are discussed further
in Section6.

5.4 Subset alteration attack

For the subset alteration attack, we subsequently modify
the textual content of tuples in steps of 5 % of the original
document size.

The modification of one tuple alters roughly 50 % of
the words therein, which are arbitrarily chosen and
substituted by random character sequences. The results of
the subset alteration attack are visualized in Figure5.4.

Similar to the preceeding experiment, large values for
l and q tend to heighten the hamming distances of the

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 5, 1789-1801 (2013) /www.naturalspublishing.com/Journals.asp 1797

Fig. 2 Subset alteration attack

extracted watermark compared to the originally
embedded one, starting to increase at 70 % tuple
alteration.

Utilizing 32 partitions and a 16 bit watermark
noticably flattens the similarity measurement curve,
providing a hamming distance of 1 with 85 % tuples
removed. All other parametrizations result in
unadulterated watermark extraction with only 10 % tuples
left, and show varying robustness when additionally
halving the remnant contents to a total of 5 %.

5.5 Insertion attack

For the insertion attack, we subsequently added new
sentences to a watermarked document in steps of 5% of
its original size. The newly added tuples do not contain
any watermark, and have been randomly choosen from an
external, contentually independent documental resource.

Since the watermark extraction process solely relies
on the extraction of the characters defined in Table2 at
pre-calculated places, the watermark extraction process is
able to fully extract the embedded watermark even if the
document grows to 200% of its original size.

Therefore, if no watermarking bits can be found in a
specific tuple, it does not influence the watermark
extraction vector, and therefore does not introduce
distortion due to false positives or false negatives. In
theory, there may, however, be certain exceptions to this
assumption, if the modification process inserts any
characters given in Table2 at places calculated by theζ
function. The proability of such a scenario without an
attacker specifically trying to exploit this very
circumstance is sufficiently reasonable (with the given set
of substitition characters), and therefore not covered by
the attack simulation.

A discussion of more serious intimidations regarding
complete removal of the watermark is discussed in Section
4.8.

6 Discussion

6.1 Carrier-dependent parametrization

The parametrization of the watermarking algorithm(s) is,
as the preceeding experiments clearly point out, an utterly
crucial process regarding subsequent extractability and
watermark verification.

The parametrization in general encompasses three
primary variables (among some secondary ones, mostly
related to the structure of the document and the
watermark):

1.The number of partitions|Π | the original document is
divided into,

2.the size of the watermark|ω| itself (the length of the
bit vector), and

3.the delimiterδ for document decomposition purposes.

While the only hard constraint concerning the
parametrization of the proposed watermarking algorithm
is given by , the corresponding values should be chosen
carefully according to the size and structural properties of
the original carrier document.

If the size of the carrier document is very limited, by
implication, the number of suitable positions for
steganographic bit embedding is similarly low. This
conclusively also limits the number of partition the carrier
is dividable into, and hence, also the size of the
watermark.

As a general rule of thumb, the more often a single
particular bit of the watermark can be embedded into the
carrier, the more likely the chance of a successful and
error-free extraction process. We can establish a basic
metric for this factor as shown in Equation (7) and (8).

ξπ =
|T|
|Π |

=
|T|
2q (7)

ξω =
|Π |

|ω|
(8)

In the presented experiments, the average partition
sizeξπ ranges from 19.156 to 76.625. Note, that certain
partitions may contain tuples of significantly diverging
size which, in turn, affects the possible steganographic bit
density.

Moreover, the watermark size to partitions ratioξω
ranges from 1 to 4, whereas higher values tendend to
provide better results in terms of correct extractability.

6.2 Implications of limited watermark sizes

A watermark being limited in size implicates a limited co-
domain of possible values for the watermark. Therefore, an
8 bit watermark allows the generation of 28 = 256 unique
and distinct watermarks.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1798 E. Sonnleitner , J. K̈ung: Watermarking Generative Information Systems...

For practical use, it should be considered expedient not
to be at risk of fully exhausting the available co-domain of
watermarks.

Firstly, this heightens the chance of watermark
collisions on the server-side list. This concludes, that even
if the watermark extraction process is able to fully extract
the embedded watermark without failures, it may not be
directly mapped to the corresponding tuple on the
server-side list and may match more than one watermark.

Secondly, regarding its use on a web-server, the
co-domain of the watermark size should be chosen
according to the estimated number of client requests for a
particular document per timeframe. On heavily
frequented web pages serving thousands of requests per
minute, the generation of an 8 bit watermark would result
in an inacceptable rate of collisions, which will make the
lookup procedure of the secret parameter setΣ unusable.

Correctly chosing the size of the watermark relates to
the temporal period the document in question is attractive
for third parties to duplicate. For example, the articles
published by an online news agency will probably only be
of high interest within the first few hours or days after
publication.

On the other hand, chosing a watermark of 64 bit in
size will recude the chance for collisions to an improbable
small value. However, the document carrier has to offer
enough useable bit positions for bit embedding, strongly
correlating to the total document size. Approaches for
enlarging the informational steganographic bit density are
discussed in6.5.

6.3 Selection of the similarity measurement
algorithm

In the presented attacks simulations, the similarity
measurement algorithm in use has always been the
well-known Hamming Distance. The Hamming Distance,
contrary to derivate forms like the Levenshtein Distance,
only supports similarity measurement for strings of equal
length. This constraint is met in our experiments, since
the extracted watermark is always the same size as the
original.

This restriction may cause difficulties if the size of the
extracted bit vector differs from the original, which may
be the case if either

1.no partitioning is used, and the watermark is
repeatedly embedded throughout the document carrier
with no pre-defined tuple sets which are known to
contain the same bit, or

2.the attack eliminates all tuples from a certain
partition, so that not even one tuple of the
corresponding partition is left for extracting the
originally stored bit value.

In the first case, the majority voting approach is
inapplicable, since there are no pre-defined tuple sets

(partitions) whose extracted bits could represent the basis
for majority voting.

In the second case, while being highly unlikely
without knowing the privateσ parameter used during the
partioning process, we could alter the extraction
algorithm to insert a blank bit value in the extracted bit
vector, since we can assume that the corresponding
partition must have been created during the embedding
process, but isn’t contained in the watermarked data
portion in question. This automatically increases the
distance calculation by one, but – assuming a sufficiently
large watermark co-domain – may still be unique in the
server-side list of private parameters, and therefore allows
direct mapping of the watermark.

In both cases, it is possible to utilize a similarity
measurement algorithm which does not have the
same-size restrictions described above, like the
Levenshtein Distance or the Levenshtein-Damerau
Distance. In addition to character substitution, these
approaches also support character insertion and are hence
well suited for this task.

6.4 Avoiding similarity measurement and
boosting detection rate

The more traditional approach towards watermark
insertion, was to simply repeat the entire vectorω
throughout the carrier, as often as its size allows
embedding bits, as shown in Listing4 (a). This technique
shows several disadvantages with respect to extractability,
since majority voting is not applicable. Moreover, it’s
very complex to keep track of the exact position of a bit
within the watermark, which just got extracted.

This is why we chose to embed the very same bit
throughout an entire partition, shown in Listing4 (b).

Listing 4 Bit sequence ordering

(a) ∀τ j ∈ πi :
n: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

bω
n ∈ τπi

0 : x y y x x y x y|x y y x x y x y . . .
bω

n ∈ τπi
1 : x y y x x y x y|x y y x x y x y . . .

bω
n ∈ τπi

2 : x y y x x y x y|x y y x x y x y . . .

(b) ∀τ j ∈ πi :
bω

n ∈ τπi
0 : x x x x x x x x|x x x x x x x x . . .

bω
n ∈ τπi

1 : y y y y y y y y|y y y y y y y y . . .
bω

n ∈ τπi
2 : x x x x x x x x|x x x x x x x x . . .

(c) ∀τ j ∈ πi :
bω

n ∈ τπi
0 : x y y x x y x y|x x x x x x x x . . .

bω
n ∈ τπi

1 : x y y x x y x y|y y y y y y y y . . .
bω

n ∈ τπi
2 : x y y x x y x y|x x x x x x x x . . .

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 5, 1789-1801 (2013) /www.naturalspublishing.com/Journals.asp 1799

However, using a hybrid technique, as shown in Listing
4 (c), may allow us to combine the positive aspects of both
techniques. Hereby, we embed the whole watermark (or a
magic numberused solely for internal referencing) at the
very beginning of every partition at first. Once this is done,
the insertion procedure continues to embed the very same
bit of the watermark until no tuples are left in the current
partition.

Further research is currently going on within the frame
of bit sequence ordering during the insertion process.

6.5 Steganographic information density

Packing more bits into a fixed-size carrier document
increases its steganographic density. Various factors can
influence the density, most notably the number of
potential words we can hide bits in.

In the given algorithm, we focus on two-syllable words
(which means, string tokens whoseζ value, returning the
number of possible breaks, equals 1). We can dramatically
enlarge potential bit positions by not limiting the insertion
procedure to word breaks only – a virtual restriction which
has been made in order to minimize suspicion.

Moreover, it is possible to enlarge the number of
partitions by carefully chosing theδ delimiter character.

6.6 Watermark durability regarding typical
duplication operations

Various experiments have shown, that an arbitrary portion
of watermarked data using the characters given in Table2,
easily withstands opening, reading, writing and
conversion in and between multiple different UTF-8
capable text processing applications. The results are
shown in Table3.

Table 3 Text editors used for processing watermarked data

Text editor Character survival Visibility
Microsoft Word 2010 Yes No
Microsoft WordPad Yes Yes
Microsoft Notepad Yes No

Gedit Yes No
Vim Yes Yes

Open Office Writer Yes No

Only if the given portion of data is converted to a
non-Unicode text encoding scheme like ASCII, the
steganographic characters are either completely omitted
during the conversion process, or interpreted according to
the code table of the encoding scheme in question, which
mostly leads to unreadable and/or non-printable
characters (commonly referred to asgarbage characters).

However, the conversion to another encoding scheme
is, on most platforms and in most editors, a process which
has to be willingly done and is not enforced automatically.

This implicates that both, byte-wise duplicates of the
watermarked information, as well as direct
copy-and-paste operations which may introduces changes
in file type, rendering engine (editor), operating system
and (partly) formatting are not supposed to interfere with
the watermark

6.7 Alternative carriers for web-pages

Especially within the frame of dynamic web-pages,
making use of generative HTML documents as carrier is
standing to reason. Approaches towards steganographic
watermark embedding techniques include:

–Hiding information within HTML tags, attributes or
attribute values covered in the corresponding W3C
standard,

–introducing new tags or attributes to hide information
in,

–rearranging the structure of the original HTML
document (e. g. by resorting tags in such a way, that
the rearrangement does not interfere with the visual
page rendering,

–changing the stylistics and occurrences of whitespaces
(e. g. concerning the document’s indentation or intra-
tag spacing).

The application areas for such techniques are
wide-spread, since HTML typically allows a wide variety
of structuring a document on the one hand, and due to the
fact that HTML rendering engines (typically represented
by and included with the browser) are highly
fault-tolerant to non-standard compliant pages.

Such approaches do offer the advantage, that the
scope of changing a document’s structure for the sake of
watermarking purposes is utterly diverse with respect to
the fact, that the user will not spot any differences in
layout, composition and content of the page. Moreover,
the same methodologies may also be applicable to related
markup languages like XHTML, XML, RSS, Atom, and
countless other less known XML-derived languages like
MathML, GraphML, XAML or SVG [22].

The downside of HTML-based techniques is, that the
previously discussed – and highly probable – case of
simple copy-and-paste duplications of watermarked pages
will probably not cover most changes made to the
document related to the watermark.

6.8 Limitations & Further Research

Due to the nature of the watermarking approach, the
algorithm does not support the calculation of a percentual
similarity between the extracted and the original

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1800 E. Sonnleitner , J. K̈ung: Watermarking Generative Information Systems...

watermark, since the watermark extraction process must
be 100% consistent in order to lookup the parameters of
Σ .

If the watermarked document has been severely
distorted, it may lead to an extracted value ofσ∗ which
contains one or more bit flips. In our simulated attacks,
this happens when about 85% of the original document
has been deleted, for example.

In such a case, theσ → Σ mapping can not be done
anymore. However, depending on how large the
server-side mapping list has grown, and if the
circumstances when and from where the original
watermarked document has originally been served may be
isolated to a certain degree, there are possibly reasonable
chances to search for the most similar values ofσ stored
on the server. Sinceσ is generated from a cryptographic
hash function whose results are quite uniformly
distributed, chances are given to seriously narrow down
the possibleΣ parameters which could have led to a
slightly altered value of the extractedσ .

In our experiments, we calculated the Hamming
Distance between the originalσ and the extractedσ∗,
which are shown on the graphs below.

Since all substitution characters are well-defined
UTF-8 entities, they readily survive copy-and-paste
processes in virtually any text processing software,
including Microsoft Word, Libre Office and Microsoft
Wordpad. However, converting the text to plain ASCII
will entirely destroy the watermark.

Moreover, there is a possibility of watermark
collisions. The collision resistance is dependent only on
the cryptographic hash functionh, and the q least
significant bits used. In our examples, we use 32 bits,
featuring a co-domain of around four billion values.
Whether this value is sufficient for preventing collisions
or not is highly dependent on the visitor statistics of the
particular web-page.

7 Conclusion

We have proposed a watermarking algorithm for dynamic
web-page content, which uses newly and indepentenly
generated watermark values for each HTTP request
served. It is capable of tracing back specific parameters of
a document, based in the watermark it contains. It proves
to be quite robust against various types of attacks,
although a 100% successfully extracted watermark is
needed in order to provide back-tracability.

References

[1] Franklin Mark Liang,Word Hy-phen-a-tion by Com-put-er,
Stanford University, (1983).

[2] Unicode Inc., The Unicode Standard, Version 6.0, Core
Specification, via www.unicode.org, (2011).

[3] National Institute of Standards and Technology (NIST),
The keyed-hash message authentication code (HMAC), via
csrc.nist.gov/publications/fips/fips198, (2002).

[4] B. Schneier,Applied Cryptography, John Wiley and Sons,
(1995).

[5] N. Ferguson and B. Schneier and T. Kohno,Cryptography
Engineering, John Wiley & Sons, (2010).

[6] F. Yaghmaee and M. Jamzad,Estimating watermarking
capacity in gray scale images based on image complexity,
EURASIP Journal on Advances in Signal Processing, (2010).

[7] G. C. Langelaar and I. Setyawan and R. L. Lagendijk,
Watermarking digital image and video data. A state-of-the-
art overview, IEEE Signal Processing Magazine,17, (2000).

[8] W. Bender and D. Gruhl and N. Morimoto and A. Lu,
Techniques in data hiding, IBM Systems Journal,35, (1996).

[9] M. D. Swanson and B. Zhu and A. H. Tewfik,Transparent
robust image watermarking, Proceedings of the International
Conference on Image Processing,3, (1996).

[10] M. D. Swanson and B. Zhu and A. H. Tewfik and L. Boney,
Robust audio watermarking using perceptual masking, Signal
Processing,66, 337 – 355 (1997).

[11] M. Arnold, Audio watermarking: Features, applications,
algorithms, Proceedings of the IEEE International
Conference on Multimedia and Expo, (2000).

[12] G. Dorr and J. L. Dugelay,A guide tour of video
watermarking, Signal Processing: Image Communication,
18, (2003).

[13] L. Zhang and W. Gao and N. Jiang and L. Zhang and
Y. Zhang,Rational databases watermarking for extual and
numerical data, Proceedings of the International Conference
on Mechatronic Science, Electric Engineering and Computer,
(2011).

[14] D. Hanyurwimfura and Y. Liu and Z. Liu,Text format based
relational database watermarking for non-numeric data,
Proceedings of the International Conference on Computer
Design and Applications, (2010).

[15] A. Al-Haj and A. Odeh,Robust and blind watermarking of
relational database systems, Journal of Computer Science,4,
1024 – 1029 (2008).

[16] R. Halder and P. Shantanu and A. Cortesi,Watermarking
techniques for relational databases: Survey, classification
and comparison, Journal of Universal Computer Science,16,
(2010).

[17] I. Kamel,A schema for protecting the integrity of databases,
Computers and Security,28, 698 – 709 (2009).

[18] A. Deshpande and J. Gadge,New watermarking technique
for relational databases, Proceedings of the Second
International Conference on Emerging Trends in Engineering
and Technology, (2009).

[19] E. Sonnleitner,A robust watermarking approach for large
databases, Proceedings of the International IEEE Conference
for Space and Satellite Communications (ESTEL) 2012,
Security & Privacy Special Track, (2012).

[20] S. Singh,The Code Book, Random House, Delacorte Press,
(2001).

[21] M. Farfoura and S. Horng and J. Lai and R. Run and
R. Chen and M. K. Khan,A blind reversible method for
watermarking relational databases based on a time-stamping
protocol, Expert Systems with Applications,39, 3185 – 3196
(2012).

c© 2013 NSP
Natural Sciences Publishing Cor.

www.unicode.org
csrc.nist.gov/publications/fips/fips198

Appl. Math. Inf. Sci.7, No. 5, 1789-1801 (2013) /www.naturalspublishing.com/Journals.asp 1801

[22] D. Gross-Amblard, Query-preserving watermarking of
relational databases and XML documents, Proceedings to the
ACM SIGMOD/PODS conference, (2003).

[23] Hassan I. Abdalla, Improving data management for
medical image watermarking, Journal for Digital Information
Management,9, 122 – 125 (2011).

[24] R. Mavudila Kongo and L. Masmoudi and M. Cherkaoui
and A. Roukhe,Dual-tree wavelet transform for medical
image watermarking, Journal of E-Technology,3, 144 – 160
(2012).

[25] Lizhong Zhang and Wei Gao and Nan Jiang and Liqiu
Zhang and Yan Zhang,Relational databases watermarking
for textual and numerical data, Proceedings of the 2011
International Conference on Mechatronic Science, Electric
Engineering and Computer, (2011).

Erik Sonnleitner
is Senior
Scientist at the Institute
for Application-Oriented
Knowledge Processing
(FAW). He studied Networks
& Security and is currently
focusing on digital distortive
watermarking strategies in
information systems, wherein
he published various articles
on and writes his doctoral

thesis about. His interests and research topics cover
sytem-, network- and application-security in general, and
steganographic approaches on volatile data carriers in
particular.

Josef Küng
is associate
professor at the Institute
of Application-Oriented
Knowledge Processing
(FAW) at Johannes
Kepler University Linz
(JKU). His core competencies
cover Information Systems,
Knowledge Based Systems,
Decision Support Systems,
Sematic Technologies and

Similarity Queries where he published a fair number of
papers. Among other scientific service activities, Josef
Küng is co-editor-in-chief of the journal on Transactions
on Large-Scale Data- and Knowledge Centered Systems
published by Springer.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related work
	Utilizing watermarks for back-tracing purposes
	The proposed algorithm
	Experimental results
	Discussion
	Conclusion

