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Abstract: In the present paper, we investigate some basic properties of a subélasrmonic functions defined by multiplier
transformations. Such as, coefficient inequalities, distortion bourdisxtreme points.
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1 Introduction Jahangiri et al.q] defined the modified Salagean operator

of f as
Let H denote the family of continuous complex valued D"f(z) = D"h(z) + (—1)"Dg(z)

harmonic functions which are harmonic in the open unit
disk U = {z:]z <1} and letA be the subclass ofi where

consisting of functions which are analytic . A ® ®
function harmonic inU may be written asf = h+ g, D"h(z) = z+ %k“akzk and D"g(z) = Zk”bkzk.
where h and g are members ofA. In this case,f is K= k=1
sense-preserving ifY(z)| > |g'(z)| in U. See Clunie and
Sheil-Small #]. To this end, without loss of generality,
we may write

Next, for functionsf € A, Cho and Srivastav&] defined
multiplier transformations. Fof = h+g given by (), we
define the modified multiplier transformation bf

h(Z) =Z+ kZZakaa g(Z) = kZlkak. (1) |8f(z) — Dof(Z) _ h(Z) +@’

Let SH denote the family of functiond = h+g o . _ I
which are harmonic, univalent, and sense-preserving in | 1f(z) = WU@IDI(E _ yhi2+ye@+2H(@)-2d(@) >0

for which f(0) = f,(0) — 1= 0. One shows easily that the y+ s @
sense-preserving property implies thgl| < 1. The
subclassSHC of SH consists of all functions i$H which INF(2) = |¢ (I{,‘*lf(z)) . (ne No) 3

have the additional propertfg(0) = 0. o
Note thatSH reduces to the clasS of normalized  If f is given by (), then from @) and @) we see that
analytic univalent functions it if the co-analytic part of

o n 0 n
f is identically zero. I (2) — 2 (k+ V) X (1" (k— V) b,
In 1984 Clunie and Sheil-Smalk] investigated the @ k; 1+y A +(=1) k; 1+y)
classSH as well as its geometric subclasses and obtained (4)

some coefficient bounds. Since then, there has beeAlsoif f is given by (), then we have

several related papers @H and its subclasses such as _ _
Avci and Zlotkiewicz L], Silverman p] , Silverman and  1yf(2) © = f;((pl(z) +<P2(Z)> %, (fPl(Z)+sz(Z))
Silvia [10], Jahangiri f] studied the harmonic univalent

functions. n times
For f € S the differential operatob" (n € Np) of f =hx@(2)*...x@(2 +9*x @(2) *... x @(2),
was introduced by Salagea8].[For f =h+ggiven by (), o times T
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where « denotes the usual Hadamard product orProoflf z; # 7,
convolution of power series and

‘ f(z)-1(z)|, ,_ |9a)-9()
a2 = (1+y)z—yZ @)= (y—1)z—y2 h(z:) —h(z) | — (z1) —h(z)
 (1+y(1-2% C (1+y(1-27 ®©
(1+y)(1-2 (1+y)(1-2 kZZbk(zi‘z‘ﬁ)
Specializing the parametess and n, we obtain the =1- —
following operators studied by various authors: (n—2)+ Y a(Z—2%)
for f € A, - k=2
() 151(2) = D"f(2) ([8)), > Kby
(ii) 13 f(2) ([2], [3.[5D). >1- =L
(i) 17 = 1" (2) (111), 1- 5 klad
for f eH, k=2
(iv) 187 (2) = D"t (2) ([7). w (" (ly
Denote bySH(y, n, a) the subclass d8H consisting of s W |by|
functionsf of the form () that satisfy the condition > 1 k=2 — >0
- 0 + +y -7
1) (2) KE2 1oa
Rel -+ >a, 0<a<1 (5)
171(2) which proves univalence. Note that f is sense preserving in

U. This is because
wherel}f (2) is defined by 4).

- key\" [k
We let the subclasSH(y, n, ) consisting of harmonic |1y ()| > 1 — E klag [2< > 1— E (£Y) (f-a) |
functions f, = h+g, in SH so thath andg, are of the = K= 1-a

form

- - > —(k i) (i57+9) b k|b 1>\
h(z) = z— zzakzk, On(2) = (—1)”zbkzk, ay, b > 0. Z |by| > Z ol |27t > |9 (2)]
k= k=1

(6) Using the fact thatRew > a if and only if
By suitably specializing the parameters, the classegl—a +w| > |1+ a —wl, it suffices to show that
SH(y,n, a) reduces to the various subclasses of harmonic

b 2

univalent functions. Such as, |(1—a)IPf (@) +1)H (2] — |(1+a)1Pf(2) — 1) ()] > 0.
(i) SH(0,0,0) = SH*(0) ([1], [9], [10), - . _(®
(ii) SH(0,0,a) = SH*(a) ([6]), Substituting forl }  (z) andI}** f (2) in (8), we obtain
(iii) SH(0,1,0) = KH(0) ([1], [9], [10]),
(iv) SH(0,1,a) = KH(a) ([6]), (L—a)Pf @+ 1) (2)] = |1+ a)lyf(2) =17 (D)
(V) SH(O,n, ar) = H(n,a) ([7]).
DefineSHO(y,n, a) := SH(y,n,a) "SH® and © kty)"
=0 =13 _ _ 7
SH (y,n,a) := SH(y,n,a) N SHC. >2(1-a)lZ k22(1+y) < Y- a) EMiER
S () (52 -vra) bt
2 Main results k;(lﬂ’ 1+ ‘
it (k “) o
Theorem 1Let f =h-+g be so that h and g are given by k;
(2) with by = 0. Furthermore, let P ( )

1+y
n
k+y k+y & \1+y +
> (1) Ly 9l
& y +y

= (k—y k—y =

+ ( —+4+a |kl <1l-a, @)

L 1+v> (1+v ) © (k—y\" [ k—

. 5 (51 (S o)),
where0 < y < 1/2, n € N, 1}:y <a< 1-sl-y Then f is

sense-preserving, harmonic univalent in U and This last expression is non-negative b),(and so the
f € SH(y,n,a). proof is complete.
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Theorem 2Let f, =h+g, be given by §) with by = 0. 0<y<1/2 ne Ny, 1+y <a< 1iy
—0 . .
Then f, € SH (y,n,a) if and only if In particular, the extreme points &H (y,n, a) are
@ <k+y>“<k+y a)ak {h} and {gn, }-
k; 1ty 1ty Proof For functionsf, of the form ) we have
o (kK=y\ (k=y ®
+k22<1+y> <1+y+a> bk<1l-a, ©)  f.(2 = k;(thk( 2) + Yian, (2))
y 1 ) o) o
where0 <y <1/2,neNo, ¢ <a < 3y z X+ Vi) 2— — r} kij X 2
K=1 k=2 (L) (=L
ProofThe "if” part follows from Theorem 1 upon noting <1+V) <1+V a)
that @O(y, n,a) le;io(y, n,a). For the "only if" part, (=1)" - r}—a Y
we show thatf, ¢ SH (y,n, a) if the condition @) does K= (%) <%+a)
not hold. Note that a necessary and sufficient condition
for f, =h+g, given by 6), to be in@o(y, n,a)isthat  Then
the condition §) to be satisfied. This is equivalent to ) (%’) n (Iffy B a) -
(1—a)z— 5 () (kv aZ = N X
b0 o) 2 (e
2 (kty k—y o
p ) Ak + ) k—
kzz(lﬂ’) & Z (1+V) K +§ (m);) (1+y+0’) ( 1-a Yk)
z a l1-a =t
- 2 (1+y) (1+y+a) bz k=2 (1+y) (1+y+a>
>
S 0 n _ ¥
zZ— kzz (%) az<+ kzz (%) by 2 =Sk X+ oYk =1-X—Y; <1, and sof, € @O(y., na).
. =0
The above condition must hold for all valueszmfzl =r < Conversely, iff, € SH'(y,n, a), then
1. Upon choosing the values pbn the positive real axis
where 0< z=r < 1 we must have - r}—a
[kt k+
a-o-3 (54) (5 -a)ar (&) (55-9)
o 1+y 1+y
o (kty k- k—y k and
1—k§2(m) ar 1+kzz( +y) byrk-1 be< %fka
. (555) (55 +a)
_ k-1
P2 <1+V> (7 +a)ba Set
R 20 (10)
1-3 (m) arkl+ 3 (m) byri kiy\" (kty
k=2 k=2 1ty 1+y
.. . Xk = A, (k: 2735 )
If the condition @) does not hold, then the numerator in l1-a
(10) is negative for sufficiently close to 1. Hence there
exist zy = ro in (0,1) for which the quotient in 10) is (ﬂ)n (ﬂ or)
negative. This contradicts the required condition fge Y, = Y Y b (k=2,3,...)
@O(y, n,a) and so the proof is complete. 1=
0 and
Theorem 3Let f, be given by§). Then f € SH (y,n, a) ®
if and only if Xi+Yr=1—( 5 X+ Y
fn(2) = 31 (thk(z)+Ykg”k(Z))’ whereXy, Y¢ > 0. Then, as required, we obtain
where h( 7)=z2 gnl( ) Ko Y2 0. ' q '
1-
h(2) = ( ) (515 ) 2 (k=23,..), n(2) = (X +Y0)2+ 370 Xeh(2) + 370 Wen(2) = 551 (hi(2) + Vi, (2)
z a (k=2,3,.
On(2) = ( s ) ) Theorem 4Let f, € ST—|O(y,n a). Thenfor|z=r < 1land
She 1(Xk+Yk): >0 >0 0<y<1/2,neNo, ¢y <a< g wehave
@© 2013 NSP
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Then by (1),
fa(2)| <t + (1-a) r2 (k+y}>/0<-kiv )
) T a
(%) (%{7 a) Sk e (37 tiay)

and o () (K

[fa(2)] > 1 (1-a) (2 T2k=2 ( +y>1ga+y ) (SiZatiby)

¥ N (2+V)n (2+y — C{) k+y kty k=y\" ([ k—y
o o = 2i=1li {ZE’ 2 ( )1<m_ )aK + (m)l(m”) bk.}
—a —a

ProofWe only prove the right hand inequality. The proof

for the left hand inequality is similar and will be omitted.

Let f, € @O(% n, o). Taking the absolute value df, we
have

Mﬂﬂ+i@ﬁmﬁ

(1—a)r?
24y n 2+y
(m) (m*"’)
k+y n k+y k—y n
> J\tey) Ty @ ) (my+a b
Xz 1-a At 1-a K
=)
<r4 (1—a) 2,

= 24y \" [ 24y '
(£) (&-a)
The following covering result follows from the left

hand inequality in Theorem 4.

Corollary 1.Let f, of the form 6) be so that

fn € @O(V,n a), where 0 < y < 1/2, n € Ny,
m<a< Ty Then
1-a
wiwl <1-— ( ) c fa(U).

a)

2+y\" (2+y _
1+V 1+Y

Theorem 5The cIass§-|o(y, n,a) is closed under convex

combinations.
ProofLet f, € @O(y, na) fori=12..,

given by
3

(B 300),

5 wid
(11)

Foryi°,ti =1, 0<t; <1, the convex combination df,

may be written as
Z\t' fn (2) =2— % <zltl > 1)“;2 <§1ti bh> *

where fy, is

fo(2) =z— ra
(2)=z2 k; az +(
Then by 0),

kiy\" (kby
1+y 1+y

< Zti =1
=

This is the condition required by9( and so
Yicatifn(2) € @O(Va n,a).
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