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Abstract: In this paper, we attempt to provide mathematical models of Mendelian and Non-Mendelian inheritances of the bisexual
population system having Fisher’s1:1 principle. In our model, we always assume that distributions of the same phenotype of female
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1 Introduction

The study of sex allocation is often considered the most
successful branch of evolutionary biology. Sex allocation
is the allocation of resources to male and female
reproductive function in sexual species (see [1], [2]).

In anthropology and demography, the human sex ratio
is the ratio of females to males in the population system.
Like most sexual species, the human sex ratio is
approximately1:1. Fisher’s principle is an evolutionary
model that explains why the sex ratio of most sexual
species is approximately1:1. It was famously outlined by
R. Fisher in his book [3]. A. W. F. Edwards has remarked
that Fisher’s principle is ”probably the most celebrated
argument in evolutionary biology” [4]. However, W.D.
Hamilton had been introduced a model by breaking the
assumptions made in Fisher’s model in which the
population system has an extraordinary sex ratio (see [5]).
Sex ratios that are1:1 are hence known as ”Fisherian”,
and those that are not1:1 are ”non-Fisherian” or
”extraordinary”.

Heredity is the passing of traits to offspring from its
parent or ancestors. This is the process by which an
offspring cell or organism acquires or becomes
predisposed to the characteristics of its parent cell or
organism. Inherited traits are controlled by genes and the
complete set of genes within an organism’s genome is
called its genotype. The idea of particulate inheritance of
genes can be attributed to G. Mendel (see [6]). Mendelian
inheritance is a scientific description of how hereditary

characteristics are passed from parent organisms to their
offspring. In Mendelian inheritance, each parent
contributes one of two possible alleles for a trait. In
humans, eye color is an inherited characteristic and an
individual might inherit the ”brown-eye trait” from one of
the parents (see [7]). Non-Mendelian inheritanceis a
general term that refers to any pattern of inheritance in
which traits do not segregate in accordance with Mendel’s
laws. Inheritance of traits infungi, viruses, and bacteria
are all non-Mendelian. Non-Mendelian inheritance plays
a role in several disease processes (see [8]).

A quadratic stochastic operator (QSO) is a primary
source for investigations of dynamical properties of
population genetics [9]. The fascinating applications of
quadratic stochastic operators to population genetics were
given in [10]. It describes a distribution of a species for
next generation if given the distribution of these species
for current generation. In the paper [11], it was given a
long self-contained exposition of the recent achievements
and open problems in the theory of quadratic stochastic
operators.

In this paper, we are attempting to give a
mathematical model of Mendelian and Non-Mendelian
inheritances in the bisexual population systems. Our
approach providing the evolution of the bisexual
population system is totally different from the one given
in [10] and it gives an opportunity to formulate the
Mendelian inheritance in the system. We shall study the
evolution of Mendelian and Non-Mendelian inheritances
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of the biosphere having Fisher’s1:1 principle. In our
model, we always assume that ”the distributions of the
same phenotype of female and male populations are
equal.” We construct a quadratic stochastic operator that
describe inheritance ofABO and Rh blood groups. This
study is the continuation of the papers [12] and[13].

2 Preliminaries

We recall some definitions and notions (see [12]).
Let (Λ ,L) be a graph without loops and multiple

edges, whereΛ is the finite set of vertexes andL is the set
of edges of the graph and{Λi}, i = 1, ...,n− the set of
maximal connected subgraphs (connected components) of
the graph(Λ ,L). Furthermore, letΦ be a finite set, called
the set of alleles (in problems of statistical mechanics,
Φ− is called the range of spin).

The function σ : Λ → Φ is called a genotype (in
statistical mechanics, it is called configuration). Denote
by Ω the set of all genotypes and byS(Λ ,Φ) the set of all
probability distributions defined on the setΩ . A QSO
V : S(Λ ,Φ) → S(Λ ,Φ) is defined as follows: for an
arbitrary measureλ ∈ S(Λ ,Φ), the measureλ ′ = Vλ
defined as

λ ′(σ) = ∑
σ ′,σ ′′∈Ω

pσ ′σ ′′,σ λ (σ ′)λ (σ ′′), ∀ σ ∈ Ω (1)

wherepσ ′σ ′′,σ = pσ ′′σ ′,σ ≥ 0 and ∑
σ∈Ω

pσ ′σ ′′,σ = 1 (see

[9], [10]). Herepσ ′σ ′′,σ is called a heredity coefficient.
In the model (1), the gender difference of species has

not taken into the consideration. However, in many
population systems, this difference plays an important
role during the evolution of the population system.
Therefore, in this paper, we are going to provide the
model of the bisexual population system in which the
gender difference has taken into the consideration. It is
worth mentioning that our model for the bisexual
population system is totally different from the model
provided in [10] and it has an advantage to provide the
mathematical model of a Mendelian inheritance.

Let (Λ ,L) be a graph and{Λi}, where i = 0,1, ...,n,
be sets of its maximal connected subgraphs such that
Λ0 = {x0}. Suppose that the population system has only
female and male gendersG= { f ,m}. Let Φ be a finite set
of alleles. Every species can be characterized by the
following genotype σ : Λ → G × Φ such that
σ |Λ0: Λ0 → G, andσ |Λ\Λ0

: Λ \Λ0 → Φ . We denote the
set of all genotypes byΩ . Let Ω f = {σ ∈ Ω : σ(x0) = f}
andΩm = {σ ∈ Ω : σ(x0) = m} be sets of all female and
male genotypes, respectively. It is clear that
Ω = Ω f ∪Ωm andΩ f ∩Ωm = /0. For the two genotypes
(parents)σ ′,σ ′′ ∈ Ω , we define a set (traits of children)
Ω(σ ′,σ ′′) such that ifσ ′ |Λ0= σ ′′ |Λ0 thenΩ(σ ′,σ ′′) = /0
and if σ ′ |Λ0 6= σ ′′ |Λ0 thenΩ(σ ′,σ ′′) is some nonempty
subset ofΩ . From the biological point of view,Ω(σ ′,σ ′′)

is a set of all possible genotypes (traits) of children
having parents with genotypesσ ′ and σ ′′. In this sense,
the constrain for the setΩ(σ ′,σ ′′) means that the spices
having the same gender would not produce anything else
while the different gender spices will produce something
during the evolution. ByS(Λ ,G,Φ), we denote the set of
all probability distributions of the setΩ . Every element of
the simplexS(Λ ,G,Φ) can be considered as a state of the
population.

We define the evolution of the bisexual population
system as a QSOV : S(Λ ,G,Φ)→ S(Λ ,G,Φ): during the
evolution, every stateλ ∈ S(Λ ,G,Φ) of the population
system goes to another stateλ ′ =Vλ as follows:

λ ′(σ) = ∑
σ ′,σ ′′∈Ω

pσ ′σ ′′,σ λ (σ ′)λ (σ ′′), ∀ σ ∈ Ω (2)

where,pσ ′σ ′′,σ is heredity coefficients such that

pσ ′σ ′′,σ = pσ ′′σ ′,σ ≥ 0

∑
σ∈Ω(σ ′,σ ′′)

pσ ′σ ′′,σ =

{

0, if Ω(σ ′,σ ′′) = /0
c, if Ω(σ ′,σ ′′) 6= /0

∑
σ /∈Ω(σ ′,σ ′′)

pσ ′σ ′′,σ = 0.

Herec is a given positive constant.
As we mentioned above that depending on possible

scenarios for the evolution of the population system, the
sex ration might or might not be1 : 1 (see [5]).

Therefore, in general, we suppose that the population
system satisfies the followingp : q law: during the
evolution, the ratio of females and males remains the
same asp : q. In other words, the population system has
an equilibriump : q sex ratio.

We are going to provide some models in which one
may observe ap : q law.

We say that an evolution operator (2) has a p : q
property if for any σ ′,σ ′′ ∈ Ω and σ f ∈ Ω f ,σm ∈ Ωm
such thatσ f |Λ\Λ0

= σm |Λ\Λ0
one has

pσ ′σ ′′,σ f
: pσ ′σ ′′,σm = p : q, (3)

∑
σ∈Ω

pσ ′σ ′′,σ =

{

0 if Ω(σ ′,σ ′′) = /0
1

2pq if Ω(σ ′,σ ′′) 6= /0, (4)

where, 0< p,q< 1 andp+q= 1.
Biological meaning of the condition (3) in the1 : 1 law

case is that the possibilities having the same genotype of
girls and boys are equal.

An evolution operator (2) having ap : q property is
calleda p : q operator.

Let us definea hyper-simplexas follows:

S∗(Λ ,G,Φ) = {λ ∈S(Λ ,G,Φ) : λ (Ω f ) = p, λ (Ωm) = q}
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One can easily check that everyp : q operator has the
following canonical form

λ ′(σ) = 2 ∑
σ ′∈Ω f
σ ′′∈Ωm

pσ ′σ ′′,σ λ (σ ′)λ (σ ′′), ∀ σ ∈ Ω . (5)

Indeed, sinceΩ = Ω f ∪Ωm andΩ f ∩Ωm = /0, we have
that

λ ′(σ) = ∑
σ ′,σ ′′∈Ω f ∪Ωm

pσ ′σ ′′,σ λ (σ ′)λ (σ ′′)

= ∑
σ ′∈Ω f
σ ′′∈Ωm

pσ ′σ ′′,σ λ (σ ′)λ (σ ′′)+

+ ∑
σ ′∈Ωm
σ ′′∈Ω f

pσ ′σ ′′,σ λ (σ ′)λ (σ ′′)

= 2 ∑
σ ′∈Ω f
σ ′′∈Ωm

pσ ′σ ′′,σ λ (σ ′)λ (σ ′′).

One may check thatanyp : q operator satisfies ap : q
law.

Indeed, we want to show that the hyper-simplex
S∗(Λ ,G,Φ) is invariant under thep : q operator, i.e.,
V (S∗(Λ ,G,Φ))⊂ S∗(Λ ,G,Φ).

Let us first show that ifλ ∈ S∗(Λ ,G,Φ) thenVλ =
λ ′ ∈ S(Λ ,G,Φ). In fact, it follows from (4) and (5) that

∑
σ∈Ω

λ ′(σ) = 2 ∑
σ ′∈Ω f
σ ′′∈Ωm

(

∑
σ∈Ω

pσ ′σ ′′,σ

)

λ (σ ′)λ (σ ′′)

=
1
pq

λ (Ω f ) ·λ (Ωm) = 1.

Now, we want to show thatλ ′ ∈ S∗(Λ ,G,Φ). Indeed, for
anyσ f ∈ Ω f ,σm ∈ Ωm such thatσ f |Λ1 = σm|Λ1, it follows
from (3) and (5) thatλ ′(σ f ) : λ ′(σm) = p : q. This yields
thatλ ′(Ω f ) = p andλ ′(Ωm) = q.

In the sequel, we suppose that thep : q operator acts
on the hyper-simplex S∗(Λ ,G,Φ), i.e.,
V : S∗(Λ ,G,Φ)→ S∗(Λ ,G,Φ). Moreover, for the sake of
simplicity, we shall consider the population system
having a1 : 1 law (or Fisher’s principle), i.e.,p= q= 1

2.

3 Mendelian and Non-Mendelian QSO

In this section, we are going to provide Mendelian and
Non-Mendelian models of the bisexual population system
having1 : 1 law (or Fisher’s principle).

Mendel’s law of the heredity can be summarized in
two laws: Law of segregationand Law of independent
assortment. Law of segregation states that when any
individual produces gametes, the copies of a gene
separate so that each gamete receives only one copy
allele. Law of independent assortment states that alleles
of different genes assort independently of one another
during gamete formation.

Now, we want to describe Mendelian and
Non-Mendelian models of the bisexual population
system.

Let {Λi}, where i = 0,1, ...,n, be a set of maximal
connected subgraphs of the graph(Λ ,L). For the two
genotypes (parents)σ ′,σ ′′ ∈ Ω , we define a set (traits of
children) ΩM(σ ′,σ ′′) as follows: if σ ′ |Λ0= σ ′′ |Λ0 then
ΩM(σ ′,σ ′′) = /0 and if σ ′ |Λ0 6= σ ′′ |Λ0 then
ΩM(σ ′,σ ′′) = {σ ∈ Ω : σ |Λi = σ ′|Λi or σ |Λi = σ ′′|Λi}.

Definition 1.A 1 : 1 quadratic stochastic operator(5) is
called Mendelian, if pσ ′σ ′′,σ = 0, for all σ /∈ ΩM(σ ′,σ ′′).
A 1 : 1 quadratic stochastic operator(5) is called
Non-Mendelian if pσ ′σ ′′,σ0

6= 0 for some
σ0 /∈ ΩM(σ ′,σ ′′).

One of the natural way to construct Mendelian QSO
as follows. LetS∗(Λ ,G,Φ) = {λ ∈ S(Λ ,G,Φ)λ (Ω f ) =

λ (Ωm) =
1
2} be a hyper-simplex.

Let µ0 ∈ S∗(Λ ,G,Φ) be a fixed measure such that

µ0(σ f ) = µ0(σm), (6)

for anyσ f ∈ Ω f ,σm ∈ Ωm in which σ f |Λ\Λ0
= σm|Λ\Λ0

.

The heredity coefficients{pσ ′σ ′′,σ} of the Mendelian
QSO defined as follows

pσ ′σ ′′,σ =











2µ0(σ)
µ0(ΩM(σ ′,σ ′′)) if σ ∈ ΩM(σ ′,σ ′′) 6= /0

0 if σ 6∈ ΩM(σ ′,σ ′′) 6= /0
0 if ΩM(σ ′,σ ′′) = /0

(7)

for anyσ ′,σ ′′ ∈ Ω .
Then, one can easily check that

pσ ′σ ′′,σ f
: pσ ′σ ′′,σm = 1 : 1

∑
σ∈Ω

pσ ′σ ′′,σ =

{

0 if Ω(σ ′,σ ′′) = /0
2 if Ω(σ ′,σ ′′) 6= /0,

for any σ ′,σ ′′ ∈ Ω and σ f ∈ Ω f ,σm ∈ Ωm such that
σ f |Λ\Λ0

= σm|Λ\Λ0
.

This means that the1 : 1 QSO with (7) is Mendelian.
It is worth mentioning that Mendelian QSO defined

by (7) is convenient to study dynamics of some bisexual
population systems. In the next section we shall consider
some applications of Mendelian QSO.

4 Mendelian QSO on the simplest graph

4.1 A Mendelian Trait.

In this section we are going to discuss the mathematical
model of a Mendelian trait.A Mendelian traitis one that
is controlled by a single locus and shows a simple
Mendelian inheritance pattern. These traits include PTC
(phenylthiocarbamide) tasting, hairline shape, tongue
rolling, earlobe attachment, hand clasping etc. (see [7]).

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1724 N.Ganikhodjaev et. al.: Mendelian and Non-Mendelian...

Let (Λ ,L) be a graph such that
Λ0 = {0},Λ1 = {1},Λ = Λ0∪Λ1 andL = /0. Suppose that
a child receivesdominant and recessivealleles from
parents, i.e., Φ2 = {A,a}. We then have that
Ω = {σ1,σ2,σ3,σ4}, Ω f = {σ1,σ2}, andΩm = {σ3,σ4}
where

σ1 = ( f ,A), σ2 = ( f ,a), σ3 = (m,A), σ4 = (m,a).

For anyσ ′,σ ′′ ∈ Ω one has that

Ω σ ′,σ ′′

M =











/0 if σ ′ |Λ0= σ ′′ |Λ0

{σ ′,σ ′′} if σ ′ |Λ0 6= σ ′′ |Λ0,σ
′ |Λ1= σ ′′ |Λ1

Ω if σ ′ |Λ0 6= σ ′′ |Λ0,σ
′ |Λ1 6= σ ′′ |Λ1

Let
S∗(Λ ,G,Φ2) = {λ ∈ S(Λ ,G,Φ2) : λ (Ω f ) = λ (Ωm) =

1
2}

be a hyper-simplex. In other words,λ ∈ S∗(Λ ,G,Φ2)
means that λ (σi) ≥ 0, i = 1,4 such that
λ (σ1)+λ (σ2) = λ (σ3)+λ (σ4) =

1
2.

Now, we choose a measureµ0 ∈ S∗(Λ ,G,Φ2)
satisfying the condition (6), i.e.,µ0(σi) = αi , i = 1,4 such
thatα1 = α3 = α andα2 = α4 =

1
2 −α whereα ∈ (0, 1

2).
We then may define heredity coefficients{pσ ′σ ′′,σ} of

the Mendelian1 : 1 QSO by the formula (7).
The evolution of the Mendelian trait of the bisexual

population system can be given as followsλ ′ =Vλ

λ ′(σ1) = 2λ (σ1)λ (σ3)+4αλ (σ2)λ (σ3)+

+4αλ (σ1)λ (σ4)

λ ′(σ2) = 2(1−2α)λ (σ1)λ (σ4)+2(1−2α)λ (σ2)λ (σ3)

+2λ (σ2)λ (σ4)

λ ′(σ3) = 2λ (σ1)λ (σ3)+4αλ (σ1)λ (σ4)+ (8)

+4αλ (σ2)λ (σ3)

λ ′(σ4) = 2(1−2α)λ (σ1)λ (σ4)+2(1−2α)λ (σ2)λ (σ3)

+2λ (σ2)λ (σ4).

Let

S2n−1 =

{

x∈ R
2n :

2n

∑
i=1

xi = 1, xi ≥ 0, ∀i = 1,2n

}

(9)

S̄2n−1 =

{

x∈ S2n−1 :
n

∑
i=1

xi =
2n

∑
i=n+1

xi =
1
2

}

(10)

be a(2n−1)−dimensional simplex and a hyper-simplex,
respectively.

If we denote byλ (σi) = xi for all i = 1,4 then the
evolution operatorVα : S̄3 → S̄3 defined by (8) has
following form

Vα :











x′1 = 2x1x3+4αx2x3+4αx1x4,
x′2 = 2(1−2α)x1x4+2(1−2α)x2x3+2x2x4,
x′3 = 2x1x3+4αx2x3+4αx1x4,
x′4 = 2(1−2α)x1x4+2(1−2α)x2x3+2x2x4.

(11)
whereα ∈ (0, 1

2).

It is clear that for any x ∈ S̄3 one holds
(Vαx)1 = (Vαx)3, (Vαx)2 = (Vαx)4.

Let us consider the following quadratic functionfα :
[0, 1

2]→ [0, 1
2]

fα(x) = 2(1−4α)x2+4αx (12)

One can easily check the following assertions:

(i) The function (12) has two fixed points
Fix( fα) =

{

0, 1
2

}

;
(ii) If α = 1

4 then fα(x) = x;
(iii) If 0 < α < 1

4 then the trajectory of the function (12)
converges to the fixed pointx∗ = 0 for any initial
point x0 ∈ (0, 1

2). If 1
4 < α < 1

2 then the trajectory of
the function (12) converges to the fixed pointx∗ = 1

2
for any initial pointx0 ∈ (0, 1

2).

By means of the properties of the quadratic function
(12) one can get the following properties of the operator
Vα : S̄3 → S̄3 given by (11):

(i) The operator (11) has two fixed points
Fix(Vα) =

{(

0, 1
2,0,

1
2

)

,
(

1
2,0,

1
2,0

)}

;
(ii) If α = 1

4 then the operator (11) is an identity operator;
(iii) If 0 < α < 1

4 then the trajectory of the operator (11)
converges to the fixed pointx∗ =

(

0, 1
2,0,

1
2

)

for any
initial point x0 ∈ S̄3. If 1

4 < α < 1
2 then the trajectory

of the operator (11) converges to the fixed pointx∗ =
(

1
2,0,

1
2,0

)

for any initial pointx0 ∈ S̄3.

Based on this study, we may conclude that,in the
bisexual population system, the Mendelian trait which is
dominating in numbers at the initial state would be
spread towards the system in the future.

4.2 A Mendelian Inheritance with Multiple
Alleles

In this section, we are going to consider a Mendelian
inheritance with multiple alleles.

Let (Λ ,L) be a graph such that
Λ0 = {0},Λ1 = {1},Λ = Λ0∪Λ1 andL = /0. Suppose that
a child receives 4 types of alleles from parents, i.e.,
Φ4 = {1,2,3,4}.

We then have that

Ω = {σ f ,1,σ f ,2,σ f ,3,σ f ,4,σm,1,σm,2,σm,3,σm,4},

Ω f = {σ f ,1,σ f ,2,σ f ,3,σ f ,4},

Ωm = {σm,1,σm,2,σm,3,σm,4},

where

σ f ,1 = ( f ,1), σ f ,2 = ( f ,2), σ f ,3 = ( f ,3), σ f ,4 = ( f ,4),

σm,1 = (m,1), σm,2 = (m,2), σm,3 = (m,3), σm,4 = (m,4).

c© 2013 NSP
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For anyσ ′,σ ′′ ∈ Ω one has that

Ω σ ′,σ ′′

M =











/0, if σ ′ |Λ0= σ ′′ |Λ0

Ωσ , if σ ′ |Λ0 6= σ ′′ |Λ0,σ
′ |Λ1= σ ′′ |Λ1

Ωσ ,δ , if σ ′ |Λ0 6= σ ′′ |Λ0,σ
′ |Λ1 6= σ ′′ |Λ1 .

where,Ωσ = {σ ′,σ ′′}, Ωσ ,δ = {σ ′,σ ′′,δ ′,δ ′′}, and

δ ′ |Λ0 = σ ′ |Λ0, δ ′ |Λ1= σ ′′ |Λ1

δ ′′ |Λ0 = σ ′′ |Λ0, δ ′ |Λ1= σ ′ |Λ1 .

Let
S∗(Λ ,G,Φ4) = {λ ∈ S(Λ ,G,Φ4) : λ (Ω f ) = λ (Ωm) =

1
2}

be a hyper-simplex. In other words,λ ∈ S∗(Λ ,G,Φ4)
means thatλ (σ f ,i),λ (σm,i)≥ 0, i = 1,4 such that

4

∑
i=1

λ (σ f ,i) =
4

∑
i=1

λ (σm,i) =
1
2
.

Now, we choose a measureµ0 ∈ S∗(Λ ,G,Φ4)
satisfying the condition (6), i.e.,µ0(σ f ,i) = µ0(σm,i) = αi ,

i = 1,4 such thatα1 + . . .+α4 = 1
2 and αi ≥ 0 for any

i = 1,4. We then may define heredity coefficients
{pσ ′σ ′′,σ} of the Mendelian1 : 1 QSO by the formula (7).

The evolution of the Mendelian inheritance with 4
alleles of the bisexual population system can be given as
follows λ ′ =Wλ

λ ′(σ f ,i) =
4

∑
j=1

2αi

αi +α j

(

λ (σ f ,i)λ (σm, j)+λ (σ f , j)λ (σm,i)
)

λ ′(σm,i) =
4

∑
j=1

2αi

αi +α j

(

λ (σ f ,i)λ (σm, j)+λ (σ f , j)λ (σm,i)
)

where,i = 1,4.
If we denote byλ (σ f ,i) = xi andλ (σm,i) = xi+4 for all

i = 1,4 then the evolution operatorW : S̄7 → S̄7 defined by
(13) has following form

x′i =
4

∑
j=1

2αi

αi +α j

(

xix j+4+x jxi+4
)

, i = 1,4,

x′i+4 =
4

∑
j=1

2αi

αi +α j

(

xix j+4+x jxi+4
)

, i = 1,4.

It is clear that for any x ∈ S̄7 one holds
(Wx)i = (Wx)i+4 for all i = 1,4.

Therefore, it is enough to study the following operator

Wf :















































x′1 = x1

(

2x1+
4α1

α1+α2
x2+

4α1
α1+α3

x3+
4α1

α1+α4
x4

)

,

x′2 = x2

(

2x2+
4α2

α1+α2
x1+

4α2
α2+α3

x3+
4α2

α2+α4
x4

)

,

x′3 = x3

(

2x3+
4α3

α1+α3
x1+

4α3
α2+α3

x2+
4α3

α3+α4
x4

)

,

x′4 = x4

(

2x4+
4α4

α1+α4
x1+

4α4
α2+α4

x2+
4α4

α3+α4
x3

)

.

(13)

on the domainx1+ . . .+x4 =
1
2 andxi ≥ 0 for all i = 1,4.

One may check that the operator (13) has the following
form














































x′1 = x1

(

1+ 2(α1−α2)
α1+α2

x2+
2(α1−α3)

α1+α3
x3+

2(α1−α4)
α1+α4

x4

)

x′2 = x2

(

1+ 2(α2−α1)
α1+α2

x1+
2(α2−α3)

α2+α3
x3+

2(α2−α4)
α2+α4

x4

)

x′3 = x3

(

1+ 2(α3−α1
α1+α3

x1+
2(α3−α2)

α2+α3
x2+

2(α3−α4)
α3+α4

x4

)

x′4 = x4

(

1+ 2(α4−α1)
α1+α4

x1+
2(α4−α2)

α2+α4
x2+

2(α4−α3)
α3+α4

x3

)

.

(14)
Let yi = 2xi andy′i = 2x′i for i = 1,4. Then the operator

(14) is quadratic stochastic Volterra operator defined on
the simplexS3 :

y′i = yi

(

1+
4

∑
j=1
j 6=i

αi −α j

αi +α j
y j

)

, i = 1,4. (15)

Quadratic stochastic Volterra operators defined on the
finite dimensional simplex were studied very well in
[12]-[21]. Based on that study, we may get the same
conclusion which was done for the Mendelian trait, i.e.,
in the bisexual population system, the dominant
Mendelian trait of multiple alleles would be spread
towards the system in the future.

5 Construction of Non-Mendelian QSO on a
finite graph

In this section, we are aiming to study a special class of
non-Mendelian QSO. This study will be applied to the
transmission of Human blood group systems and Rhesus
factors (see Appendix).

Let {Λi}, where i = 0,1, ..., l , be a set of maximal
connected subgraphs of the graph(Λ ,L) such that
Λ0 = {x0}. Let Φ be a finite set of alleles andΩ be a set
of all genotypes. For the two genotypes (parents)
σ ′,σ ′′ ∈ Ω , we define a set (traits of children)Ω(σ ′,σ ′′)
as follows:

Ω(σ ′,σ ′′) =

{

/0, if σ ′ |Λ0= σ ′′ |Λ0

Ω , if σ ′ |Λ0 6= σ ′′ |Λ0 .
(16)

In other words, during the evolution of the bisexual
population system, a child can receive any type of traits
(not only parent’s traits).

Now, we are going to provide a construction of a
non-Mendelian1 : 1 QSO defined by a non-Mendelian
inheritance (16).

Let
S∗(Λ ,G,Φ) = {λ ∈ S(Λ ,G,Φ) : λ (Ω f ) = λ (Ωm) =

1
2}

be a hyper-simplex.
For given σ ′,σ ′′, we choose a positive measure

µσ ′,σ ′′ ∈ S∗(Λ ,G,Φ) such that

µσ ′,σ ′′(σ f ) = µσ ′,σ ′′(σm), (17)
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for anyσ f ∈ Ω f ,σm ∈ Ωm in which σ f |Λ\Λ0
= σm|Λ\Λ0

.
We define the heredity coefficients{pσ ′σ ′′,σ} of the

non-Mendelian1 : 1 QSO as follows

pσ ′σ ′′,σ =

{

2µσ ′,σ ′′(σ) if Ω(σ ′,σ ′′) = Ω ,

0 if Ω(σ ′,σ ′′) = /0.
(18)

Then the transmissionV : S∗(Λ ,G,Φ)→ S∗(Λ ,G,Φ)
of Rh blood groups can be written as followsλ ′ =Vλ

λ ′(σ) = 4 ∑
σ ′∈Ω f
σ ′′∈Ωm

µσ ′,σ ′′(σ)λ (σ ′)λ (σ ′′), (19)

for all σ ∈ Ω .
Due to the condition (17), one can see that

λ ′(σ f ) = λ ′(σm) for any σ f ∈ Ω f ,σm ∈ Ωm in which

σ f |Λ\Λ0
= σm|Λ\Λ0

. Suppose thatΩ f =
{

σ (1)
f , ...,σ (n)

f

}

and Ωm =
{

σ (1)
m , ...,σ (n)

m

}

where σ (i)
f |Λ\Λ0

= σ (i)
m |Λ\Λ0

for all i = 1,n.

Let pi j ,k = 2µ
σ (i)

f ,σ ( j)
m

(

σ (k)
f

)

= 2µ
σ (i)

f ,σ ( j)
m

(

σ (k)
m

)

, for

all i, j,k= 1,n. Since

∑
σ∈Ω

µσ ′,σ ′′(σ) =
n

∑
k=1

(

µ
σ (i)

f ,σ ( j)
m
(σ (k)

f )+µ
σ (i)

f ,σ ( j)
m
(σ (k)

m )

)

= 1

we have that
n
∑

k=1
pi j ,k = 1 andpi j ,k ≥ 0 for all i, j,k= 1,n.

We denote byλ (σ (k)
f ) = xk, λ (σ (k)

m ) = xn+k,∀k= 1,n.
Then the non-Mendelian inheritance evolution (19) can be
written as follows















x′k = 2
n
∑

i, j=1
pi j ,kxixn+ j ,

x′n+k = 2
n
∑

i, j=1
pi j ,kxixn+ j .

for all k= 1,n. It is clear thatx′k = x′n+k.
Let us defineyk = 2xk and y′k = 2x′k. Then, we may

study the following QSOV : Sn−1 → Sn−1 instead of the
previous operator

y′k =
n

∑
i, j=1

pi j ,kyiy j , k= 1,n. (20)

where,
n
∑

k=1
pi j ,k = 1 andpi j ,k = p ji ,k ≥ 0 for all i, j,k= 1,n.

The regularity of the QSO (20) was studied in [18].
Namely, it was proven thatif pi j ,k >

1
2n for all i , j,k= 1,n

then QSO has a unique fixed point and all trajectory
converge to this fixed point.

The biological interpretation of this result is that,in
the bisexual population system, if initial distributions of
all possible traits in the system are greater than the
reciprocal of the total number of traits then eventually
these distributions become stable and all types of traits
will be preserved during the evolution.
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A Models of Transmission of ABO and Rh
Blood Groups

In this appendix, we construct QSO which describes
inheritance ofABO and Rh blood groups. To the best of
our knowledge, this is the first attempt to describe a
mathematical model of the inheritance ofABO and Rh
blood groups. In our model, we shall not take into
consideration any internal or external factors of the
society such as migration or immigration. We are
considering an ideal society. We could not give any
comparison between our outcomes and others because it
is the first study on this topic. At the same time, we are
not asking any credit to be true our outcomes. Of course,
our model is far from being the best model. However, it is
the first attempt in this direction and it can be modified
and improved for any complex society.

A.1 Transmission of Rh Blood Groups.

In this section, we construct QSO which describes
inheritance of Rh blood groups.

It is known that there are two types of Rhesus factors:
Rh positive and Rh negative, i.e.,Φ2 = {+,−}. Moreover,
a gender of human does not have any influence on the types
of the Rhesus factor. Therefore, we can consider a gender
of human and Rhesus factors as vertexes of disconnected
graph(Λ ,L), whereΛ0 = {0},Λ1 = {1},Λ =Λ0∪Λ1 and
L = /0. We then have thatΩ = {σ f ,+,σ f ,−,σm,+,σm,−},
Ω f = {σ f ,+,σ f ,−}, andΩm = {σm,+,σm,−} where

σ f ,+ = ( f ,+), σ f ,− = ( f ,−),

σm,+ = (m,+), σm,− = (m,−).

Now, our main task to calculate heredity coefficients,
for example pσ f ,+,σm,+(σm,−). In order to do so, we
randomly took around 10,000 parents from Malaysia and
investigated the transmission of Rh andABO blood
groups to their children. In our database,
1
2 pσ f ,+,σm,+(σm,−) means a frequency (or von-Mises
probability) of having a son with Rh negative from both
parents having Rh positive. More precisely,
1
2 pσ f ,+,σm,+(σm,−) =

Nm− ( f+,m+)

N( f+,m+)
, where N( f+,m+) is a

total number of children of parents both having Rh
positive, andNm−( f+,m+) is a total number of sons with
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Rh negative inN( f+,m+). Similarly, we can calculate
other heredity coefficients.

For the sake of simplicity, we use the following
notations

σ1 = (m,+), σ2 = (m,−),

σ3 = ( f ,+), σ4 = ( f ,−).

We define the all heredity coefficientspσ ′σ ′′,σ :

pσ1σ3,σ1 = 0.4925 pσ1σ3,σ2 = 0.0075 pσ1σ3,σ3 = 0.4925
pσ1σ3,σ4 = 0.0075 pσ1σ4,σ1 = 0.3273 pσ1σ4,σ2 = 0.1727
pσ1σ4,σ3 = 0.3273 pσ1σ4,σ4 = 0.1727 pσ2σ3,σ1 = 0.3230
pσ2σ3,σ2 = 0.1770 pσ2σ3,σ3 = 0.3230 pσ2σ3,σ4 = 0.1770
pσ2σ4,σ1 = 0.05 pσ2σ4,σ2 = 0.45 pσ2σ4,σ3 = 0.05
pσ2σ4,σ4 = 0.45

Remark.The heredity coefficients definitely depend on the
region or place where we are collecting statistics.
Consequently, the outcomes of distributions of Rh blood
groups would be different from place to place. In our
statistics, we have randomly chosen 10,000 parents from
Malaysia. Moreover, the size of statistics might influence
to the outcomes. The outcomes become more accurate
and precise as much as large the statistics.

Due to (19), the transmission of Rh blood groups has
the following form

x′1 = 1.9699x1x3+1.3094x1x4+1.2919x2x3+0.2x2x4,
x′2 = 0.0301x1x3+0.6906x1x4+0.7081x2x3+1.8x2x4,
x′3 = 1.9699x1x3+1.3094x1x4+1.2919x2x3+0.2x2x4,
x′4 = 0.0301x1x3+0.6906x1x4+0.7081x2x3+1.8x2x4.

(21)
It is clear thatx′1 = x′3 andx′2 = x′4. Let y1 = 2x1 and

y2 = 2x2. As we showed in the previous section, it is
enough to study the following QSOV : S1 → S1 defined
on 1-dimensional simplexS1

V :

{

y′1 = ay2
1+2by1y2+cy2

2,
y′1 = (1−a)y2

1+2(1−b)y1y2+(1−c)y2
2.

(22)

where,a= 0.9849,b= 0.6503,c= 0.1.
The dynamics of this operator was studied in [22]. Let

∆ = 4(1− a)c+(1− 2b)2. In our case, one can see that
0< ∆ < 4. Then the operator (22) has a unique attracting
fixed point and all its trajectories converge to that fixed
point. Moreover, a numerical calculation shows that, a
unique fixed point is approximately equal to(0.95,0.05)
and it is attracting. All trajectory of the operator (21)
converge to that fixed point.

Based on this study, we may state thatthe transmission
of Rh blood groups in Malaysia will be eventually stable
and Rh blood groups would be distributed as around 95%
Rh positive and around 5% Rh negative.

A.2 A Transmission of ABO Blood Groups.

In this section, we construct QSO which describes
inheritance ofABO blood groups.

It is known that there are four types ofABO blood
groups:A, B, AB, O, i.e.,Φ4 = {A,B,AB,O}. Moreover,
a gender of human does not have any influence on the
types ofABO blood groups. Therefore, we can consider a
gender of human andABO blood groups as vertexes of
disconnected graph (Λ ,L), where
Λ0 = {0},Λ1 = {1},Λ = Λ0 ∪Λ1 and L = /0. We then
have that

Ω = {σ1,σ2,σ3,σ4,σ5,σ6,σ7,σ8},
Ω f = {σ1,σ2,σ3,σ4}, Ωm = {σ5,σ6,σ7,σ8}.

where

σ1 = ( f ,A), σ2 = ( f ,B), σ3 = ( f ,AB), σ4 = ( f ,O),
σ5 = (m,A), σ6 = (m,B), σ7 = (m,AB), σ8 = (m,O).

Now, our main task to calculate heredity coefficients
of ABO blood groups, for exampleµσ f ,A ,σm,A (σm,A). In
our database,µσ f ,A ,σm,A (σm,A) means a frequency (or
von-Mises probability) of having a son withA blood
group from parents both havingA blood groups. More

precisely, µσ f ,A ,σm,A (σm,A) =
Nm,A(( f ,A),(m,A))

N(( f ,A),(m,A)) , where

N(( f ,A),(m,A)) is a total number of children of parents
both havingA blood groups, andNm,A(( f ,A),(m,A)) is a
total number of sons with A blood group in
N(( f ,A),(m,A)). Similarly, we can calculate other
heredity coefficients.

Here are the distributions ofABO blood groups in
Malaysia: (for the sake of simplicity, we useµi j ,k instead
of µσiσ j (σk))

µ15,1 = 0.4533µ16,1 = 0.0865µ17,1 = 0.2218

µ15,2 = 0.0063µ16,2 = 0.2197µ17,2 = 0.0940

µ15,3 = 0.0038µ16,3 = 0.1661µ17,3 = 0.1767

µ15,4 = 0.0366µ16,4 = 0.0277µ17,4 = 0.0075

µ15,5 = 0.4533µ16,5 = 0.0865µ17,5 = 0.2218

µ15,6 = 0.0063µ16,6 = 0.2197µ17,6 = 0.0940

µ15,7 = 0.0038µ16,7 = 0.1661µ17,7 = 0.1767

µ15,8 = 0.0366µ16,8 = 0.0277µ17,8 = 0.0075

µ25,1 = 0.1750µ26,1 = 0.0060µ27,1 = 0.0192

µ25,2 = 0.1833µ26,2 = 0.4653µ27,2 = 0.3846

µ25,3 = 0.0983µ26,3 = 0.0060µ27,3 = 0.0769

µ25,4 = 0.0433µ26,4 = 0.0227µ27,4 = 0.0192

µ25,5 = 0.1750µ26,5 = 0.0060µ27,5 = 0.0192

µ25,6 = 0.1833µ26,6 = 0.4653µ27,6 = 0.3846

µ25,7 = 0.0983µ26,7 = 0.0060µ27,7 = 0.0769

µ25,8 = 0.0433µ26,8 = 0.0227µ27,8 = 0.0192

µ35,1 = 0.2525µ36,1 = 0.0714µ37,1 = 0.0522

µ35,2 = 0.0707µ36,2 = 0.2662µ37,2 = 0.0373

µ35,3 = 0.1667µ36,3 = 0.1299µ37,3 = 0.4030

µ35,4 = 0.0101µ36,4 = 0.0325µ37,4 = 0.0075
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µ35,5 = 0.2525µ36,5 = 0.0714µ37,5 = 0.0522

µ35,6 = 0.0707µ36,6 = 0.2662µ37,6 = 0.0373

µ35,7 = 0.1667µ36,7 = 0.1299µ37,7 = 0.4030

µ35,8 = 0.0101µ36,8 = 0.0325µ37,8 = 0.0075

µ45,1 = 0.2730µ46,1 = 0.0085µ47,1 = 0.0709

µ45,2 = 0.0117µ46,2 = 0.2888µ47,2 = 0.0613

µ45,3 = 0.0059µ46,3 = 0.0049µ47,3 = 0.1142

µ45,4 = 0.2094µ46,4 = 0.1977µ47,4 = 0.2536

µ45,5 = 0.2730µ46,5 = 0.0085µ47,5 = 0.0709

µ45,6 = 0.0117µ46,6 = 0.2888µ47,6 = 0.0613

µ45,7 = 0.0059µ46,7 = 0.0049µ47,7 = 0.1142

µ45,8 = 0.2094µ46,8 = 0.1977µ47,8 = 0.2536

µ18,1 = 0.2146µ28,1 = 0.0066µ38,1 = 0.1070

µ18,2 = 0.0022µ28,2 = 0.2325µ38,2 = 0.1209

µ18,3 = 0.0045µ28,3 = 0.0066µ38,3 = 0.0651

µ18,4 = 0.2787µ28,4 = 0.2542µ38,4 = 0.2070

µ18,5 = 0.2146µ28,5 = 0.0066µ38,5 = 0.1070

µ18,6 = 0.0022µ28,6 = 0.2325µ38,6 = 0.1209

µ18,7 = 0.0045µ28,7 = 0.0066µ38,7 = 0.0651

µ18,8 = 0.2787µ28,8 = 0.2542µ38,8 = 0.2070

µ48,1 = 0.0058µ48,2 = 0.0035µ48,3 = 0.0034

µ48,4 = 0.4873µ48,5 = 0.0058µ48,6 = 0.0035

µ48,7 = 0.0034µ48,8 = 0.4873

Remark.The heredity coefficients ofABO blood groups
definitely depend on the region or place where we are
collecting statistics. Consequently, the outcomes of
distributions ofofABO blood groups would be different
from place to place. In our statistics, we have randomly
chosen 10,000 parents from Malaysia. Moreover, the size
of statistics might influence to the outcomes. The
outcomes become more accurate and precise as much as
large the statistics.

Due to (19), the transmissionV : S7 → S7 of ABO
blood groups has the following form

x′1 = 1.8131x1x5+0.3460x1x6+0.8872x1x7+0.858x1x8

+ 0.7x2x5+0.0239x2x6+0.0769x2x7+0.0265x2x8

+ 1.0101x3x5+0.2857x3x6+0.209x3x7+0.427x3x8

+ 1.092x4x5+0.0339x4x6+0.2837x4x7+0.023x4x8

x′2 = 0.0253x1x5+0.8789x1x6+0.3759x1x7+0.009x1x8

+ 0.7333x2x5+1.8612x2x6+1.5385x2x7+0.930x2x8

+ 0.2828x3x5+1.0649x3x6+0.1493x3x7+0.483x3x8

+ 0.047x4x5+1.1554x4x6+0.2452x4x7+0.014x4x8

x′3 = 0.0152x1x5+0.6644x1x6+0.7068x1x7+0.018x1x8

+ 0.3933x2x5+0.0239x2x6+0.3077x2x7+0.026x2x8

+ 0.6667x3x5+0.5195x3x6+1.6119x3x7+0.260x3x8

+ 0.0235x4x5+0.0198x4x6+0.4567x4x7+0.013x4x8

x′4 = 0.147x1x5+0.111x1x6+0.0301x1x7+1.115x1x8

+ 0.1733x2x5+0.0909x2x6+0.0769x2x7+1.017x2x8

+ 0.0404x3x5+0.1299x3x6+0.0299x3x7+0.828x3x8

+ 0.8376x4x5+0.791x4x6+1.0144x4x7+1.949x4x8

x′5 = 1.8131x1x5+0.3460x1x6+0.8872x1x7+0.858x1x8

+ 0.7x2x5+0.0239x2x6+0.0769x2x7+0.026x2x8

+ 1.0101x3x5+0.2857x3x6+0.209x3x7+0.427x3x8

+ 1.092x4x5+0.0339x4x6+0.2837x4x7+0.023x4x8

x′6 = 0.0253x1x5+0.8789x1x6+0.3759x1x7+0.009x1x8

+ 0.7333x2x5+1.8612x2x6+1.5385x2x7+0.930x2x8

+ 0.2828x3x5+1.0649x3x6+0.1493x3x7+0.483x3x8

+ 0.047x4x5+1.1554x4x6+0.2452x4x7+0.014x4x8

x′7 = 0.0152x1x5+0.6644x1x6+0.7068x1x7+0.018x1x8

+ 0.3933x2x5+0.0239x2x6+0.3077x2x7+0.027x2x8

+ 0.6667x3x5+0.5195x3x6+1.6119x3x7+0.261x3x8

+ 0.0235x4x5+0.0198x4x6+0.4567x4x7+0.014x4x8

x′8 = 0.1465x1x5+0.1107x1x6+0.0301x1x7+1.115x1x8

+ 0.1733x2x5+0.0909x2x6+0.0769x2x7+1.017x2x8

+ 0.0404x3x5+0.1299x3x6+0.0299x3x7+0.828x3x8

+ 0.8376x4x5+0.791x4x6+1.0144x4x7+1.949x4x8

This operator has a unique fixed point

(0.042,0.258,0.029,0.171,0.042,0.258,0.029,0.171)

which is attracting and all its trajectory converge to this
fixed point.

Based on this study, we can state thatthe transmission
of ABO blood groups in Malaysia will be eventually stable
and ABO blood groups would be distributed as follows:
around 8% fromA, around 52% fromB, around 6% from
AB, and around 34% fromO.
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