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Abstract: In this paper, we attempt to provide mathematical models of Mendelian anedMéndelian inheritances of the bisexual
population system having Fishedsl principle. In our model, we always assume that distributions of the sémeqgtype of female
and male populations are equal. We study the evolution of a Mendelian tradn Application of a non-Mendelian inheritance, we
construct a quadratic stochastic operator that describes transmiggi&®oand Rh blood groups.
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1 Introduction characteristics are passed from parent organisms to their
offspring. In Mendelian inheritance, each parent

The study of sex allocation is often considered the mostcontributes one of two possible alleles for a trait. In
successful branch of evolutionary biology. Sex allocationhumans, eye color is an inherited characteristic and an
is the allocation of resources to male and femaleindividual might inherit the "brown-eye trait” from one of
reproductive function in sexual species (s&e[[2]). the parents (see7]). Non-Mendelian inheritances a

In anthropology and demography, the human sex ratiogeneral term that refers to any pattern of inheritance in
is the ratio of females to males in the population systemwhich traits do not segregate in accordance with Mendel's
Like most sexual species, the human sex ratio islaws. Inheritance of traits ifungi, viruses, and bacteria
approximatelyl:1. Fisher’'s principleis an evolutionary are all non-Mendelian. Non-Mendelian inheritance plays
model that explains why the sex ratio of most sexuala role in several disease processes (8pe [
species is approximatell.1. It was famously outlined by
R. Fisher in his bookd]. A. W. F. Edwards has remarked

that Fisher’s principleis "probably the most celebrated population geneticsg|. The fascinating applications of

argument in evolutionary biology”4]. However, W.D. drati hasti i .
Hamilton had been introduced a model by breaking thedua ratic stochastic operators to population genetics wer

assumptions made in Fisher's model in which the diven in [1Q]. It describes a distribution of a species for

- . . next generation if given the distribution of these species
populat!on system has an extraordinary sex ratlo.(’é}t)e [ for cm?rrent generafi]on In the papet1], it was giver?a
Sex ratios that aré:1 are hence known ad-isheriarf, ' ’

) , ) . long self-contained exposition of the recent achievements
and those that are nol:1 are "non-Fisheriaii or ; ) .
»extraordinary. and open problems in the theory of quadratic stochastic

Heredity is the passing of traits to offspring from its operators.
parent or ancestors. This is the process by which an In this paper, we are attempting to give a
offspring cell or organism acquires or becomes mathematical model of Mendelian and Non-Mendelian
predisposed to the characteristics of its parent cell orinheritances in the bisexual population systems. Our
organism. Inherited traits are controlled by genes and the@pproach providing the evolution of the bisexual
complete set of genes within an organism’s genome igpopulation system is totally different from the one given
calledits genotypeThe idea of particulate inheritance of in [10] and it gives an opportunity to formulate the
genes can be attributed to G. Mendel (s8¢ Mendelian  Mendelian inheritance in the system. We shall study the
inheritanceis a scientific description of how hereditary evolution of Mendelian and Non-Mendelian inheritances

A quadratic stochastic operator (QSO) is a primary
source for investigations of dynamical properties of
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of the biosphere having Fisherk:1l principle. In our is a set of all possible genotypes (traits) of children
model, we always assume thahé distributions of the having parents with genotypes and ¢”. In this sense,
same phenotype of female and male populations arehe constrain for the se®(o’,d”) means that the spices
equal’ We construct a quadratic stochastic operator thathaving the same gender would not produce anything else
describe inheritance ABO and Rh blood groups. This while the different gender spices will produce something
study is the continuation of the papel] and[13]. during the evolution. BY§(A, G, @), we denote the set of

all probability distributions of the s&®. Every element of

the simplexS(A, G, @) can be considered as a state of the

2 Preliminaries population. _ _ .
We define the evolution of the bisexual population
We recall some definitions and notions (s8], system as a QS®: A, G, @) — SA,G, @): during the

Let (A,L) be a graph without loops and multiple evolution, every statd € S(A,G, @) of the population
edges, wherd is the finite set of vertexes ardis the set ~ System goes to another state= VA as follows:
of edges of the graph ang\;}, i =1,...,n— the set of , , ”
maximal connected subgraphs (connected components) of A (0) = Po'aroA(0)A(0"), VoeQ (2)
the graph(A,L). Furthermore, letb be a finite set, called 0',0"eQ
the set of alleles (in problems of statistical mechanics,
®— is called the range of spin).

The functiono : A — @ is called a genotype (in
statistical mechanics, it is called configuration). Denote Po'o”.0 = Po’a',c = 0
by Q the set of all genotypes and A, @) the set of all

where,py /o7 o IS heredity coefficients such that

probability distributions defined on the s&. A QSO [0, if Q(d’,0")=0
V : SA,®) — SA,®) is defined as follows: for an er(zo/ o) Po'o”.0 =1 ¢, if Q(a’,0")#0
arbitrary measurel € S(A, ®), the measurel’ = VA '

defined as

Poo.c = 0.
ag¢Q(o’,0")

Herec is a given positive constant.

As we mentioned above that depending on possible
oco scenarios for the evolution of the population system, the
[9], [10]). Here pyror o is called a heredity coefficient. sex ration might or might not be: 1 (see pJ).

In the model 1), the gender difference of species has  Therefore, in general, we suppose that the population
not taken into the consideration. However, in many system satisfies the following :q law: during the
population systems, this difference plays an importantevolution, the ratio of females and males remains the
role during the evolution of the population system. same a$ :q. In other words, the population system has
Therefore, in this paper, we are going to provide thean equilibriump : q sex ratio.
model of the bisexual population system in which the  We are going to provide some models in which one
gender difference has taken into the consideration. It isnay observe @ : q law.
worth mentioning that our model for the bisexual We say that an evolution operato®)(hasa p:q
population system is totally different from the model propertyif for any ¢’,0” € Q and g; € Qf,0m € Qn
provided in [LO] and it has an advantage to provide the such thaot [x\n,= Om [a\n, ONE has
mathematical model of a Mendelian inheritance.

Let (A,L) be a graph andA;}, wherei =0,1,...,n, Po'o” o Po'a”.om = P 0 (3)
be sets of its maximal connected subgraphs such that
Mo = {x°}. Suppose that the population system has only

A(o)= Z PooroA(0)A ("), YoeQ (1)
a’,0"7eQ

wherepyign g = Pgroro > 0and y pggre =1 (see

female and male gende@= { f,m}. Let @ be a finite set 0 if Q(o,0")=0

of alleles. Every species can be characterized by the z Po'o”.o = { % if Q(a’,0")#0, (4)
following genotype 0 : A — G x ® such that 0eQ b

0 |pg: Mo — G, anda [a\p,: A\ Ao — @. We denote the  where, 0< p,q< 1 andp+q=1.

set of all genotypes b@. Let Qs = {0 € Q : g(X°) = f} Biological meaning of the conditior8) in thel: 1 law

andQn={0cQ: o‘(xo) = m} be sets of all female and case is that the possibilities having the same genotype of
male genotypes, respectively. It is clear thatgirls and boys are equal.

Q = Q;UQy and Qs N Qny = 0. For the two genotypes An evolution operator?) having ap: q property is
(parents)a’, 0" € Q, we define a set (traits of children) calledap : g operator.

Q(0’,0") such that ifo’ |5,= 0” |, thenQ(o’,0") =0 Let us definea hyper-simplesxas follows:

and if 0’ |5, # 0" |5, thenQ(o’,0") is some nonempty

subset of2. From the biological point of view2(¢’,0”)  S'(A,G, @) ={A € SA,G,®): A(Q)=p, A(Qm) =0}
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One can easily check that evary q operator has the Now, we want to describe Mendelian and
following canonical form Non-Mendelian models of the bisexual population
system.
A(o)=2 z Poor oA (0)A(0"), YoeQ. (5) Let {A;}, wherei = 0,1,....n, be a set of maximal
"//ng connected subgraphs of the grapf,L). For the two
g’ el2m

genotypes (parentg)’,c” € Q, we define a set (traits of
Indeed, since? = Q; U Qnm and Q N Q= 0, we have  children) Qu(o’, ") as follows: if o’ |5,= 0" |5, then
that Qu(o’,0”) = 0 and if o' [p# 0" [p, then
Qu(o’,0")={0 e Q:0|p =0 0orals =0"|p}.

/\/(0) = z po’a”,o)\ (OJ))‘ (OJ/)
0',0"€Q{U0m Definition 1.A 1: 1 quadratic stochastic operatofs) is
= z Poror oA (0')A(0") + called Mendelian, if g.o» ; = 0, for all o ¢ Qu(a’,0”).
o A 1:1 quadratic stochastic operaton5) is called
o”e0m Non-Mendelian if  pgrg, # 0 for some
+ Y Pooroh(0)A (") do & Qu(o’,0”).
a’eQm
o’ eQ; One of the natural way to construct Mendelian QSO
) z Poror oA (0))A ("), as follows. LetS*(A,G,®) = {A € SA, G, P)A(Qf) =
of<ty A(Qm) = 1} be a hyper-simplex.
o’cOm Let tp € S*(A, G, @) be a fixed measure such that
One may check thanyp : q operator satisfies @ : q
law. Ho(0t) = Ho(Om), (6)

Indeed, we want to show that the hyper-simplex ) i
S'(A,G,®) is invariant under thep:q operator, i.e., [OF Y0t € Qf,0m € Qmin which dt|a\p, = Tmla\n,-

V(S(A,G,®)) C S(A,G, D). The heredity coefficient§py/» o} Of the Mendelian
Let us first show that iA € S'(A,G, ®) thenvA = QSO defined as follows
, .
A e SA,G, ®). In fact, it follows from @) and §) that po(éﬁ?g.)a”)) it o € Qu(a’,a") #0
S A(o)=2 Z ( S po_,a,,’o_)/\(()'/))\(o'”) Po'o”.g =4 0 if o¢ Qu(a’,0”")#0 (7)
gen 0 \deQ 0 if Qu(o’,0")=0
a’’cQm
1 foranyo’,0” € Q.
= EI/\ (Qf)-A(Qm)=1. Then, one can easily check that

Now, we want to show that’ € S*(A,G, ®). Indeed, for ~ Po’o” s : Po'o” .0y = 111

anyos € Qf,0m € Qm such thaos |y, = dm|x,, it follows 0 if O(c.c") =0

from (3) and 6) thatA’(os) : A'(om) = p: g. This yields z Po'g’.c = {2 if anx’a//g £0

thatA’(Qf) = pandA’(Qm) =q. oen ’ '

In the sequel, we suppose that theq operator acts oy any ’,0” € Q and 05 € Qf,0m € Om such that
on the hyper-simplex  S(A,G, @), ie., Ot a\ny = Tl
. 0 0"

V:S(A,G @) = S'(A,G, @). Moreover, for the sake of This means that the: 1 QSO with ) is Mendelian.

simplicity, we shall consider the population Systtm it is worth mentioning that Mendelian QSO defined

having al : 1law (or Fisher's principle), i.ep=q= 3. by (7) is convenient to study dynamics of some bisexual
population systems. In the next section we shall consider

. . some applications of Mendelian QSO.
3 Mendelian and Non-Mendelian QSO

In this section, we are going to provide Mendelian and . .
Non-Mendelian models of the bisexual population system4 Mendelian QSO on the simplest graph

havingl : 1 law (or Fisher’s principle). ] ]

Mendel's law of the heredity can be summarized in 4.1 A Mendelian Trait.
two laws: Law of segregatiorand Law of independent
assortment Law of segregation states that when any In this section we are going to discuss the mathematical
individual produces gametes, the copies of a genanodel of a Mendelian traitA Mendelian traitis one that
separate so that each gamete receives only one copg controlled by a single locus and shows a simple
allele. Law of independent assortment states that alleledendelian inheritance pattern. These traits include PTC
of different genes assort independently of one anothefphenylthiocarbamide) tasting, hairline shape, tongue
during gamete formation. rolling, earlobe attachment, hand clasping etc. (e [
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Let (A,L) be a graph such that
No = {0},A1 = {1},A = AgUA; andL = 0. Suppose that
a child receivesdominant and recessivealleles from
parents, i.e., @ = {Aja}. We then have that
Q ={01,02,03,04}, Qs = {01,02}, and Qn, = {03, 04}
where
Ulz(faA)v 0-2:(faa)a

o3=(mA), og4=(ma).

For anyd’, 0” € Q one has that

0 if o’ ‘/\0: a” |/\0
s )
QI\O/I' Ne) — {0./70//} nt O./ ‘/\0# O—// |/\070J |/\l: O—// ‘/\1
Q if o’ ‘/\07é a” |/\o’0/ |/\17‘é a” ‘/\1
Let

S'(A,G, @) = {A € A, G, ®2) 1 A(Q1) = A (Qm) = 3}
be a hyper-simplex. In other wordg, € S(A,G, ®7)
means that A(g)) > 0, i 1,4 such that
A(01) +A(02) = A(03) +A(04) = 3.

Now, we choose a measurgp € S'(A,G,P;)
satisfying the conditionf), i.e., Up(gi) = aj, i = 1,4 such
thatay = a3 = a andaz = a4 = 3 — a wherea € (0, 3).

We then may define heredity coefficiedisy g o} Of
the Mendeliarl : 1 QSO by the formulay).

The evolution of the Mendelian trait of the bisexual
population system can be given as follods=V A

)\/(01) = 2A(01)A(03) +4aA(02)A(03) +

+4aA(01)A(04)

A (02) = 2(1—2a)A(01)A(04) +2(1—2a)A (02)A (03)
+2A(02)A (04)

N (03) = 2A (01)A (03) + 4aA (01)A (03) + 8)
+4aA (02)A (03)

M (04) = 2(1—20)A (01)A (04) + 2(1 — 20)A (02)A (03)
+2A(02)A (04).

Let
Sanl: {XERzn:_ZZnXi =1 X 207 VI:l,Zh} (9)
§2”1:{xe 1y = S x-:l} (10)

be a(2n— 1)—dimensional simplex and a hyper-simplex,
respectively.

If we denote byA(gi) = X for all i = 1,4 then the
evolution operatorV, : S — S° defined by 8 has
following form

X) = 2X1X3 + 40 XoX3 + 40 X1 X4,

Xy = 2(1—20)X1Xa + 2(1 — 20 ) XoX3 + 2XoX4,

X5 = 2X1X3 + 40 %oX3 + 40 X1 X4,

Xy = 2(1—20)x1%a + 2(1— 2a)XoX3 + 2x2x4(. )
11

A\

wherea € (0, 3).

It is clear that for any x € S one holds

(Vgx)l = (VC(X)37 (VC(X)Z = (VC(X)4.
Let us consider the following quadratic functidp :

fa(X) = 2(1—4a)x* + 4ax (12)

One can easily check the following assertions:
(i) The function (@2
FiX(fa) = {Ov%}’
(i) If a= ;11 thenfy (X) =x;

has two fixed points

({[iIfo <a< %1 then the trajectory of the functiori®)

converges to the fixed point, = 0 for any initial
pointxo € (0,3). If # < a < 3 then the trajectory of
the function (2) converges to the fixed poinxt = %

for any initial pointxo € (0, 3).

By means of the properties of the quadratic function

(12) one can get the following properties of the operator
Vy : S — S° given by (L1):

() The operator 11) has two
Fix(Va) = {(0,3,0.3),(3.0.3,0) };
(iy)If a= %1 then the operatorl(l) is an identity operator;

fixed points

([i)If0 <a < }1 then the trajectory of the operatatlj

converges to the fixed point = (0,3,0,3) for any
initial point X° € S. If 2 < a < 3 then the trajectory
of the operator11) converges to the fixed point =
(3.0,3,0) for any initial pointx® € S*.

Based on this study, we may conclude that,the
bisexual population system, the Mendelian trait which is
dominating in numbers at the initial state would be
spread towards the system in the future.

4.2 A Mendelian Inheritance with Multiple
Alleles

In this section, we are going to consider a Mendelian
inheritance with multiple alleles.

Let (A,L) be a graph such that
No = {0}, A1 = {1},A = AgUA; andL = 0. Suppose that
a child receives 4 types of alleles from parents, i.e.,
&y ={1,2,3,4}.

We then have that

Q = {01 1,0% 2,0% 3,0¢ 4,0m1,0m2,0m3, Om4},

Q¢ = {0¢,1,0¢ 2, 0¢ 3,0t 4},
Om= {Um,la Om2,0m3, Um,4}7

where
Uf,lz(fal)a Uf,2:(f72)7 Uf73:(f33)7 Uf74:(f,4),

Gm,l = (m7 1)7 0m,2 = (ma Z)a Um,?: = (ma 3)7 Um,4 = (m7 4)
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For anyo’,0” € Q one has that

0, if o’ ‘/\0: a” |/\O
_Qg, if o’ ‘/\07é o’ |/\O,O'/ |/\1: o” ‘/\l
-QO.,(Sv if o’ ‘/\07é a” |/\070J |/\17é o’ ‘/\1 :

oo
Qu =

where,Q; = {0’,0"}, Q; 5 ={0’,0",8',8"}, and
5/ |/\0 — O./ |/\07 6/ |/\1: O_// |/\1
6// |/\0 — C’.// |A0’ 6/ ‘/\1: O./ |/\1 .

Let
S'(A,G. ®s) = {A € S(A,G, By) 1 A(Qf) = A (Qm) = 3}
be a hyper-simplex. In other wordg, € S(A,G, @4)
means thah (ot j),A(0m;j) > 0, i = 1,4 such that

4 4 1
i;A (01i) = i;)\(om’i) =5

Now, we choose a measurgly € S'(A,G,d,)
satisfying the condition6), i.e., lio(0t.i) = Ho(Omi) = ai,
i = 1,4 such thatay +...+ a4 =  and a; > 0 for any

on the domairx + ... +xs = 3 andx > 0 for all i = 1,4.
One may check that the operatdr3[ has the following
form

I 2(a1—-ap) 2(a1—0as) 2(a1—04)
Xl =X1 1+ ap+ap X2+ aj+o3 X3+ aj+ay X4
2(ax—0)

2(ap— 2(ap—
X/2:X2 1+ (a2 al)x1+ (a2 GS>X3+ aTan X4

az+az az+asz

X =xa( 1+ 2(03*01)(1_'_ 2(0(3*112))(2_‘_ 2(az—ay4) X4>

ay+0o3 ax+03 asz+04

;o 2(a4—a1) 2(as—ap) 2(a4—03)
Xy =Xa( 1+ airas Xt Tooras X2t Tagras 8 )

o (14)
Lety; = 2x; andy, = 2 for i = 1,4. Then the operator
(14) is quadratic stochastic Volterra operator defined on
the simplexS® :

4
ai —aj ) ,
=Vil 1+ i, i
v y.( JZ aita Yj
J#
Quadratic stochastic Volterra operators defined on the
finite dimensional simplex were studied very well in

4. (15)

i = 1,4 We then may define heredity coefficients [12-[21]. Based on that study, we may get the same

{Po'g" o} of the Mendeliarl : 1 QSO by the formula?).

The evolution of the Mendelian inheritance with 4 in the bisexual

conclusion which was done for the Mendelian trait, i.e.,
population system, the dominant

alleles of the bisexual population system can be given adendelian trait of multiple alleles would be spread

follows A’ = WA
4 :

V(o= 3 G @A (on) (012 (@)
4 :

A (Omi) = > aizflaj (A(01,)A (Omj) +A(0%,j)A (Omi))

where,i =1, 4.

If we denote byA (07 ;) = % andA (Omi) = Xit4 for all
i = 1,4 then the evolution operatw : S’ — S’ defined by
(13) has following form

(=5 2 (it xns), =T
Xi_lzlai'i_aj Xi j+4 JX|+4 9 — ™
: i .

Xia= Zlm(xixj+4+xjxi+4)7 i=14

J:

It is clear that for any x € S’ one holds
(Wx)i = (Wx)iq foralli=1,4.

towards the system in the future.

5 Construction of Non-Mendelian QSO on a
finite graph

In this section, we are aiming to study a special class of
non-Mendelian QSO. This study will be applied to the
transmission of Human blood group systems and Rhesus
factors (see Appendix).

Let {A;}, wherei =0,1,...,1, be a set of maximal
connected subgraphs of the gragh,L) such that
No = {X°}. Let @ be a finite set of alleles an@ be a set
of all genotypes. For the two genotypes (parents)
o’,0"” € Q, we define a set (traits of childre®(og’, o”)
as follows:

)] if o’ |/\=O'” |/\
Q(o',0")=4 " . 0 0
( ? ) {Q’ If O-/ |A07é O-// |/\0 .

In other words, during the evolution of the bisexual

(16)

Therefore, it is enough to study the following operator POPulation system, a child can receive any type of traits

!/ 4(11 4(}1 4(11
Xl =X1 2Xl + ay+op X2+ C11+G3)% + EX]_+C(4X4 ’
/ 4ao 4a, 4ap
W Xp =X | 2% +- X T mra BT w4 )
[
/ 4a3 403 4a3
X3 =X3 2X3+ a+as3 X1+ ap+a3 X2+ G3+C{4X4 ’

/ 4oy 4oy day
Xy = Xa| 2Xa+ it et wmra 8 )
(13)

(not only parent’s traits).

Now, we are going to provide a construction of a
non-Mendelianl:1 QSO defined by a non-Mendelian
inheritance 16).

Let
S(A,G,®) ={A € SA,G, @) : A(Qf) = A(Qm) = 3}
be a hyper-simplex.

For given o’,0”, we choose a positive measure
Hg o € S'(A,G, @) such that

I’lG’,U”(O-f) = I«'o’,o”(am), (17)

© 2013 NSP
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for anyo; € Qf, 0 € Qn in which ot |/\\/\0 = am\/\\/\o.
We define the heredity coefficien{y/47 5} Of the
non-Mendeliarl : 1 QSO as follows

~ J2ug (o) it Q(0',0")=2Q,
Poo’.o =10 it Q(0’,0")=0.

Then the transmissiovt : S"(A, G, @) — S (A, G, @)
of Rh blood groups can be written as follows=V A

N(©)=4 3 Mo g(@)M (@), (19)

o’ cOm

(18)

forall o € Q.
Due to the condition X7), one can see that
M (ot) = A'(om) for any g € Qf,0m € Qn in which

Ot|a\ne = Omlavng- Suppose thaf; = {of<1),...,a§“)}

and Qn = {0&1)7...,0&”)} where O']Ei)|/\\/\0 = orﬂ)|/\\,\0
foralli=1,n.
S o Ky _ o (k)
Let pijx = 2u0§.) ) (af ) = 2ua§.> ol (Gm ) , for

alli, j,k=1,n. Since

n
> Hoor(0) =% (Hag)ﬂ( (o}

oeQ k=1
=1

K
))+H 0, J)(O-fgﬂ))>

n -
we have thaty pjj« =1 andp;jx > 0 foralli, j,k=1,n.
k=1

We denote by (af(k ) =X, A(0y ot )) Xk, VK= 1,n.
Then the non-Mendelian inheritance evolutid®)(can be
written as follows

n
X =2 z_lpij,kxixn+j7
=
Xoik =2, 3 Pt
ij=

forallk=1,n. Itis clear thatq = X, ..
Let us definey, = 2x and)/k 2x/ Then, we may

study the following QSQ/ : S*1 — S” Linstead of the
previous operator

pl] kylyja k= 1 n. (20)

1

42

where, Z pij k= 1 andpij x = pjik > Oforalli, j,k=1n.

The regularlty of the QS020) was studied in 1§].
Namely, it was proven that pjj k > 3; L foralli,j,k=1,n

then QSO has a unique fixed point and all trajectory

converge to this fixed point.
The biological interpretation of this result is tha,

the bisexual population system, if initial distribution o
all possible traits in the system are greater than the 1
reciprocal of the total number of traits then eventually 2P0 . O (Om—) =
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A Models of Transmission of ABO and Rh
Blood Groups

In this appendix, we construct QSO which describes
inheritance ofABO and Rh blood groups. To the best of
our knowledge, this is the first attempt to describe a
mathematical model of the inheritance ABO and Rh
blood groups. In our model, we shall not take into
consideration any internal or external factors of the
society such as migration or immigration. We are
considering an ideal society. We could not give any
comparison between our outcomes and others because it
is the first study on this topic. At the same time, we are
not asking any credit to be true our outcomes. Of course,
our model is far from being the best model. However, it is
the first attempt in this direction and it can be modified
and improved for any complex society.

A.1 Transmission of Rh Blood Groups.

In this section, we construct QSO which describes
inheritance of Rh blood groups.

It is known that there are two types of Rhesus factors:
Rh positive and Rh negative, i.@y = {+, —}. Moreover,
a gender of human does not have any influence on the types
of the Rhesus factor. Therefore, we can consider a gender
of human and Rhesus factors as vertexes of disconnected
graph(A,L), whereAg = {0},A; = {1},A = AgUA; and
L = 0. We then have tha®@ = {0t +,0¢ _,0Om+,0m -},
Q¢ ={07 4,01 _}, andQn = {Om+,Om_} Where

= (fv_)v

Om— = (m,—).

O-f-,Jr = (fa+)7

Om+ = (mv +)7

Now, our main task to calculate heredity coefficients,
for example pg; . oy, (Om-). In order to do so, we
randomly took around 10,000 parents from Malaysia and
investigated the transmission of Rh a®BO blood
%roups to their children. In our database,

5Po; ,.om. (Om—) means a frequency (or von-Mises
probablhty) of having a son with Rh negative from both

parents having Rh positive. More precisely,
+ mt
7'\'“{& n’]T)>, where N(fT,m") is a

these distributions become stable and all types of traitstotal number of children of parents both having Rh

will be preserved during the evolution

positive, and\,,- (f 7,m") is a total number of sons with

© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 5, 1721-1729 (2013)www.naturalspublishing.com/Journals.asp NS 2 1727

16

Rh negative inN(f*,m™). Similarly, we can calculate It is known that there are four types #BO blood
other heredity coefficients. groups:A, B, AB, O, i.e.,®, = {A,B,AB,O}. Moreover,
For the sake of simplicity, we use the following a gender of human does not have any influence on the
notations types ofABO blood groups. Therefore, we can consider a
o=(m+), o2=(m—), gender of human andBO blood groups as vertexes of
_ _ disconnected graph (ALL) where
=(f =(f,—). s
- =), a=(f,-) Ao = {0}, A1 = {1}.,A = AgUA; and L = 0. We then
We define the all heredity coefficienpg: g o: have that
p0103,0'1 = 04925 p010'370'2 = 00075 p010'370'3 = 04925 Q = {017 027 037 047 0-55 0-67 0-75 08}7
Poy0s,0, = 0.0075Poygy,01 = 0.3273 Pgy 04,0, = 0.1727 Qf = {017 02,03, 04}7 Qm= {057 Os, 07, US}'

Poi04,03 = 0.3273 Pgy 64,0, = 0.1727 Pg,05,0, = 0.3230 h

p0203,0'2 = 01770 p020'370'3 - 03230 p020'37o'4 - 01770 where

Poy04.01 = 0.05  Poyos00 =045  Poyoy,05 = 0.05 o1=(f,A), oo =(f,B), o3 =(f,AB), oa = (f,0),
Po,04.0, = 0.45 05 =(MA), g6 = (MmB), o7 = (MAB), gg= (m,0).

RemarkThe heredity coefficients definitely depend onthe  Now, our main task to calculate heredity coefficients
region or place where we are collecting statistics.of ABO blood groups, for exampl@ig, , g (Oma). IN
Consequently, the outcomes of distributions of Rh bloodgyr database{ls, , 6., (Oma) means ‘a frequency (or

groups would be different from place to place. In our yon-Mises probability) of having a son witA blood

statistics, we have randomly chosen 10,000 parents frongroup from parents both having blood groups. More
Malaysia. Moreover, the size of statistics might influence Nma ((f,A),(MA))

to the outcomes. The outcomes become more accurat%reusely’ “"fA*‘_’mA(am’A) — N((fA),(mA)) where
and precise as much as large the statistics. N((f,A),(mA)) is a total number of children of parents

both havingA blood groups, anilm A ((f,A),(mA)) is a

Due to (9), the transmission of Rh blood groups has total number of sons withA blood group in
the following form N((f,A),(mA)). Similarly, we can calculate other

heredity coefficients.
U
X = 1.969%x3 +1.3094 34 +1.29196X3 + 0.2, Here are the distributions oABO blood groups in

X5 = 0.0302x3 +0.6906¢,x4 +0.7081x5x3 + 1.8x%4, Malaysia: (for the sake of simplicity, we ugg; « instead

xg =1.969%1x3 + 1.30941 X4 4+ 1.291Kox3 + 0.2X2X4, of (G ) ! 1

X, = 0.0301X1%3 + 0.6906¢ x4 + 0.7081xxX3 + 1.8%Xs. Haia; Ok

(21)
It is clear thatx} = x5 andx, = X,. Lety; = 2x; and 451 = 0.4533 361 = 0.0865 1177, = 0.2218
Y2 = 2%2. As we showed in the previous section, it is {152 = 0.0063 —0.2197 — 0.0940
. T 1 . 52 . Hi62 . H17.2 .

enough to study the following QS® : S* — S defined His3 = 0.0038 163 — 0.1661 173 — 0.1767

on 1-dimensional simpleg
His4 = 0.0366 Hiea = 0.0277 Hi74 = 0.0075

v { iﬁl = ?1y§_+a>2b2yfzz (+1 c_y%) L1oog (22)  Hiss = 0.4533 g5 = 0.0865 175 = 0.2218
1= i yiy2 2 H156 = 0.0063 1366 = 0.2197 L1176 = 0.0940
where,a=0.9849b = 0.6503¢c=0.1. Hi57 = 0.0038 7 = 0.1661 1377 = 0.1767

The dynamics of this operator was studied2g][ Let _ _ _
A = 4(1-"a)c+ (1—2b)2 In our case, one can see that F158 ~ 0.0366 168 = 0.0277 py78 = 0.0075
0 < A < 4. Then the operatoQ) has a unique attracting H251 = 0.17501i261 = 0.0060 1271 = 0.0192
fixed point and all its trajectories converge to that fixed pos» = 0.1833 Lipg > = 0.4653 o7, = 0.3846
point. Moreover, a numerical calculation shows that, &, ; = 0.0983 11263 = 0.0060 f1p73 = 0.0769
unique fixed point is approximately equal {0.95,0.05) T T T
and it is attracting. All trajectory of the operatoplj — H254= 0.0433 kiz64 = 0.0227 k74 = 0.0192
converge to that fixed point. Hzs5 = 0.1750 Lize s = 0.0060 Lip75 = 0.0192
Based on this study, we may state ttiee transmission  ip56 = 0.1833 iz = 0.4653 Lip76 = 0.3846
of (Ij?grk])lglod Cgi;roups in Mallg)ésiadyvill_tk))et e&/entually sdt%bSI; 11257 = 0.0983 1567 = 0.0060 77 = 0.0769
an ood groups would be distributed as aroun 0“2578 — 0.0433 168 — 0.0227 iz7g — 0.0192

Rh positive and around 5% Rh negative.
Hzs1 = 0.2525 lizgy = 0.0714 Liz71 = 0.0522

o H3s2 = 0.0707 H3e2 = 0.2662 H372 = 0.0373
A.2 A Transmission of ABO Blood GrOUpS. piss3 = 0.1667 pizg3 = 0.1299 g7 3 = 0.4030

In this section, we construct QSO which describesH3s4 = 0.0101 3g4 = 0.0325 374 = 0.0075
inheritance ofABO blood groups.
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H3ss5 = 0.2525 H3es = 0.0714 H375 = 0.0522
Has6 = 0.0707 H366 = 0.2662 H376 = 0.0373
Has7 = 0.1667 H367 = 0.1299 H377 = 0.4030
M358 = 0.0101 H368 = 0.0325 H378 = 0.0075
Ha51 = 0.2730 Ha61 = 0.0085 Ha71 = 0.0709
Has2 = 0.0117 pigep = 0.2888 Lis72 = 0.0613
Ha53 = 0.0059 Ha63 = 0.0049 Ha73 = 0.1142
Has 4 = 0.2094 Haga = 0.1977 Ha74 = 0.2536
Uss5 = 0.2730 Haes = 0.0085 Ha75 = 0.0709
Has6 = 0.0117 Hae6 = 0.2888 Haz6 = 0.0613
Has7 = 0.0059 Hae7 = 0.0049 Ha77 = 0.1142
Has8 = 0-20941-146,8 =0.1977 Ha78 = 0.2536
Hi1g1 = 0.2146 Liog1 = 0.0066 Lizgy = 0.1070
His2 = 0.0022 I-128,2 =0.2325 IJ38,2 =0.1209
Hi183 = 0.0045 H283 = 0.0066 H383 = 0.0651
“18,4 =0.2787 “28,4 =0.2542 “38,4 =0.2070
Higs = 0.2146 H2gs = 0.0066 H3gs5 = 0.1070
Hige = 0.0022 H2g6 = 0.2325 H3g6 = 0.1209
H1g7 = 0.0045 Lipg 7 = 0.0066 Lizg7 = 0.0651
Higs = 0.2787 Hog8 = 0.2542 H388 = 0.2070
Hag1 = 0.0058 Hag2 = 0.0035 Hag3 = 0.0034
Haga = 0.4873 Hags = 0.0058 Hage = 0.0035
Hag7 = 0-00341-148,8 =0.4873

RemarkThe heredity coefficients oABO blood groups

¥ = 0.015XqXs + 0.6644 X6 + 0.7068 X7 + 0.018 Xg
+ 0.3933X5 + 0.023%,Xg + 0.307 BoX7 + 0.026KXg
+ 0.6663X5 + 0.5195¢Xg + 1.611KaX7 + 0.26(aXg
+ 0.0235¢x5 + 0.0198¢Xg + 0.456 KXz + 0.0134Xg

X/4 = 0.1471X5 + 0.111x1Xg + 0.0301x1x7 + 1.115K1 Xg
+ 0.17332Xs5 + 0.0909Xs + 0.076%Kox7 + 1.01 72X
+ 0.04043%5 4 0.129%3x%g + 0.029K3x7 + 0.828X3Xs
+ 0.8376K4X5 + 0.791x4X%6 + 1.0144K4 %7 + 1.94%K4Xg

X5 = 1.8131x;X5 + 0.3460¢Xg + 0.887 2 X7 + 0.858Xg
+ 0.7%Xs5 + 0.023%:Xg + 0.076KoxX7 + 0.026¢:Xg
+ 1.0101X3X5 + 0.285&3Xg + 0.20Ks%7 + 0.427XaXg
+ 1.092¢4x5 + 0.033%4Xg + 0.283B4%7 + 0.0234Xg

Xg = 0.0253 X5+ 0.878%K1 X5 + 0.375K; X7 + 0.00%; Xg
+ 0.7333X5 + 1.861 X6 + 1.5385¢:X7 + 0.93MxxXg
+ 0.2828¢3%s5 + 1.064%K3Xe + 0.14933x%7 + 0.4833Xg
+ 0.0474xXs5 + 1.1554K4Xe + 0.2452%4%7 + 0.014x4Xg

%, = 001525 + 0.6644;Xg -+ 0.7068¢ X7 + 0.018 Xg
+ 0.3933,X5 + 0.023%,Xg + 0.307 BoX7 + 0.027oXg
+ 0.666%aXs5 + 0.5195Xg + 1.611KgX7 + 0.261X3Xg
+ 0.0235¢x5 + 0.0198¢ X6 + 0.456 Bax7 + 0.014x4%g

X/8 = 0.1465¢1x5 + 0.1107%1Xg + 0.0302x1 X7 + 1.115¢1 Xg
+ 0.1733ox5 + 0.090%oXg + 0.076Kox7 + 1.017XoXg
+ 0.04043x5 + 0.129%K3Xs + 0.029K3x7 + 0.828%3x3

definitely depend on the region or place where we are + 0.8376GXs+0.7914xs + 1.01444x7 + 1.94%Xg

collecting statistics. Consequently, the outcomes of

distributions ofofABO blood groups would be different

This operator has a unique fixed point

from place to place. In our statistics, we have randomly (0.042 0.258 0.029,0.1710.042 0.258 0.029,0.171)
chosen 10,000 parents from Malaysia. Moreover, the size

of statistics might influence to the outcomes. Thewhich is attracting and all its trajectory converge to this
outcomes become more accurate and precise as much figzed point.

large the statistics.

Due to (19), the transmissio : S’ — S’ of ABO
blood groups has the following form

X; = 1.8131x1%5 + 0.3460¢1 X5 + 0.887 21 X7 + 0.858¢1Xg
+ 0.7%2X5 + 0.023%2x6 + 0.076%Kx7 + 0.0265¢Xg
+ 1.0101x3Xs + 0.285%3Xe + 0.20%K3X7 + 0.427x3Xg
+ 1.092x4%s5 + 0.033%KyXe + 0.2834X7 + 0.023K4Xg

Xp = 0.0253; x5 + 0.878%K1Xg + 0.375K; X7 + 0.00%K1 Xg
+ 0.7333KoXx5 + 1.861XoXg + 1.5385¢xx7 + 0.930XoXg
+ 0.28283%s5 + 1.064%3Xe + 0.14933X7 + 0.4833Xg
+ 0.0474X5 + 1.1554¢4%g + 0.24524x7 4+ 0.014x4xg

Based on this study, we can state ttiegt transmission
of ABO blood groups in Malaysia will be eventually stable
and ABO blood groups would be distributed as follows:
around 8% fromA, around 52% fronB, around 6% from
AB, and around 34% fron®.
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