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Abstract: The desire to direct the outcome of chemical, physical and biological processes is pervasive in many areas of science.  
A set of protocols, rules and procedures is often followed in each domain frequently resulting in very favorable outcomes.  These 
operations can be expressed in a control framework analogous to common practice in the engineering disciplines.  As a 
foundation for assessing the value of taking a control perspective in the sciences, the paper first presents a summary of 
observations found when optimally manipulating quantum dynamics phenomena, maximizing the yield of chemical and material 

syntheses and properties, and enhancing the outcome of directed evolution.  In addition, findings from natural evolution are 
considered where optimization is for the fitness of a species’ population; in this case a control perspective provides a 
mathematical framework for assessing the behavior of naturally occurring evolutionary processes.  Collectively the control of 
phenomena in these and other areas of science involve dynamics with distinctive characteristics spanning vast length and time 
scales.  Notwithstanding the disparate dynamical behavior in each domain, the searches for optimal controls are strikingly 
efficient, especially considering that the available control resources are generally very extensive.  The achieved high efficiency 
defies intuition, as the systems subjected to control are often quite complex by any reasonable measure.  The basis for the 
surprising degree of efficiency in finding optimal solutions can be understood by considering the topology of the underlying 

control landscape defined as the objective in each case as a function of the controls.  The general conclusion, upon satisfaction of 
some key physical assumptions, is that control landscapes are expected to be devoid of traps, which could hinder the search for 
the best outcome.  In order to bolster this conclusion additional specific details are presented regarding control behavior found (i) 
while manipulating quantum dynamics and (ii) in the optimization of synthesis yields and properties in chemical and material 
science. The observed common Optimal control behavior over vast length and time scales in the Sciences and its foundations are 
referred to as OptiSci.  Further research is needed to fully understand the basis of OptiSci and its implications.  However, the 
current findings suggest that the principles of OptiSci may have wide ranging significance including for (i) enhancing the 
efficiency of searches for optimal controls, (ii) manipulating phenomena that transcend traditional domains in science, (iii) the 

early identification of flawed experimental designs and (iv) providing the basis to automate the discovery of systematic rules for 
finding effective controls. 
 
Keywords: Quantum Control; common Optimal control. 

 

I. Introduction 

A common goal in many domains of science is to 

seek the optimal outcome from an experiment, 
which aims to manipulate specified phenomena.  

For example, in chemistry, the objective is often to 

optimize either the yield of a chemical synthesis or 
the property of a material.

1
  In biology, it is 

understood that natural evolution is optimizing 

some measure of population fitness.
2
  The field of 

directed evolution seeks to optimize or alter the 

outcome of an erstwhile naturally occurring 

biological process (e.g., an enzyme’s activity).
3
  A 

recent domain of optimization concerns altering 

quantum dynamical processes typically through the 

application of tailored electromagnetic fields.
4
  

Optimization in these contexts collectively entails 

events spanning vast length and time scales.  

Notwithstanding these distinctions and many other 
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differences, the goal of this paper is to show that 

optimization in the sciences share strikingly 

common characteristics.  The observed behavior 
and its formulation will be referred to as OptiSci.  

Optimization in the sciences is typically not 

expressed in a control framework, although this is 
standard practice in the engineering disciplines.

5
  

Consideration of an optimal control perspective 

permits the introduction of a physical and 
mathematical structure unifying optimization of 

phenomena in seemingly diverse areas of science. 

Optimization in the sciences normally involves an 

effort based on the prescription: (1) specify an 
objective, (2) arrange for a relevant set of control 

variables and (3) seek an optimal control that 

maximizes (or minimizes) the objective.  This 
prescription can be readily understood to fit 

optimization of quantum dynamics
4
, manipulation 

in chemical and material science
1
, directed 

evolution
3
 and optimization goals in various other 

scientific disciplines.  However, consideration of 

optimization in natural evolution
2
 from a control 

perspective calls for care.  This paper uses the 
notion of control in natural evolution exclusively 

in a mathematical and physical analysis 

framework.  In addition, laboratory experiments 
with micro-organisms provide the basis to include 

natural evolution in the context of observing 

controlled behavior analogous to like experiments 

in other domains of science
6
, as will be explained 

later. 

The remainder of the paper is organized as follows.  

Section II will succinctly summarize experience 
found upon performing optimization in various 

areas of science with an emphasis placed on the 

extensive control resources searched over, which is 
in surprising juxtaposition with the observed very 

high efficiency for identifying effective optimal 

controls.  The collective observations will then be 

drawn together leading to several questions about 
the findings. A hypothesis will be presented 

suggesting that the similar highly efficient searches 

for optimal controls have a common foundation 
lying in the topology of the associated control 

landscapes, despite the vast length and time scales 

of the phenomena involved.  In this context, a 
landscape is the optimization objective as a 

function of the controls
7
. Section III will take a 

closer look at control behavior in optimization over 

quantum dynamics phenomena (Section III. A) as 

well as optimization of synthesis yields and 

properties in the chemical and material sciences 
(Section III. B).  Upon satisfaction of a few key 

assumptions the control landscapes will be argued 

to have a generic trap free topology (i.e., a trap 
corresponds to a suboptimal extremum whose 

existence could hinder efforts at finding controls 

that produce the global maximum outcome).  
Finally, Section IV will return again to control 

prospects across the sciences to address the 

generality of the OptiSci concepts.  Tentative 

conclusions about the significance of this common 
optimal control behavior will be presented.  

 

II. Observations Regarding Optimization in the 

Sciences 

As background for OptiSci, this section will 

summarize observations from performing 
optimization in several domains of science.  A 

special focus will be on the general extent of the 

control resources available and the reported 

efficiency in searching over those resources to find 
an optimal solution.  The following subsections 

will separately address control in the contexts of 

II. A quantum dynamics, II. B chemical and 
material science, II. C natural evolution and II. D 

directed evolution. The collective findings will be 

drawn together in Section II. E to pose a few 

questions for assessment.   

 

II. A.  Optimization of Quantum Dynamics  

Until recently, the consideration of quantum 
phenomena in the laboratory was largely a matter 

of observation of its micro- and macroscopic 

manifestations.  Quantum mechanical processes 
generally occur at time scales characterized by 

1  where   is a natural transition frequency of 

the system.  Such time scales may range over many 

orders of magnitude, for example, from sec  with 

nuclear spins out to secatto  for electronic degrees 

of freedom.  Concomitantly, the length scales vary 

accordingly over a wide range for particles (e.g., 

atoms, electrons, nucleons) that are spatially 
confined.  Control in these diverse circumstances 

may be considered for a variety of purposes
8
, but a 

basic goal is to direct the motion of the system 
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state, either )(| (0)|    for the wave function 

or )()0( T   for the density matrix through 

application of a tailored external field 

),(t Tt 0 .  In practice, the control objective 

often concerns optimizing the expectation value 

O  of a physical observable operator O , where 

O  is either (T)||)(  OT  or  OTTr )( .  

Regardless of the particular objective, the available 

controls are generally drawn from the 

electromagnetic spectrum, often in the form of 
shaped radiation pulses viewed as “photonic 

reagents” to steer about the quantum dynamics.
9
  In 

principle, the entire electromagnetic spectrum (or 
at least its portions capable of interacting with a 

sample) may be drawn upon as a resource.  In 

practice, current technology limits the ability to 
fully utilize these resources.  Nevertheless, control 

of quantum dynamics with photonic reagents is a 

burgeoning field, which we will refer to as 

Optimal control of Quantum phenomena (OptiQ). 

Consideration of control over quantum phenomena 

in this work is confined to experiments where 

optimization of the control outcome is sought.  The 
same perspective is taken in Sections II. B, C and 

D.  Thus, experiments that apply a single photonic 

reagent (i.e., perhaps even insightfully chosen) and 
then measure the dynamical outcome are put aside 

here, as they do not reveal information about the 

level of effort needed to identify an optimal 

control.  The current literature reports 150~  

successful OptiQ experiments
8
.  The quality of the 

outcome in each case ranges from satisfactory to 

excellent with the difference likely associated with 

practical constraints present on the electromagnetic 

resources.  Typically 
43 10~10  algorithmically 

guided experiments need to be performed in order 

to find an optimal photonic reagent.
10

 An 
individual experiment consists of applying a trial 

control field and performing an associated 

observation of its dynamical impact on the system.  

Although executing 
43 10~10  experiments for 

any particular goal would constitute an extensive 

effort under normal conditions, the high-duty cycle 
of automated laser control apparatuses

11
 permits 

reaching numbers of experiments of this magnitude 

often in a period of minutes to an hour.  
Importantly, the performance of 

43 10~10 experiments to identify an optimal 

control solution needs to be compared with the 
number of possible distinct accessible control 

fields, which is typically on the order of 
10010~ .  

The latter estimate is even conservative, 
considering that a laser pulse shaper

12
 may have 

500~  pixels where each is digitized to 30~  

settings.  In addition, the number of experiments 

needed to reach optimal performance appears to be 

essentially invariant to the level of quantum system 
complexity, while also keeping in mind that the 

final outcome may be limited by the available 

resources.
8,13

  The striking degree of efficiency for 
finding optimal controls is also evident in other 

diverse domains of science,
6,14,15

 as summarized in 

the remainder of section II, and this observed 

behavior forms the basis of OptiSci.   

A special feature of most OptiQ experiments is 

their automated operation
10,11

 carried out in the 

adaptive fashion sketched in Figure 1.  The 
automation of OptiQ enables the performance of 

thousands of experiments guided by suitable 

pattern recognition algorithms seeking
16

 

optimization of a quantum mechanical control 
objective.  An effective algorithm operates by 

identifying features in the controls that are 

favorable for achieving a better objective outcome.  
The actual scientific goals for controlling quantum 

phenomena are wide ranging and ever increasing 

with a current list shown in Figure 2 along with 
additional comments about the nature of the 

experiments.
8
  The OptiQ field is still quite young 

and is pushing the limits of available technology to 

find effective controls, especially in systems with 
dynamics having broad spectral character.  Some 

of the comments on the state of OptiQ in Figure 2 

have their own parallel in many other areas of 
science where complex phenomena are 

manipulated (see the topics in the remainder of 

Section II).  A distinction needs to be made 
between finding a successful outcome from 

performing 
43 10~10  excursions around the loop 

in Figure 1 in approximately and hour compared to 

the often arduous ‘overhead’ in setting up the 
experiments that may take months or years.  

Additional extensive effort can be required to 

understand the mechanism of the control induced 
dynamics,

17
 its quantum character and possibly 

identify rules which may be discerned from the 
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findings to inform the execution of new 

experiments in like systems.   

 

Figure 1. Automated optimization of quantum 

phenomena.  The sketched adaptive feedback control 
procedure10 is widely employed in OptiQ to discover 

tailored light pulses (photonic reagents) for 

manipulating quantum dynamics phenomena.18  An 

initial trial control field is introduced and digitized for 

creation by the pulse shaper.  The trial shaped pulse is 

applied to the sample and a signal is recorded reflecting 

the degree of achieved control.  The signal is then fed 

back to the algorithm which suggests a follow on 

photonic reagent aiming to enhance the control yield.  

The iterations are continued until convergence to an 

optimal result.  Typically 
43 1010~   excursions 

around the loop are necessary to find an optimal 

photonic reagent, yet the number of potential distinct 

controls is on the order of 
10010~ .  The dramatic high 

efficiency of OptiQ experiments is one component of 

OptiSci. 

 

 

 

 

 

Figure 2: Domains subjected to optimal quantum 

control.  The orange highlighted table lists several 

current applications utilizing optimal photonic reagents 

deduced by the adaptive feedback procedure in Figure 

1.   There are presently 150~  experiments spread over 

the indicated domains of application.8  The highlighted 

comments on the right refer to all of the collective 

experiments.  The fact that there are only a modest 

number of experiments in each domain makes it difficult 

to discern quantum control mechanisms and possibly 

rules for guiding future experiments.  A basic question 

regarding all the experiments is their degree of quantum 

character.  However, a common goal is to maximize the 

objective regardless of whether the induced dynamics 

has a mix of quantum and classical character. 

 

 

Comments 

 

 5~10 

examples/domain 

 

 Control mechanism 

often hard to discern 

 

 Rules to be 

discovered 

 

 How quantum is the 

dynamics? 
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II. B  Optimization in Chemistry and Material 

Science 

Optimization underlies many objectives in 
chemical and material science where finding either 

the highest synthesis yield or the best property 

value are frequent goals.
1
  From a control 

perspective the variables employed to achieve 

optimization are generally drawn from chemicals, 

solvents, catalysts and processing conditions.  It 
almost goes without saying that reaching high, if 

not optimal performance in the chemical sciences 

is widely attained in the laboratory and at an 

industrial scale.  Building on that foundation, the 
efficiency of performing such optimization efforts 

is of interest in the context of this paper.  Table 1 

presents a cross section of results for  the 
automated optimization of chemical and material 

synthesis and properties
14,15

.  Each of the 

optimizations in Table 1 was carried out by a 
robotized apparatus similar in nature to that 

schematically indicated in Figure 1 where photonic 

reagents are used as controls.  In the case of 

chemical and material science, current operations 
permit the employment of a modest number of 

variables on the order of 10~ .  Yet, with even 

relatively few variables, the total number of 

potential experiments can be quite large.  The 
numbers (i.e., the product of the number of discrete 

choices for each of the control variables) indicated 

in the last column of Table 1 were gleaned from 
those references where they were included.  In 

particular, the number of reported accessible 

control settings (i.e., experiments) range from 
410~ out to 2210~ , while the number of 

experiments needed to reach optimality is often 

only 32 10~10 .  Interestingly, the papers that 

present the number of experiments employed to 

reach optimality along with the total number of 
possible experiments typically provide no 

accompanying comment on the evident extreme 

disparity involved.  Similar lack of comments also 

exists in the parallel photonic reagent control 
literature.   

In summary, Optimal control of synthesis yields 

and properties in the Chemical and material 
sciences (OptiChem) is both widely successful and 

highly efficient.
14,15

  Additionally, the automated 

performance of laboratory operations in this 
domain is often guided by rules riding on long 

experience drawn from prior studies in many 

laboratories.  A fundamental question is why 

rules
19

 even exist for the control of nominally 
highly complex chemical systems and whether 

their discovery may also be automated.  This point 

will be returned to in Section IV.  As with OptiQ 
using photonic reagents as controls in Section II. A 

, attempts at understanding chemical control 

mechanisms only follows after first optimizing the 
desired product or property.   

 

Ref. 

Number 

Number of 

Control 

Variables 

Objective 

Number of 

Experiments to 

Reach Optimal 

Outcomes 

Number of Possible 

Control Sample 

Points  

20 6 Binding to stromelysin 300 6.4 × 107 

21 8 Propane → propene 328 NA 

22 4 Inhibition of thombin 400 1.6 × 105 

23 8 Propane → CO 150 NA 

24 8 Propane → propene 280 NA 

25 13 Propane → propene 60 NA 

26 23 NH3 + CH4 → HCN 644 NA 

27 9 CO → CO2 189 NA 

28 4 CO + CO2 + H2 → CH3OH 115 2.7 × 109 

29 5 3CO + 3H2 → C2H6O + CO2 160 2.4 × 1011 

30 6 CO + CO2 + H2 → CH3OH 235 4.7 × 10
9
 

31 10 n-Pentane isomerization 72 1.44 × 104 

32 7 Propane → aldehydes 80 NA 

33 8 Isobutane → methacrolein 90 109 

34 8 Membrane permeability 192 9 × 1021 

35 4 Cyclohexane epoxidation 114 NA 
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36 3 Protein inhibition 160 1016 

37 6 Red luminescence 216 NA 

38 7 Green luminescence 540 1014 

39 6 Color chromaticity 168 NA 

40 8 Red luminescence 270 NA 

41 7 Red luminescence 1080 NA 

 

Table 1: Automated optimization of chemical and 

material synthesis and properties.  The objectives span 

a wide variety of applications where each experiment 

was performed in a robotized fashion similar to the 

schematic of OptiQ photonic reagent control in Figure 

1.  In the case of OptiChem the number of control 

variables (i.e., chemicals, solvents, processing 

conditions, etc.) is modest, as indicated in the table.14,15  

Typically only a few hundred iterated experiments are 
necessary to obtain an optimal outcome, and yet the 

number of possibilities is often many orders of 

magnitude larger as shown in the column on the right.  

This high degree of efficiency in OptiChem is one 

founding component of OptiSci. 

II. C.  Optimization in Natural Evolution 

The process of natural evolution garners great 

attention in the sciences and beyond for obvious 

reasons
2
.  Darwin set out the principles of fitness 

optimization driving a species’ population, and 

from a control perspective the variables at the most 

basic level are specified by the sequence of nucleic 

acids in a species’ genome
42

 whose size is
910~ .  

The latter number of variables translates to 
9104~  

distinct genomes considering the four possible 

bases.  A number of this size is hard to fathom, and 

even if practical access to genome sequences 
during evolution is reduced by a large factor, the 

conclusion is the same that the genome of any 

species poses a vast space to stochastically search 
over for a sequence that optimizes fitness.  The 

latter search is performed through mutation, 

crossover, insertion, deletion, etc., operations on 
the sequence of nucleic acids.

2
 

Natural evolution may be viewed as an ongoing 

‘experiment’ by nature, and certainly the existence 

of complex forms of life can be taken as adequate 
evidence that these evolutionary experiments by 

Nature are quite successful.  From the perspective 

of this work, a primary focus is on the efficiency of 
the evolutionary optimization process.  Given the 

sheer size of the genomic search space and 

considering an evolutionary time period of just 
910~ years, one may conclude that evolution is 

startlingly efficient.  Additional quantitative 

findings about natural evolution are contained in 
laboratory experiments with bacteria

43
 and 

viruses
44

.  These organisms turn over their 

populations very rapidly permitting access to large 

numbers of evolutionary generations on reasonable 
laboratory time scales.  The experiments involved 

often can be characterized as disturb-and-observe, 

which is analogous to control-and-probe 
experiments in the OptiQ photonic reagent domain 

(Section II. A).  In the case of evolution, the 

disturbances may be environmental or directly 
introduced as a mutation in the genome, with 

subsequent evolutionary results observed at the 

genotypic or phenotypic levels.  This body of 

experimental data and its analysis has been 
referred to as global Optimality of fitness 

landscapes in Evolution (OptiEvo).
6
  In particular, 

upon disturbing a population away from its optimal 
fitness (e.g., by changing the environment), the 

subsequent evolution often achieves global 

convergence to the original fitness value.  These 

experiments also frequently show genotypic 
diversity at the latter global fitness maximum value 

corresponding to the existence of neutral mutations 

(i.e. the fitness landscape is flat at its absolute 
maximum).  Finally, in these disturb-and-observe 

experiments local suboptimal traps on the fitness 

landscape are rarely found and appear to occur in 
either genomes of restricted size (e.g., in viruses) 

or in evolutionary experiments that have gone 

through relatively few generations.
6,45

  In 

summary, Nature has access to enormous control 
resources and evidently can efficiently draw on 

those resources to readily optimize population 

fitness.  
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II. D.  Optimization in Directed Evolution 

Directed evolution is a laboratory effort aiming to 

take over some specific aspect of biological 
functionality and adapt it for practical purposes.

3
  

The goal often involves re-engineering an enzyme 

(i.e., changing a particular protein’s sequence) so 
that it produces a desired chemical product.  

Bacteria are commonly chosen for this purpose, 

and the controls are the nucleic acids forming the 
genome of the organism.  As with natural 

evolution, the available resources are vast.  In 

practice, these resources are sparingly used in 

directed evolution for two reasons.
46

  First, the 
organism generally must survive the re-

engineering of its genome, and second, the 

experiments can be expensive and time consuming.  
Mutations are frequently performed one at a time 

with the results assessed for another round of 

variations.  A major experimental step is the 
screening of the mutated organisms to identify 

those with more favorable performance at 

maximizing the desired product.  Notwithstanding 

all of these circumstances, directed evolution is 
proving to be very successful with many notable 

applications, and its relation to natural evolution 

permits referring to it under the title of OptiEvo.   

The actual number of mutations performed in 

directed evolution is a very small fraction of the 

total offered by the genome, and the process can be 

characterized as highly efficient.  The subject is 
also reaching a stage where automated closed-loop 

operations
47

 are involved much like analogous 

procedures in OptiQ and OptiChem, respectively 
summarized in Sections II. A and B.  Very modest 

numbers of excursions around the closed-loop are 

typically sufficient to achieve significant 
optimization of a directed evolutionary product, 

although consideration should be given to the fact 

that the starting point is frequently a naturally 

occurring enzyme or biological process that has 
been ‘pre-optimized’ by Nature for a distinct, but 

like, purpose.  

 

II. E. Questions Posed by Observations of 

Control Performance in the Sciences 

At this juncture, we may draw together the 
collected findings from control in the areas of 

science summarized above.  All of the information 

is succinctly presented in Table 2.  The most 

striking observation from the performance of 

optimization across these domains of science is the 
high efficiency of the control search efforts.  In all 

cases, the resources are very extensive, yet only a 

modest number of experiments are generally 
needed to reach optimality.  The reason for this 

common behavior is the focus of OptiSci.  Control 

in these diverse areas of science occurs for 
phenomena with distinctive dynamics across vast 

length and time scales.  The latter clear distinctions 

amongst the dynamics of  chemical, physical and 

biological phenomena is not the focus of this work, 
but rather the attention of OptiSci is on the evident 

high efficiency in finding optimal solutions to 

controlling such phenomena.  Table 2 also presents 
a number of subjective comments about the nature 

of control experiments in these domains.  

Importantly, the execution of the experiments can 
be a complex venture, and this practical overhead 

does not figure into considering the efficiency of 

the control discovery process.  OptiSci is 

concerned with the number of experiments needed 
to reach optimality verses the number of possible 

experiments.  Another consideration is the desire to 

operate under the guidance of rules given the 
complexity of performing individual experiments 

on the way to identifying an optimal control.  The 

most advanced examples of rule based operations 

are evident in the chemical and material sciences,
19

 
but the desire for revealing utilitarian rules exists 

in all areas.  Additionally, the level of mechanistic 

understanding of the controlled phenomena greatly 
differs from one application domain to another. 

The following questions arise from observations of 

control in the sciences  

 Are the common features greater than the 

differences? 

 Is the common high search efficiency a 

coincidence?  

 Under optimization, is a unified picture 

operative? 

 What are the practical control 

consequences? 

One could set aside these questions and proceed as 

usual to seek optimal performance in any particular 

scientific application.  The tenet of OptiSci is that 
continuing in this fashion may overlook 

fundamental and practical issues extending beyond 
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optimization considerations in any single 

application. The material in Section III will 

address these questions by expanding on the 

findings in two scientific areas followed by the 

presentation of some general conclusions on the 

potential significance of OptiSci in Section IV. 

Science Control 
Variables 

Control 
Resources 

What Is 
Optimized 

Outcome Control 
Search 

Efficiency 

Mechanism 
Understanding 

Systematics Laboratory 
Implementation 

Quantum Photonic 
Vast, but 

constrained 
at present 

Yield, 
Fidelity 

Good High Initial stages 
Rules 

emerging 
Automated 

Chemical 
& 

Material 

Chemicals, 
Processing 
Conditions 

Vast 
Yield, 

Property 
Good-

Excellent 
High Good Rule driven Automated 

Natural 
Evolution 

Genomic Vast Fitness Excellent High Poor Not clear 
Micro-

organisms 
(laboratory) 

Directed 
Evolution 

Genomic 
Vast, but 
sparingly 
utilized 

Enzymatic 
activity 

Good High Fair 
Vague 
rules 

Semi-
automated 

 

Table 2: Common features of optimization in the sciences.  The table draws together the findings from optimization in the 
sciences listed in the left column.  Subjective comments garnered from the collective literature are made characterizing the 
performance of control in these domains.  In each scenario extensive control resources are available, yet searching amongst 

them for an optimal control is highly efficient with the sampling only drawing on an infinitesimal fraction of the possibilities.  
This common behavior across the domains of OptiQ, OptiChem and OptiEvo is the puzzle addressed by OptiSci. 

 

III. Taking a Closer Look at OptiSci 

The questions raised in Section II. E can be 

addressed by (i) taking a closer examination of 

controlled phenomena in particular domains of 
science and then (ii) assessing whether a common 

foundation exists to collectively explain the 

observed highly efficient control optimizations.  
This section will consider the basis of OptiSci by 

examining the control of quantum dynamics,
7,8

 

OptiQ in III. A, and allied control in the chemical 

and material sciences,
14,15

 OptiChem in III. B.  
There are extensive mathematical and physical 

details involved in both analyses beyond those 

presented here (see the cited references).  In 
addition, similar assessments may be performed 

for the domains of natural and directed evolution.
6
 

 

III. A.  Optimal Control of Quantum Dynamics 

(OptiQ) 

The control of quantum dynamical processes is an 

active area of research
8
 with many potential 

applications summarized in Figure 2.  Figure 3 

presents a sketch of a quantum system, illustrated 

as a molecule, subjected to control of its wave 

function by means of a photonic reagent )(t  

consisting of a shaped electric field pulse.
9,12

  The 

photonic reagent )(t  in Figure 3 has broad 

bandwidth character in keeping with the general 
need for simultaneously addressing multiple 

transitions or degrees of freedom in a complex, 

evolving quantum system.  Regardless of the 
particular application, a general principle underlies 

OptiQ for the control of all quantum phenomena.  

The quantum system starts out in initial state i  

(or its density matrix analog i , as appropriate) 

with the aim of arriving at a desired final state 

f  at a later time T.  Achieving a particular final 

state (T) |
 
often is not the actual goal, but rather 

the objective is to maximize the expectation value 

of an observable operator O  in the created state 

 )()( TOTJ  .  The underlying assumption 

is that evolution with the free Hamiltonian 
0H   

alone does not satisfactorily reach the objective.  

Thus, the photonic reagent )(t  is introduced with  
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the overall dynamics described by Schrödinger’s 

equation 

   )()( 0 tHt
t

i  



 )(t  (1) 

where for illustration the field coupling operator is 

taken as the dipole  .  The goal is then to seek an 

optimal photonic reagent )(t  that maximizes the 

objective  )()( TOT   at a suitable time T.  A 

general means for achieving this goal is through 

the creation of constructive interferences in the 

dynamics to arrive at the state 
fT  ~)(  

while simultaneously creating destructive 

interferences in the other accessible final states 

ff
f

',1 .  The practical execution of control 

in the laboratory is frequently carried out through 
the adaptive feedback process

10,11
 depicted in 

Figure 1, and many types of applications are 

shown in Figure 2.  The growing number of 
experiments may be characterized as quite 

successful, especially considering the practical 

constraints often present in the available controls.  
Thus, a basic question is why it appears to be easy 

to find effective, or even truly optimal, photonic 

reagents in the laboratory.
48

   

 

Figure 3: Optimal control of quantum dynamics.  The 

sketch shows a photonic reagent control )(t  

impinging on a quantum system considered as a 

molecule for illustration.  The goal is for the photonic 
reagent to direct the molecular dynamics reflected in 

the wave function evolution )()( TO   .  The 

delicate shaping of the photonic reagent achieves this 

goal by cooperating with the often complex dynamical 

capabilities of the quantum system. 

 

The context of the word “easy” above needs 

explanation.  First, the actual experiments can be 
arduous, even taking years to set up with great 

attention to detail required.  The notion of easy 

does not refer to this heavy technological and 
humanly intensive overhead, but rather to the effort 

required in finding an optimal control relative to 

the frequently vast extent of controls searched 
over.  As explained in Section II. A, a mere 

infinitesimal fraction of the accessible controls is 

typically sampled during a sequence of 

experiments to find an optimal photonic reagent.
13

  
The essence of the process may be captured by 

considering, for example, that the collective effort 

may take a period of four years, plus one 
additional hour.  The laboratory set up overhead 

occurs during the four years while the latter 

additional hour is when the actual experiment is 
finally run to discover an optimal photonic reagent.  

With the typical extensive overhead put aside, the 

emphasis in OptiQ is on analyzing why it appears 

easy to find optimal controls over quantum 
dynamics phenomena during a brief experimental 

search (e.g., an hour) when 
43 10~10  experiments 

are done, while the possible number of distinct 

controls is 
10010~ .   

Nominally, the answer to the latter question and all 

matters about control of quantum phenomena lie in 
a detailed understanding of the Hamiltonian 

operators 0H
 

and
 
  in Equation 1 and the 

dynamics induced by )(t .  Many of the 

applications in Figure 2 involve highly complex 

systems, which in turn have equally rich 
Hamiltonian structure that is frequently not known 

in quantitative detail.  Most important in this 

regard is the potential energy landscape V(r) 

residing in the Hamiltonian term 0H , which can 

depend on many variables r when multiple atoms 

or electrons are simultaneously controlled by an 

applied field.  The adaptive feedback control 
experiments

10,11
 of Figure 1 inherently fold in all of 

the relevant potential energy landscape details for 

determining an optimal field.  However, neither the 

potential energy landscape nor consideration of the 
detailed quantum dynamics (i.e., even if it was 

available) addresses why it is operationally easy to 

find optimal controls )(t  over quantum 
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phenomena.  The answer to the posed question 

appears to reside in the topology of the quantum 

control landscape )]([ tJ    which is the 

observable as a function of the control.
7,8,13,48

  

Despite the fact that each physical system has its 
own unique Hamiltonian, theoretical analysis 

shows that quantum control landscapes should 

have a generic topology whose character only 
depends on the system’s initial state and the nature 

of the observable operator.  The origin of the latter 

conclusion rests on the satisfaction of three 

assumptions specified below.  Before considering 
the details, it is reasonable to expect that a broad 

foundation must be behind the evident universality 

of easily finding effective quantum controls, which 
occurs regardless of the particular system’s 

Hamiltonian complexity. 

Extensive research is underway to understand 
quantum control landscapes

7,8,13,48  
and only a basic 

summary of the concepts will be presented here for 

manipulating closed systems of finite dimension 

(i.e., N states) whose dynamics are described by   

 
 )()( 0 tHtU

t
i 



 )(tU

 
(2) 

 

where )(tU  is the time evolution operator such 

that itU  )( (t)|  .  OptiQ quantum control 

landscape analysis rests on three assumptions:  

(a) The system is controllable 

(b) The control   state map is full rank  

(c) No (significant) constraints are placed 
on the controls   

Each of these assumptions requires special 

consideration.  Satisfaction of assumption (a) 
implies that some control exists to reach the target 

state
f  at a suitable time T from 

i at 0t .  

Although exceptions to fulfillment of this 

assumption can be found, mathematical and 
physical analysis suggests that most finite 

dimensional quantum systems are likely to be 

controllable.
49

  Assumption (b) refers to the rank of 

the matrix )()()(
)(

)( † tUtUTU
i

t

TU









  being 

full, which is equivalent to stating that a 
differential change in the state at the final time, 

),(TU  has a corresponding differential 

control )(t  producing it.  This assumption could 

be violated corresponding to a so-called singular 

control, although these circumstances seem to be 
rare.

50
  The last assumption (c) on the ready 

availability of photonic reagents of arbitrary shape 

will surely never be fully met due to limited 

laboratory resources.  However, as assumption (c) 
states, the practical requirement is that no 

“significant” constraints be placed on the controls, 

which is a much milder condition (i.e., the controls 
only need to be available for addressing all the 

necessary transitions to create the desired final 

state).  Collectively, satisfaction of these 
assumptions provides the conditions for assessing 

the topological nature of control landscapes. 
7,8,13,48

  

The conclusion of this analysis is that suboptimal 

local maxima forming traps should generally not 
exist on quantum control landscapes.  A trap is a 

local submaximal value of the objective 

J Ot )]([ , from which it is not possible to 

climb further on the landscape to a higher value 

through variation of )(t  guided by a myopic 

algorithm (e.g., a gradient based procedure). 

Rigorously establishing that the three assumptions 

above are satisfied in any particular case is a 
difficult task, but it is plausible to expect that these 

assumptions should be fulfilled, likely including 

(c), in many applications, especially as control 
resources become richer.  Accepting satisfaction of 

the assumptions, the resultant conclusion about the 

trap free nature of the quantum control landscape 

topology can be tested in simulations and in the 
laboratory.  Simulations have a special role to play, 

as they can be carried out with great care while 

putting aside laboratory issues including noise, 
technologically limited control resources and other 

factors.  The recent literature contains two works 

carefully exploring this matter with simulations for 
the control of (i) the state-to-state transition 

probability
51

 fi and (ii) the fidelity
52

 UW   of 

creating a target unitary transformation W .  

Collectively, these studies involved over 50,000 

computer simulations with a broad variety of 

model multi-state Hamiltonians, and all tests 
reached perfection for the objective to at least three 

decimal places upon paying due attention to 

numerical details.  More studies are warranted, but 
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these results are consistent with the three 

assumptions above being satisfied and the 

consequent conclusion that quantum control 
landscapes are generally expected to have a trap-

free landscape topology.  Care is needed in 

performing such computational tests, as the nature 
of the numerical discretization and other 

approximations can become issues, especially 

when very high fidelity results are sought.  A key 
limiting factor is likely satisfaction of assumption 

(c) with regard to free access to all essential 

control resources.  In computer simulations this 

should not be an issue, but in the laboratory there 
will always be a need for further control resources, 

especially when treating complex systems.  In 

some cases more bandwidth and energy may 
suffice to meet the control needs of assumption (c).  

But, even subtle resource limitations can become 

important in some circumstances.  For example, 
the target time T must be sufficiently large to avoid 

undue constraints on the intervening dynamics. 

Direct exploration of control landscapes in the 

laboratory has only just begun.
53,54

  A particularly 
interesting prediction

7,8,48
 from the landscape 

analysis concerns the rank of the 

Hessian
)'()(

2

tt

fi



 
  at the top and bottom of the 

transition probability landscape for fiJ  .  The 

analysis predicts that at the top of the landscape 

(i.e., 0.1if )  for a system with N  states there 

will be at most 22 N  routes off,  and at the 

bottom (i.e., 0.0if ), there will be at most two 

routes up.  At both landscape extremes the routes 

are specified by the associated eigenvectors of the 
Hessian with non-zero eigenvalues.  Importantly, 

the numbers of non-zero eigenvalues of the 

Hessian, at the top or bottom of the landscape, 
does not depend on the quantitative details of the 

Hamiltonian (i.e., besides the need to satisfy the 

assumptions (a) and (b) of OptiQ).  The Hessian is 
infinite dimensional (i.e., time or frequency is 

continuous), but in practice it would be of finite 

size through digitization of the controls in the 

laboratory.  An experimental test of the Hessian 
spectral predictions at the top and bottom of the 

fi  landscape was performed in atomic Rb 

vapor, and the results were found to be fully 

consistent with the predictions.
54

  In addition, 

many simulations also confirm these predictions 

about the Hessian rank.
51

  An ancillary issue of 
practical importance is that the remaining null 

Hessian spectrum at the top of the landscape 

implies an inherent degree of robustness to noise 
when controlling quantum phenomena.

48
 

The general conclusion from these OptiQ analyses 

is that quantum control landscapes should be 
devoid of traps upon satisfaction of the three 

assumptions, thereby providing very favorable 

circumstances for maximizing physical 

observables.  Many additional issues remain to be 
explored, including the nature of structural (i.e., 

non-topological) features on the control 

landscapes, as these can influence the efficiency of 
optimization.  The observed practical ease of 

performing optimization suggests that tortured 

features on the landscapes must be rare, but careful 
studies remain to be done to directly affirm this 

conclusion.  Another important direction for OptiQ 

is consideration of how constraints on the controls 

enter to limit the attainable yields and introduce 
landscape traps.  Such traps will be ‘artificial’ due 

to their constrained control resource origin, 

although they will appear to be real in the 
associated experiment or simulation.   

The perspective taken in OptiQ is to choose a 

sample from the chemical or material stockroom 

and then manipulate the quantum dynamics of the 
sample by searching through the photonic reagent 

‘stockroom’ to find an effective control )(t .  This 

process seeks control of the system’s dynamics by 
performing tailored variations of the time-

dependent portion of the Hamiltonian.  Samples 

can, of course, be freely chosen from the material 
stockroom, and some demanding control 

applications may benefit from dual material-

photonic reagent optimization as schematically 

indicated in Figure 4.  Simulations have already 
considered the converse of the analysis discussed 

above where now the control field )(t is fixed in 

form, and the time independent structural 

components 0H  and/or  of the Hamiltonian (i.e., 

accessed through the chemical or material 

stockroom) are treated as the controls.
55

  In the 

latter situation, the same trap-free landscape 

topology was found for O as a function of the 
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control matrix elements of 0H and  , upon 

satisfaction of the analogous three assumptions 

stated earlier for photonic reagents.  An extreme 

circumstance would entail turning off the external 
field and treating the controls as strictly drawn 

from the chemical or material stockroom along 

with processing conditions.  This latter view 
naturally leads to considering control within 

chemistry as addressed below.  

 

Figure 4: The full prospects for control 
resources.  The traditional perspective  for  

controlling quantum dynamics phenomena in 

OptiQ is to start with a molecular or material 
sample and search through the photonic reagent  

‘stockroom’ to find an optimal control field by the 

operations in Figure 1, and a schematic of this 
application is presented in Figure 3.  The search 

process is observed to be very efficient, which may 

be understood from the favorable topology of 

quantum control landscapes.  An enhanced 
scenario involves simultaneously searching over 

the chemical/material and photonic reagent 

stockrooms to meet demanding objectives, as 
indicated above.  A fully automated machine of this 

type, analogous to that sketched out in Figure 1, 

may be envisioned for this purpose.  A final 
prospect is to turn off the photonic reagent to then 

only utilize the chemical and material stockroom 

as well as processing conditions for resources to 

optimize synthesis yields and properties, which 
forms the basis of OptiChem. 

 

III. B  Optimization of Chemical Synthesis and 

Properties (OptiChem) 

Two chief goals in the chemical and material 
sciences are synthesis and property optimization.

1
  

These objectives are widely met to a practical 

degree in a broad spectrum of applications, and as 
a result one can simply declare that chemistry 

works!  But, should this success be expected upon 

consideration of the underlying complexities 
inherent in meeting these goals?  A commonly 

circulated quote
56

 is that “Chemistry is all about 

getting lucky”.  The analogous comment could 

have been made in the context of controlling 
quantum dynamics.  But, as explained above, 

attaining successful control of quantum 

phenomena is not about getting lucky, and a basis 
exists through OptiQ to understand the ease of 

finding effective photonic reagents.  OptiChem 

contends that a similar analysis may be applied to 
the observed ease of optimization in chemistry.

14,15 
 

In the following, for simplicity we will use the 

word ‘chemistry’ to include like circumstances in 

material science. 

 

It is attractive to express the optimization 

objectives in chemistry within an optimal control 
framework.  In this case, the control variables 

include (a) reagents, catalysts, solvents and their 

concentrations, (b) reaction time, temperature and 

other processing conditions, (c) the mole fractions 
of components in a material and (d) the 

substituents on a molecular scaffold.  Any 

particular chemical application will draw on 
necessary aspects of these controls in keeping with 

the objective.  Lurking in the background upon 

optimization in chemistry is the so-called curse of 
dimensionality, which states that the effort at 

finding an optimal solution should scale 

exponentially with the number of variables.  As an 

example, consider a reaction between two classes 
of molecules with one referred to as R and the 

second being a molecular scaffold S with  two sites 

for chemical functionalization having variables 

referred to as 1x
 
and

 2x .  A scaffold is a molecular 

framework (e.g. a benzene ring) to be built upon 

by functionalization at the specified sites.  The 

variables 1x
 
and

 2x  take on ‘values’ drawn from 

two respective lists of substituents capable of 



13 
Herschel Rabitz :  Control in the Sciences Over Vast  …………. 

 
bonding to the scaffold sites.  In addition to these 

variables, in this illustration the temperature, 

reaction time, solvent and the concentration of R 
are all part of the controls subject to optimization, 

and the objective is to maximize a particular 

reaction product.  For this example, there are six 
variables, and a reasonable supposition is that each 

can take on ~ 10 values.  Even in this modest 

circumstance of reacting species R with a 
companion molecule (i.e., a member of the 

functionalized scaffold set) there are a total 

of
610~  possibilities available for consideration in 

the laboratory.  Such an extensive set of control 
conditions is not possible to thoroughly explore in 

practice.  In the context of traditionally performed 

chemistry experiments, scanning over the potential 
control choices is typically guided by insight and 

experience, which often produces very successful 

outcomes.   

 

Importantly, Table 1 provides experimental 

evidence that automated optimization over the vast 

available resources in chemistry is far easier than 
might be expected and can beat the curse of 

dimensionality.  The search for optimal photonic 

reagents discussed in Section III. A should also be 
plagued by the curse of dimensionality, but 

evidence in that domain also shows the ability to 

circumvent this perceived bottleneck.  In addition, 
the same class of algorithms

16
 used to 

systematically discover optimal photonic reagents 

in Figure 1 is also employed in the automated 

optimization of chemical objectives exemplified in 
Table 1.  The ease of finding optimal solutions in 

chemistry is beyond consideration of the overhead 

involved with setting up the experiments and their 
careful execution.  The notion of “ease” refers to 

the number of experiments required in practice to 

reach an optimal outcome versus the total number 

of possibilities, which is consistent with the same 
assessment of efficiency in considering photonic 

reagent control and that found in biological 

evolution.  

 

Figure 5: The yield/property control landscape in 

OptiChem.  The variables 1x  and 2x  (likely amongst a 

larger number in practice) are shown controlling a 

yield or property value.14,15  The hypothetical associated 

landscape in the left panel (a) has multiple local 
suboptimal extrema acting as traps for searches seeking 

the best possible outcome.  A search initiated at an 

arbitrary point on such a landscape would likely 

terminate at a less than optimal yield.  In contrast, the 

landscape on the right (b) has rich structure but only a 

single extremum at the absolute maximum value.  The 

foundations of OptiChem imply that chemical and 

material landscapes should have the latter attractive 

features upon satisfaction of some assumptions 

explained in the text. (a) Contains “Traps Hard to 

Optimize (b) Trap-Free Easier to Optimize 

 

Given the circumstances above, it is natural to 

explore the character of chemical control 

landscapes
14,15

 in analogy to their photonic reagent 
counterparts in OptiQ.  Figure 5 depicts two 

distinct prospective types of chemistry 

yield/property landscapes illustrated as well with 

two control variables 1x  and 2x .  In practice, 

(a) 

(b) 
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realistic applications can have several control 

variables, ixi , 1,2 as indicated in Table 1.  

Figure 5(a) schematically shows a landscape with 

many local suboptimal extrema; such a landscape 
might be expected to be the norm upon considering 

the complexities generally evident in controlling 

chemical phenomena.  Since a full picture of the 
landscape will not be available a priori, starting 

from any point on the landscape in Figure 5(a) 

would likely lead to a search arriving at a 
suboptimal local maximum acting as a trap.  

Without insight into what may lie elsewhere on the 

landscape, encountering such a trap could produce 

an unsatisfactory result and termination of the 
search to seek a better solution.  Even stochastic 

algorithms
16

 having global search capabilities 

could become lost with large numbers of control 
variables when many local traps are present.  In 

contrast, Figure 5(b) depicts a landscape having 

only a single maximum at the global optimal value.  
In this case, experiments initiated from anywhere 

on the landscape should be able to readily climb to 

the absolute maximum, even using simple 

algorithms for guidance.  OptiChem refers to the 
analysis of chemical transformations or properties 

and their associated landscapes for optimization.  

The assessment of the landscape topology in 
OptiChem applications rests on three 

assumptions
14,15

:  

(a) The objective is well posed  

(b) Freedom exists to move over the 
landscape  

(c) No significant constraints are placed on 

the controls   

Chemical and material systems under control 

generally are open to the environment, and in 

many cases the environment (e.g., a solvent) is an 
integral part of the controls.  Thus, the analysis of 

OptiChem landscape topology needs to take into 

account the control of open chemical/physical 

systems.  This analysis may be performed from 
either a quantum mechanical or a classical 

perspective (see Section IV) to reach the same 

fundamental conclusion.
14,15

  In particular, upon 
satisfaction of the three assumptions above, it 

follows that yield/property landscapes appear as 

sketched in Figure 5(b) with no inherent traps.  As 
for the case of photonic reagents in Section III. B, 

the satisfaction of the three assumptions needs 

consideration.  First, the objective being well 

posed in assumption (a) refers to seeking a 
reachable physical or chemical objective; a counter 

example would be the targeted synthesis of a 

molecule where an atom is in an unattainable 
valence state.  Chemical insight and experience 

provide the prime means for posing reasonable 

objectives.  Satisfaction of the second assumption 
(b) is difficult to prove in general, but it is likely 

that a small change in the objective value has at 

least one associated small change in the controls 

thereby permitting free movement over the 
landscape.  The last assumption (c) that no 

significant constraints are placed on the controls is 

the main concern when considering yield/property 
landscapes.  In practice, an initial choice would be 

made for the controls, followed by their iterative 

improvement based on the measured chemical 
yield/property outcome and even guided by 

observations of the resultant landscape (see Section 

IV).  Extensive data are available on the nature of 

landscapes in chemistry,
 14,15

 and there is more 
evidence in this regard than in the case of control 

in OptiQ with photonic reagents due to the large 

size of the chemistry community and the lengthy 
period of intense activity.  Landscapes within 

OptiChem are available for synthesis yields and for 

a broad variety of properties, including spectral, 

electrical, mechanical, thermodynamic, etc.  The 
reported landscapes are generally only up to four 

dimensions (i.e., the number of control variables) 

due to the arduous sampling effort required as the 
dimension rises and for graphical reasons.  In 

summary, ~ 90% of the reported chemical and 

material landscapes have no evident traps.
 14,15

  
Interestingly, regardless of whether the landscapes 

are reported to have or not have traps, the papers 

presenting these landscapes usually provide no 

discussion of the topological significance of the 
findings.  This body of landscape work also needs 

to be drawn together with the results from the 

automated optimization efforts summarized in 
Table 1, where the algorithm employed seeks to 

guide a climb of each landscape without 

thoroughly sampling the full control possibilities.  
The latter reported optimizations were carried out 

in dimensions up to ~ 20, with the evident ease of 

finding good solutions defying the curse of 

dimensionality.  Two examples of landscapes will 
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be given here, and many more are summarized in 

refs. 14 and 15.  

Optimization of solid-state catalyst composition is 
commonly performed aiming to enhance the yield 

and selectivity of chemical reactions.  A particular 

example is the controlled oxidation of isobutane to 
form a set of products, including methacrolein, 

isobutene and finally combustion to produce 

carbon dioxide.
57

  Here the controls consisted of 
the molybdenum, vanadium and antimony 

fractional catalyst components.   Thus, a landscape 

for each product depends on these three variables, 

taking into account that their mole fractions add to 
1.0.  In each case, the reported landscapes were 

trap free with particular interest focused on the 

case of methacrolein as the desired product.  In 
addition, these landscapes generally exhibited 

broad, flat optimal regions corresponding to a level 

set of successful controls, as similarly found when 
dealing with photonic reagents.  The authors also 

found that landscape traps could occur with 

catalysts made from other particular atomic 

components.
57

  This circumstance points to the 
significance of assumption (c) on having a proper 

set of resources when considering optimal control 

and the resultant impact on the observable 
landscape.   

 

 

 

 

 

 

 

 

 

Figure 6 (a): An NMR application of OptiChem with 

discrete variables.  A family of ketone molecules is 

characterized by the chemical substituents 1x  and 2x ,
 

where the physical property of interest is the C13

 
NMR shift at the indicated carbon atom.

14,15,58
  The 

shift is a “function” of the particular (discrete) 

substituents 1x  and 2x . 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 (b): The landscape with arbitrary 

assignment of substituent ordering.  A family of 

molecules of the form in 6(a) was chosen with both 

1x  and 2x  separately drawn from respective sets 

of fifteen substituents.  Although the C13
NMR shift 

depends on 1x  and 2x , there is no a prioi way to 

plot such data, since the sequence of chemical 
substituents labeling the axes of such a plot would 

be arbitrary.  As an illustration, the figure was 

made using a random, but unique, integer assigned 

to each of the fifteen chemical substituents 1x  and 

2x  on the scaffold in Figure 6(a).  The resultant 

chemical shift landscape appears random (the 

white squares correspond to molecules whose data 

was not available).   

 

Figure 6(c): Uncovering trap-free landscapes 

with discrete controls.  Following the concepts of 
OptiChem, a combinatorial reordering algorithm

58
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was applied to the data shown in Figure 6(b).  

Accordingly, Figure 6(c) is produced by 

reordering the rows and columns in Figure 6(b) 
resulting in a regular and essentially monotonic 

landscape.  The particular ordering along the two 

axes in Figure 6(c) reflected the rules of NMR as 
well as provided additional physical insights.  The 

fact that OptiChem principles could identify 

physical rules in this illustration opens up the 
prospect for automated rule discovery in broader 

domains of OptiSci applications
.14,15,58

   

 

 

The second example refers to the common goal of 

optimizing the property of a molecule drawn from 

a ‘library’ of possibilities where each member of 
the library has a common underlying scaffold with 

particular sites where chemical substituents may be 

attached.  In a circumstance with two variables 1x  

and 2x  and a scaffold each of the controls would 

take on a discrete set of values (i.e. denoted by the 
labels methyl, bromo, ethyl, etc.) corresponding to 

the chemical substituents respectively considered 

for bonding to the two sites.  Upon selecting 
(synthesizing) a member of the library, the 

property of interest would be measured.  The 

property ),( 21 xx   depends on the chemical 

substituents bonded to the two sites, but plotting 
the associated landscape poses an inherent problem 

due to the discrete nature of the control variables 

1x  and 2x   That is, the appearance of the 

landscape is influenced by the initially ambiguous 

ordering of the discrete values for 1x  and 2x .  In 

addition, the property landscape ),( 21 xx
 

will 

have a degree of grainy resolution due to the 

discrete variables.  This type of molecular control 
(discovery) problem occurs in many chemistry 

applications, and a special substituent reordering 

algorithm
59

 was established for the purpose of 
revealing the features of such OptiChem 

landscapes.  As an example, Figure 6 considers the 

case of measuring the ),( 21 xx   C13
chemical 

shift of the carbon atom in the carbonyl group 

with 1x
 

and
 2x  drawn from a set of prescribed 

chemical substituents.  The library of compounds 

may be codified by assigning a unique, but 

otherwise arbitrary, integer label for each 

substituent on both sites.  An initial arbitrary 

labeling of the substituents will generally produce 
a landscape that appears random, as found to be the 

case in Figure 6(b).  The underlying property 

landscape ),( 21 xx  should be trap free, (i.e., 

while taking into consideration the grainy nature of 

such discrete landscapes), provided that the three 
assumptions underlying OptiChem are satisfied.  

With that in mind, the reordering algorithm 

operates by performing a combinatorial 

optimization of the substituent integer labels on 
both sites seeking to identify if a regular landscape 

is hidden in the data.  Starting with Figure 6(b), the 

result after reordering the integer labels of the 
substituents (i.e., the rows and columns in 6(b)) is 

shown in Figure 6(c), which clearly reveals a 

smooth and essentially monotonic landscape.  
Many similar results have been found with other 

molecular libraries for a wide variety of properties 

considered as observables including from IR 

spectroscopy, thermodynamics, chemical binding 
affinity, etc.

14,15
  The outcome in each case was 

similar to that shown in Figure 6 producing a 

monotonic trap free landscape upon reordering the 
variables.  The significance of these results, and in 

particular those in Figure 6, can be easily 

appreciated.  First, the regular structure in Figure 6 

readily permits interpolation over the reported 
13

C 

chemical shift values to estimate those that have 

not already been measured (i.e., the values for the 

white squares of the Figure 6).  This capability has 
significance in NMR spectroscopy when trying to 

identify the products from a complex chemical 

synthesis.  Second, the optimal ordering of the 

chemical substituents on the two sites in Figure 6 
corresponded to known rules of NMR as well as 

provided additional chemical insights.
58

  The 

capability of landscape principles to reveal rules 
associated with the controls has potential 

importance beyond NMR, as rules ultimately often 

drive the operations in many domains of science.  
The identification of the rules lying hidden in the 

original ordering of the substituents in Figure 6(b) 

to finally produce Figure 6(c) utilized the 

reordering algorithm,
59

 which rests on the 
expectation of finding a regular trap free landscape 

upon satisfaction of the three assumptions 

underlying OptiChem.  Turning around this 
capability also has led to the identification of data 
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errors and other aberrations that stood out from an 

otherwise regular landscape in applications of this 

kind.
60

  This prospect has significance for 
potentially providing the means to identify flawed 

experimental designs at an early stage in the 

laboratory. 

IV. Conclusions 

Each area of science has its own objectives and 

operational differences, with the collective 
observed properties and variables spanning vast 

length and time scales as well as often exhibiting 

highly distinct subtleties. Thus, these 

circumstances would seem to suggest that little 
commonality should arise upon considering 

optimization in different domains of science.  

Counter to this expectation, OptiSci is based on the 
observed strikingly similar findings of 

extraordinary high efficiency upon seeking optimal 

control solutions across wide domains of science.  
This situation is summarized in Table 2, and 

Figure 7 addresses these points by showing two 

typical control laboratories with one dealing with 

photonic reagents and the other chemical and 
material reagents.  The latter laboratory is modern 

with heavy instrumentation and the more 

traditional chemical apparatus is relegated to the 
hood in the background. A comparison of the two 

photographs in Figure 7 would suggest that the 

activities underway in the laboratories do not share 

much in common. However, the primary focus in 
many laboratories is optimization of a desired 

outcome by a tailored choice of the available 

controls.  The basic contention of OptiSci is that 
regardless of the distinctions at a detailed 

operational level in such diverse experimental 

settings, seeking optimal performance provides a 
unifying concept and mathematical foundation to 

link together the common behavior found in 

seemingly diverse applications of control in 

science.  Importantly, the notion of common 
behavior in OptiSci goes beyond just considering 

the implementation of an optimal control 

algorithm, which can be utilized in virtually any 
application.  OptiSci is concerned with the 

universal control behavior found upon performing 

such implementations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Laboratories controlling events in two 

distinct areas of science.  The photograph on the 
left is of a photonic reagent quantum control 

laboratory with lasers, pulse shapers, optics, 

computers, etc.  The photograph on the right is of a 
modern chemical or material laboratory which is 

highly instrumented with the traditional apparatus 

residing in the background hood.  A simple glance 

at these two photographs would nominally lead to 
the conclusion that little if anything in common 

exists between the experiments in these 

laboratories.  The detailed operations in both 
laboratories are quite distinct with the associated 

phenomena typically involving very different 

length and time scales.  Nevertheless, a frequent 
goal in both cases is to optimize a product or 

outcome using available control resources.  The 

evidence shows that under optimization the 

behavior found in both laboratories is strikingly 
similar, especially in terms of the high efficiency of 

finding optimal controls, despite the extensive 

possibilities to search over.  The basic premise of 
OptiSci is that a unified origin for this behavior 

(a) 

(b) 
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exists which may be understood upon considering 

the associated objective control landscapes, and 

this behavior is exhibited across the sciences.  The 
high efficiency of searches in each area of science 

is important in its own right.  But, the observed 

similar behavior across the sciences opens up 
many opportunities for the control and 

understanding of what might hitherto have 

appeared as complex objectives possibly 
transcending the sciences. (a) Control Laboratory 

Employing Photonic Reagents and (b) Control 

Laboratory Employing Molecular/Material 

Reagents. 

 

The unification of the control operations in OptiQ, 

OptiChem and OptiEvo to finally form OptiSci is 
based on satisfying three assumptions reiterated 

here as: (a) the objective is well posed, (b) free 

movement is available on the objective landscape 
and (c) no significant constraints are placed on the 

control resources.  Upon satisfaction of these 

assumptions, the objective may be either expressed 

quantum mechanically )( OTrO qmqm    or 

classically  dOcl )()(  Ocl  where the 

goal is corresponding optimization of qmO
 

or
 

clO
 
over the control variables.  In both cases,   

is either the quantum or classical density, which 

depends on the controls.  There are various ways of 
establishing the trap free nature of either the 

classical or quantum control landscape,
7,8,61

 with 

some procedures revealing distinct levels of detail.  
However, the essence of the analysis rests on either 

the quantum mechanical expectation value or the 

classical average value being a convex function of 
its appropriate density.  In addition, upon 

satisfaction of the three key assumptions, these 

respective densities form convex sets.  Thus, the 

landscape is itself convex.  The generality and 
simplicity of this analysis speaks to the observed 

generic landscape behavior found in a wide variety 

of scientific disciplines.   

There are still many issues to be resolved in 

OptiSci calling for additional mathematical and 

experimental analyses, and the fundamental and 

practical implications for the findings of common 
control behavior in the sciences remains to be 

determined.  However, at this point some 

speculative assessments can be made based on the 

evidence and analysis that a universal control 
principle is operative in the sciences.  This 

behavior captured by OptiSci suggests that optimal 

controls may be efficiently discovered for 
phenomena spanning vast length and time scales.  

The systematics of OptiSci implies that it may be 

possible to develop control based ’machines’ 
whose goal is to identify rules rather than just seek 

an optimal outcome.
14,15

  In this case a rule may be 

defined as a minimal set of variables that produce a 

trap free landscape for a particular objective.  
Turning this around, failure to find an expected 

trap free landscape in a sequence of control 

experiments should indicate the presence of an ill-
defined goal that violates one or another of the 

assumptions of OptiSci.
14,15

  Hints at these 

prospects are already evident,
60

 and the early 
discovery of flawed experimental designs could be 

of high value in complex optimization efforts.  

Finally, a deeper understanding of the topology 

and general structure of control landscapes may 
enable more efficient control algorithms, which 

could be especially important in cases where the 

experiments are expensive to perform.  At this 
juncture the main conclusion from OptiSci is that 

the strikingly common control behavior found 

within specific areas of science, and between them, 

deserves attention for its full implications. In the 
context of optimal control in the sciences, perhaps 

we may adopt G. Liebnitz’s adage that “It is the 

best of all possible worlds”.  
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