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Abstract: In this paper, we apply the Variational iteration method and homotopy perturbation method for solving 

linear and nonlinear partial integro-differential equation (PIDE). The efficiency and accuracy of the methods is vali-

dated by its application to several distinct test problems which have exact solutions. The results of applying these 

methods show the simplicity and efficiency of these methods. 
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1  Introduction 

Mathematical modeling of real-life problems usually results in functional equations, such as partial dif-

ferential equations, integral and integro-differential equation, and stochastic equations. Many mathematical 
formulations of physical phenomena contain integro-differential equations. Several techniques including 

finite difference, B-spline, homotopy perturbation, decomposition and variational iteration have been de-

veloped for solving partial integro-differential equation. 
He [1, 2] developed the variational iteration and homotopy perturbation methods for solving linear, nonlin-

ear partial integro-differential equation. It is worth mentioning that the origin of variational iteration meth-

od can be traced to Inokuti, Sekine and Mura [3], but the real potential of this technique was explored by 
He [4-10]. Moreover, He realized the physical significance of the variational iteration method, its compati-

bility with the physical problems and applied this promising technique to a wide class of linear and nonlin-

ear, ordinary, partial integro-differential equation [1, 2]. He develops the homotopy perturbation method 

by merging two techniques, the standard homotopy and the perturbation [2, 11-13]. The homotopy pertur-
bation method was formulated by taking the full advantage of the standard homotopy and perturbation 

methods.  

Our contribution in this paper is to solve linear and nonlinear partial integro-differential equations in 
one dimensional space with non-homogeneous Dirichlet boundary conditions by Variational iteration 

method and homotopy perturbation method. The proposed techniques are programmed using Matlab ver. 

7.8.0.347 (R2009a). 
The paper is organized as follows: In Section 2, we give Analysis of the Variational iteration method 

for partial integro-differential equations with varying boundary conditions. In Section 3, we use Analysis 

of the homotopy perturbation method for solving partial integro-differential equations. In Section 4, the 

proposed schemes are directly applied to solve several numerical examples which have the exact solutions. 
Conclusions are drawn in Section 5. 
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2  Analysis of the Variational iteration method 

To illustrate the basic concept of the Variational iteration method [7], we consider the following dif-
ferential equation: 

),()()( txguNuL                                                                          (2.1) 

where L  is a linear operator, N  is a nonlinear operator and ),( txg  is an inhomogeneous term. Then we 

can construct a correct function as follows: 

    dxgxuNxuLtxutxu nn

t

nn ),(),(~),()(),(),(
01                           (2.2) 

where   is a general Lagrange multiplier [3,8,10], which can be identified optimally via varitional theory. 

The second term on the right is called the correction and nu~  is considered as a restricted variation, i.e. 

.0~  nu  With the determination of ,  the approximations 0),,( ntxun  follow immediately. Conse-

quently, the exact solution may be obtained by using 

),(lim),( txutxu n
n

                                                                                     (2.3) 

 

2.1. Linear partial integro-differential equation 

We need to solve the following equation form: 
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with the boundary conditions are defined as follows: 

00),(,0),(  ttbutau                                                          (2.1.2) 

and the initial condition: 

)()0,( xgxu                                                                                                (2.1.3) 

We consider the equation (2.1.1) subject to the initial condition (2.1.3). According to the variational itera-

tion method, we can construct the following correct functional: 
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where nu~  is considered as a restricted variation, i.e. 0~  nu  and   is the general Lagrange multiplier. 

Making the above correct functional stationary and noticing that .0~  nu  
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which yields the following stationary conditions 

0)(,0)(1  t                                                                        (2.1.7) 

Therefore, the general Lagrange multiplier can be readily identified as: 

1)(                                                                                            (2.1.8) 

Substituting this value of the Lagrange multiplier into functional (3.4) gives the iteration formula 
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2.2. Nonlinear partial integro-differential equation 

We need to solve nonlinear problem given by the following integro-differential equations: 

0),,()),(()(),(
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with the initial condition: 
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)()0,( xgxu                                                                                      (2.2.2) 

We consider the equation (2.2.1) subject to the initial condition (2.2.2). According to the variational itera-
tion method, we can construct the following correct functional: 
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where nu~  is considered as a restricted variation, i.e. 0~  nu  and   is the general Lagrange multiplier. 

Making the above correct functional stationary and noticing that  .0~  nu  
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which yields the following stationary conditions 

0)(,0)(1  t                                                                   (2.2.6) 

Therefore, the general Lagrange multiplier can be readily identified as: 

1)(                                                                              (2.2.7) 

Substituting this value of the Lagrange multiplier into functional (4.3) gives the iteration formula 
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2.3. Modified variational iteration method (MVIM) 

To illustrate the basic concept of the variational homotopy perturbation method, we consider the fol-
lowing general differential equation 

)()()( xguNuL                                                                         (2.3.1) 

where L  is a linear operator, N  a nonlinear operator and )(xg  is the forcing term. According to variation-

al iteration method, we can construct a correct functional as follows 
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01   dguNLuxuxu nn

x

nn                                       (2.3.2) 

where   is a Lagrange multiplier, which can be identified optimally via variational iteration method. The 

subscripts n denote the nth approximation, nu~  is considered as a restricted variation. i.e. ;0~  nu  eq 

(2.3.2) is called as a correction functional. Now, we apply the homotopy perturbation method 
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which is the modified variational iteration method (MVIM) and is formulated by the coupling of variation-

al iteration method and He’s polynomials. The comparison of like power of p  gives solutions of various 
orders. 

 

3. Analysis of the homotopy perturbation method 

To clarify the basic ideas of the homotopy perturbation method [14-16], let us consider the following 

function: 

,,0)()(  rrfuA                                                                    (3.1) 

with boundary conditions 

,,0),(  r
dn

du
uB                                                               (3.2) 

where A  is a general differential operator, B  is a boundary operator, u  is a known analytical function, 

and   is the boundary of the domain .  
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The operator A  can be divided into two parts L  and ,N  where L  is linear, while N  is nonlinear. 

Therefore eq. (5.2.1) can be rewritten as follows 

.0)()()(  rfuNuL                                                              (3.3) 

By the homoyopy technique proposed by Liao [17], we can construct a homotopy 

Rpr  ]1,0[:),(  which satisfies 

,0)]()([)]()()[1(),( 0  rfApuLLppH                                      (3.4) 

or 

)]()([)()()(),( 00 rfNpupLuLLpH                                             (3.5) 

where r  and ]1,0[p  is an embedding parameter, 0u  is an initial approximation of (3.1), which satis-

fies the boundary conditions. By (3.4), it easily follows that 

,0)()()0,( 0  uLLH                                                                     (3.6) 

,0)()()1,(  rfAH                                                                 (3.7) 

and the changing process of p  from zero to unity is just that of ),( pH   from )()( 0uLL   to 

).()( rfA   In topology, this is called deformation, )()( 0uLL   and )()( rfA   are called homotopic. 

The embedding parameter p  is introduced much more naturally, unaffected by artificial factors. Fur-

thermore, it can be considered as a small parameter for .10  p  By applying the perturbation technique 

used in [18, 19], we assume that the solution of eq. (3.4) can be expressed as 

.2
2

10  pp                                                                   (3.8) 

Therefore, the approximate solution of eq. (3.1) can be readily obtained as follows: 

.lim 210
1


p

u                                                                (3.9) 

The combination of the perturbation method and the homotopy method is called the HPM, which elim-

inates the drawbacks of the traditional perturbation methods while keeping all its advantage. The series 

(3.9) is convergent for most cases. However, the convergent rate depends on the nonlinear ).(A  Moreo-

ver, the following suggestions were made by [1-3]: 

The second derivative of )(N  with respect to   must be small because the parameter may be relatively 

large, i.e. .1p  

The norm of 


 N
L 1

 must be smaller than one so that the series converges. 

 

3.1. Linear partial integro-differential equation 

We consider the partial integro-differential equation (2.1.1-2.1.3). According to the homotopy perturba-

tion method, we can construct the homotopy R ]1,0[  which satisfies 
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Substituting eq. (3.8) in to eq. (3.1.1), we get 
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and rearranging the resultant based on powers of p  terms, one has: 
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With the following conditions: 
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In order to obtain the unknown, we should solve eqs. (3.1.4) and (3.1.5), considering the initial conditions 

of eq. (3.1.7), and having the initial approximations of eq. (3.1.4). So we have: 

),(0 xg                                                                                 (3.1.8) 

and solving the above equations, we obtain from eq. (3.1.4) 
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so we can find 1 , from 1  in eq. (3.1.5), we can find 2 , etc. 

By continuing the calculation, we thus have the solution given by 

.lim 210
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p

u                                                                        (3.1.11) 

 

3.2. Nonlinear partial integro-differential equation with a modified homotopy perturbation method 

We consider the nonlinear partial integro-differential equations (2.2.1, 2.2.2) Eq. (2.2.1) is an example 

of the general nonlinear equation: 
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which is defined on a Hilbert space H with g  a given nonlinear unbounded operator. To solve eqs (2.2.1) 

and (2.2.2), we construct the following homotopy with tuuL )(  and 
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To deal with the nonlinear term, we will employ He’s polynomials which is given by  
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Substituting (3.2.4) into (3.2.3), and equating coefficients of like powers of ,p  we obtain  

,0)()(: 00
0  uLLp                                                                                         (3.2.6) 

,0)()()(: 001
1  NuLLp                                                                             (3.2.7) 

,0),()(: 102
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,0),,()(: 2103
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and so on, which forms the basic of a complete determination of the components .,,, 210   We let 

0),(0 txu  for  convenience. We therefore obtain the following equations for the components: 
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and so on 
 

4  Numerical Example 

The accuracy of our proposed numerical method is measured by computing the difference between 

numerical and exact solution.  
 

Example 1:  
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                                      (4.1) 

if we assume that, 

))(21640348()1(),( 222432 txtxtx eexxxxexxtxf               (4.2) 

then the exact solution is given by 
txexxtxu  )1(),(                                                                   (4.3) 

and the initial condition is: 
xexxxu  )1()0,(                                                               (4.4) 

The numerical experiment is carried out for 01313.0t  and .1,,2.0,1.0 x  Table (1) exhibits the nu-

merical results. 

 
Example 2: 
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if we assume that, 

 )2cos2(sin)(2cos)(2sin
4

1
)cos(),( 2 xxetxtxtxtxf t  

              (4.6) 

then the exact solution is given by 

)sin(),( txtxu                                                                     (4.7) 

and the initial condition is: 

).sin()0,( xxu                                                                       (4.8) 

The numerical experiment is carried out for 02.0t  and .1,,2.0,1.0 x  Table (2) exhibits the numerical 

results. 

 

Example 3:  
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if we assume that, 

 ttxtx eeeetxf 22)( 2),(                                                  (4.10) 

then the exact solution is given by 
txetxu ),(                                                                       (4.11) 
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and the initial condition is: 
xexu )0,(                                                                        (4.12) 

The numerical experiment is carried out for 001.0t  and .1,,2.0,1.0 x  Table (3) exhibits the numeri-

cal results. 

 
Table 1: The approximate and exact solutions at 001.0t  

x Approximate Solution Exact Solution Error 

0 7.994669E-006 0.000000E+000 7.994669E-006 
0.1 8.151268E-002 8.135397E-002 1.587113E-004 
0.2 1.311261E-001 1.308660E-001 2.600708E-004 
0.3 1.557268E-001 1.554163E-001 3.104484E-004 
0.4 1.610377E-001 1.607160E-001 3.216704E-004 
0.5 1.517845E-001 1.514811E-001 3.034354E-004 
0.6 1.318468E-001 1.315831E-001 2.636581E-004 
0.7 1.043874E-001 1.041787E-001 2.087592E-004 
0.8 7.196469E-002 7.182078E-002 1.439097E-004 
0.9 3.662793E-002 3.655470E-002 7.323711E-005 
1 0.000000E+000 0.000000E+000 0.000000E+000 

 

 
Table 2: The approximate and exact solutions at 01.0t  

x Approximate Solution Exact Solution Error 

0 7.946932E-004 0.000000E+000 7.946932E-004 
0.1 8.184030E-002 8.062507E-002 1.215226E-003 
0.2 1.321222E-001 1.296935E-001 2.428748E-003 
0.3 1.570661E-001 1.540239E-001 3.042275E-003 
0.4 1.624853E-001 1.592761E-001 3.209215E-003 
0.5 1.531734E-001 1.501239E-001 3.049516E-003 
0.6 1.330612E-001 1.304042E-001 2.656976E-003 
0.7 1.053501E-001 1.032453E-001 2.104851E-003 
0.8 7.262749E-002 7.117729E-002 1.450198E-003 
0.9 3.696442E-002 3.622718E-002 7.372391E-004 
1 0.000000E+000 0.000000E+000 0.000000E+000 

 
Table 3: The approximate and exact solutions at 0001.0t  

x Approximate Solution Exact Solution Error 

0 5.000500E-005 1.000000E-004 4.999500E-005 
0.1 9.977298E-002 9.993292E-002 1.599359E-004 
0.2 1.985979E-001 1.987673E-001 1.694357E-004 
0.3 2.954377E-001 2.956157E-001 1.780366E-004 
0.4 3.893252E-001 3.895104E-001 1.852478E-004 
0.5 4.793227E-001 4.795133E-001 1.905771E-004 
0.6 5.645315E-001 5.647250E-001 1.935520E-004 
0.7 6.441004E-001 6.442942E-001 1.937419E-004 
0.8 7.172350E-001 7.174258E-001 1.907777E-004 
0.9 7.832047E-001 7.833891E-001 1.843704E-004 
1 8.413507E-001 8.415250E-001 1.743267E-004 

 

5  Conclusion 
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Analytically, partial integro-differential equations are usually difficult to solve. In many cases, it is re-

quired to obtain the approximate solutions. In this work, we proposed the homotopy perturbation method 

and variational iteration method for solving linear and nonlinear partial integro-differential equation. 
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