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Abstract: This communication investigates the unsteady two-dimensional oscillatory flow of an incompressible 

viscous fluid past an infinite vertical, porous flat plate with the effect of magnetic field. It is assume that free stream 

velocityoscillates in times about a constant mean. Assuming the periodic heat flux at the plate with the effect of 

viscous dissipation, the set of non-linear coupled differentialequations is solved by regular perturbationtechnique. The 

approximate solutions are obtained for velocity and temperature field. The effect of various parameters on mean flow 

velocity, transient velocity, mean skin friction and transient temperature are discussed and shown graphically. 
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1  Introduction 

From the technological point of view oscillatory flow is always the subject of intensive studies due to its 

numerous and wide ranging applications. The study of natural convection in a vertical channel with the 

effect of magnetic field and thermal diffusion is an important subject due to increasing practical 

applications in industries. Such a study was initiated by Lighthill [1] who studied a two dimensional flow 

of an incompressible viscous fluid. By assuming that a regular fluctuating flow is superimposed on the 

mean steady boundary –layer flow, he solved the problem by the momentum method. Stuart [2] extended 

this idea to study a two-dimensional flow past an infinite vertical porous flat plate when the free stream 

velocity oscillate in time about a constant mean, where he assumed that there is no heat transfer between 

the plate and the fluid in deriving the temperature field, which is only one of the possible cases of physical 

situation. Soundalgekar [3-4] discussed the other case of physical situation, that is when the difference 

between the plate temperature and the free stream temperature isapparently large so as to cause the free 

convection currents to the flow in the boundary layer and the free stream velocity oscillates in time about a 

constant mean in the direction of the flow. Since the flow is very slow and hence viscous dissipative 

effects are negligible. In the case of fluid with high Prandtl number, viscous dissipative heat is always 

present even in slow motion. In case of unsteady free convective flows Soundalgekar [5] studied the 

effects of viscous dissipation on the flow past an infinite vertical porous plate. It was assumed that the 

plate temperature oscillates in such a way that its amplitude is small. The laminar free convection from a 

vertical plate has been investigated by Martynenko et al.[6] . Harris et al.[7] studied free convection from a 

vertical plate through a porous media. Magnetic fields influence many natural and man-made flows. They 

are routinely used in industry to heat, pump, stir and levitate liquid metals. The terrestrial magnetic field, 

which is maintained by fluid, motion in the earth's core, the solar magnetic fields, which generates 

sunspots and solar flares, and the galactic field which influences the formation of stars.The flow problems 

of an electrically conducting fluid under the influence of magnetic field have attracted the interest of many 

authors in view of its applications to geophysics, astrophysics, engineering, and to the boundary layer 

control in the field of aerodynamics. On the other hand in view of the increasing technical applications 

using Magnetohydrodynamics effect, it is desirable to extend many of the available viscous hydrodynamic 
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solution to include the effects of magnetic field for those cases when the viscous fluid is electrically 

conducting. Rossow [8], Greenspan and Carrier [9] have studied extensively the hydromagnetic effects on 

the flow past a plate with or without injection/suction. The hydromagnetic channel flow and temperature 

field was investigated by Attia and Kotab [10]. Hossain et al. [11] have studied the MHD free convection 

flow when the surface kept at oscillating surface heat flux. Recently Sharma et al. [12] have studied the 

unsteady free convection oscillatory flow between parallel plates through porous medium assuming 

periodic temperature variations. Boundary layer flows of fluids of small electrical conductivity are 

important particularly in the field of aeronautical engineering. Therefore the object of the present paper is 

to study the effects of the magnetic field and oscillatory thermal diffusion on the unsteady flow of a 

viscous, incompressible and electrically conducting fluid past vertical porous flat plate with oscillatory free 

stream velocity and viscous dissipative effect at the plate is also considered. 

2 Formulation of the Problem 

We consider the unsteady flow of a viscous incompressible fluid past infinite vertical porous flat plate, 

with a free stream velocity that oscillates in time about a constant mean. We take x*-axis along the moving 

vertical plate in the vertically upward direction which is the direction of flow and z*-axis is taken normal 

to the plate. We consider the free-stream velocity distribution of the form: 

)tan(),1(*)( 0

***

0

* velocitysuctiontconswweUtU ti    (1)  

whereUo is the mean constant free-stream velocity, * is the frequency of oscillations and t* is the time. 

The basic equation of magnetofluiddynamics and conventional fluiddynamics are different by only 

additional force term due to electromagnetic field. The Maxwell's equations have to be satisfied in the 

entire field. In order to derive the basic equations for the problem under consideration, the following 

assumptions are made: 

1) The flow is steady and laminar and the magnetic field is applied perpendicular to the plate. 

2) The fluid under consideration is viscous, incompressible and finitely conducting with constant 

physical properties. 

3) The magnetic Reynolds number is taken to be small enough so that the induced magnetic field is 

neglected. 

4) Hall Effect, electrical and polarization effects are neglected. 

The equations governing the problem are: 
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where the fourth term on the right hand side of equation  (2) is the Lorentz force due to magnetic field B

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and is given by 
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The equation (2) becomes 

)()( **
2

**

2*

*2

*

*

*

*
*

*

*

Uu
B

TTg
z

u

t

U

z

u
w

t

u

























                                   (4)  

  The energy equation is: 
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where u*, U*, , g, ,  k, T*, T*,  Cp are respectively, velocity, free-stream velocity, kinematic viscosity, 

gravity, volumetric coefficient of thermal expansion, thermal conductivity, temperature of fluid in the 

boundary layer, temperature of the plate at in free stream, and specific heat at constant pressure of the 

fluid. The (*) stands for dimensional quantities. The boundary conditions of the fluid motion are : 

 

)1(,0*:0* **

*

*

*
tiw e

q

z

T
uz 







  



P.  K.  Sharma , C. Singh  : Effect of MHD and Thermal Diffusion…                                                                           81 

 

 

 

_________________________________________________________________________________________________________ 

@ 2013 NSP                                                                                                                                                               

Natural Sciences Publishing Cor. 

 (6)  

 

Introducing the following non – dimensional quantities 
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The equations (4) and (5) become 
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with corresponding boundary conditions 
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3 Solution of the Problem 

Since the amplitudes of the free-stream velocity and temperature variation (<<1) is very small, we now 

assume the solutions of the following form : 

............)()(),( 10  tiezuzutzu  , 

.............)()(),( 10  tiezztz   

  and for the free-stream velocity 

 
tie1U  .                                      (11) 

Substituting equations (10) and (11) in equations (7) and (8), comparing the coefficients of identical power 

of   and neglecting those of 
2 , we get following equations  

2

00

2'

00

" MGruMuu      ,         (12) 

,)(PrPr" 2'

0

'

00 uEc          (13 ) 

    ," 2

11

2'

11 MiGruMiuu           (14 ) 

'

1

'

1

'

11 Pr2PrPr" uuEci o    .         (15) 

with the corresponding boundary conditions :  

1,1,0,0:0 10
10 











zz
uuz


 

0,0,1,1: 1010  uuz          (16) 

.*,)1(*:* *

0

**

 TTeUuz tw

(10) 



             

82                                    P.  K.  Sharma , C. Singh  : Effect of MHD and Thermal Diffusion… 

 
 

 

_________________________________________________________________________________________________________ 

@ 2013 NSP                                                                                                                                                               

Natural Sciences Publishing Cor. 

     

where  primes denotes differentiation with respect to z. To solve the coupled non-linear equations (12) to 

(15), we now assume that the heat due to viscous dissipation is superimposed on the motion. 

Mathematically this can be achieved by expanding the velocity and temperature terms in power of Ec( 

Eckert Number). In the case of incompressible fluids, Ec is always very small. We now assume 
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Substituting (17) in (12) to (15), equating to zero the coefficient of different powers of Ec and neglecting 

the term of O(Ec
2 
), we obtain the following set of equations with corresponding boundary conditions: 
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Solving equations (18) to (21) and (23) to (26) under the corresponding boundary conditions (22) and (27), 
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4 Result and Discussions 

In order to point out the effect of Hartmann Number (M), Eckert number (Ec), Grashoff Number (Gr) and 

Prandtl number (Pr),  on the mean velocity, mean skin-friction, transient velocity and temperature when the 

moving plate is subjected to oscillating free-stream velocity and fluctuating heat flux with the effect of 

viscous dissipation function, the following discussions are set out.  

(a) Mean flow : 

The mean flow velocity component for Ec = 0.01 is presented in Fig. 1. It is observed from the figure that 

the mean flow velocity increases with Grashoff number Gr and magnetic field parameter M near the plate 

and become constant far away from the plate. The mean flow velocity decreases by increasing Prandtl 

number Pr.  Physically this is true because the increase in Prandtl number is due to increase in the viscosity 
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of the fluid, which makes the fluid thick and hence a decrease in the velocity of the fluid in the vicinity of 

the plate and become constant later. 

 After knowing the mean flow velocity field, it is important to know the effects of magnetic field and 

Grashoff number on mean- skin friction at the plate. It is given by  : 
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Denoting the mean skin friction by  
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The mean skin friction profile for Ec= 0.01 is presented in Fig.2. It is observed that mean skin friction 

increases with increasing Gr ( Grashoff number ) and Pr ( Prandtl number ) in the same manner. The mean 

skin friction increases continuously with increasing M., the magnitude is less for small values of M. 

The mean temperature profile is presented in Fig.3. It is observed that mean temperature increases with M 

near the plate and become constant as we go away from the plate. It is also observed that mean temperature 

increases slightly with Ec( Eckert number ). Furthermore for higher value of M the mean temperature 

decreases rapidly with distance from the plate. 
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Unsteady flow: 

The velocity and temperature field can now be expressed in terms of fluctuating parts as follows 

)()(),( 0 ir

ti NiNezutzu    )()(),( 0 ir

ti QiQeztz        

where:  )(,)( 11 zQiQzuNiN irir        

We can now write expressions for transient velocity and temperature for  2/t , as follows  

iNzuzu   )()2/,( 0  , iQzz   )()2/,( 0      

For small value of  = 0.2 and Ec = -0.01 the transient velocity profile for air ( Pr = 0.71 ) is shown in 

Fig.4. The graph reveals that the transient velocity increases rapidly with M and angular velocity (). It is 

also observed that the velocity increases with decreasing Gr. Physically it is true because free convection 

resist the flow. The transient velocity for small value of  =0.2 and Ec = -0.01 for water ( Pr = 7) is 

presented in Fig.5. It is observed that it increases with increasing angular velocity () and reverse effect is 

observed for Gr. Also velocity increases near the plate and become constant as we go away from the plate. 

The transient temperature is presented for =0.2 and Ec = -0.01 for air ( Pr = 0.71) in Fig. 6. It is observed 

that it increases with increasing Ec, while reverse effect is observed for . Physically it is true because due 

to viscous dissipation heat generated by friction of fluid layers lead to rise in temperature. It is also 

observes from the figure that temperature decreases with increasing M. There is slight decrease in 

temperature with the plate distance. For lower value of M, the transient temperature increases near the 

plate and attains maximum value then it decreases with the plate distance. 

5 Conclusions 

Mean and transient velocity increases near the plate and becomes constant far away from the plate. Mean 

and transient velocity increases with increasing the magnetic field parameter, while reverse effect is 

observed for Gr. Mean temperature increases with Gr ( Grashoff number). Transient temperature slightly 

decreases with the distance from plate. It is interesting to observe that transient temperature increases near 

the plate for small value of M. 
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