# Positive Periodic Solutions of Singular Systems for First Order Difference Equations 

Mesliza Mohamed and Osman Omar<br>Mathematics Department, Faculty of Computer \& Mathematical Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia

Received: 1 Jan. 2013, Revised: 4 Apr. 2013, Accepted: 6 Apr 2013
Published online: 1 May. 2013


#### Abstract

We establish the existence of one or more than one positive periodic solutions of singular systems of first order difference equations $\Delta \mathbf{x}(k)=-\mathbf{a}(k) \mathbf{x}(k)+\lambda \mathbf{b}(k) \mathbf{f}(\mathbf{x}(k))$. The proof of our results is based on the Krasnoselskii fixed point theorem in a cone.


Keywords: Periodic solutions, singular first order, functional difference equations, Kranoselskii fixed point theorem.

## 1 Introduction

Let $\mathbb{R}=(-\infty, \infty), \mathbb{R}_{+}=[0, \infty), \mathbb{R}_{+}^{n}=\prod_{i=1}^{n} \mathbb{R}_{+}$, for any $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}$. In this paper, we investigate the existence and multiplicity of positive solutions of singular first-order for non-autonomous systems of difference equations

$$
\begin{equation*}
\Delta \mathbf{x}(k)=-\mathbf{a}(k) \mathbf{x}(k)+\lambda \mathbf{b}(k) \mathbf{f}(\mathbf{x}(k)) \tag{1}
\end{equation*}
$$

where $\quad \mathbf{a}(k)=\operatorname{diag}\left[a_{1}(k), a_{2}(k), \ldots, a_{n}(k)\right]$, $\mathbf{b}(k)=\operatorname{diag}\left[b_{1}(k), b_{2}(k), \ldots, b_{n}(k)\right], \mathbb{Z}$ is the set of integers, $\omega \in \mathbb{N}$ is a fixed integer, $\lambda>0$ and $a_{i}, b_{i}$ are $\omega-$ periodic and continuous with $0<a_{i}(k)<1$ for all $k \in[0, \omega-1]$ and $f_{i} \in C\left(\mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\},(0, \infty)\right)$ for $i=1, \ldots, n$. Here $\Delta \mathbf{x}(k)=x(k+1)-x(k)$, for $k \in Z$.

The existence of positive solutions for differential and difference equations has been studied extensively in recent years. Some appropriate references would be $[1,3,4,8,9$, $16,15,17,14,11]$. To our knowledge, there are few works on the existence results of positive solutions of the type problem (1), see for example [17, 12, 13, 7]. However those results do not deal with singular problems.

Agarwal and O'Regan [1] provided some results on solutions of singular first order differential equations. Chu and Nieto [2] showed the existence of periodic solutions for singular first order differential equations with impulses based on a nonsingular alternative of Leray. The results in [1,2] for first ordr differential equations deal with a single equation. Motivated by the work of Wang [16], we will establish the existence of one or more than
one positive periodic solutions for the following first-order non-autonomous singular systems
$x_{i}^{\prime}(t)=-a_{i}(t) x_{i}(t)+\lambda b_{i}(t) f_{i}\left(x_{1}(t), \cdots, x_{n}(t)\right), i=1, \cdots, n$,
where $\lambda>0$ is a positive paramater. We will obtain the discrete analogue of (2) and thus generalize the work of Mohamed et. al [10] to systems. The proof of our result is based on the well-known Kranoselskii fixed point theorem [5].

## 2 Preliminaries

Let $X$ be the set of all real $\omega$-periodic sequences $\mathbf{x}: \mathbb{Z} \rightarrow$ $\mathbb{R}_{+}^{n}$.

$$
X=\left\{\mathbf{x}:[0, \omega] \rightarrow \mathbb{R}_{+}^{n}: \mathbf{x}(k+\omega)=\mathbf{x}(k), k \in \mathbb{Z}\right\}
$$

Endowed with the maximum norm $\|\mathbf{x}\|=\sum_{i=1}^{n}\left|x_{i}\right|$ where $\left|x_{i}\right|=\max _{k \in \mathbb{Z}}\left|x_{i}(k)\right|, \mathbf{x}=\left(x_{1}, x_{2} \ldots, x_{n}\right)^{T}$. Then $X$ is a Banach space. First we make assumptions for the problem (1).
(H1) $a_{i}: \mathbb{Z} \rightarrow(0,1), \sum_{i=0}^{\omega-1} b_{i}>0$ are continuous and $\omega$-periodic such that, $a_{i}(k)=a_{i}(k+w)$, $b_{i}(k)=b_{i}(k+w)$ for $i=1,2, \ldots, n$ where $\omega$ is a constant denoting the common period of the systems.
(H2) $f_{i}: \mathbb{R}_{+}^{n} \backslash\{\mathbf{0}\} \rightarrow(0, \infty)$ is continuous, where $i=1, \ldots, n$.
We now state the Kranoselskii Fixed Point Theorem [5].

[^0]Lemma 1.Let $X$ be a Banach space, and let $K \subset X$ be a cone in $X$. Assume $\Omega_{1}, \Omega_{2}$ are open subsets of $X$ with $0 \in$ $\Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K
$$

be a completely continuous operator such that either

$$
\begin{aligned}
& \text { (i) \|Tx\|} \leq\|x\|, x \in K \cap \partial \Omega_{1} \text { and }\|T x\| \geq\|x\|, x \in K \cap \\
& \partial \Omega_{2} ; \text { or } \\
& \text { (ii) }\|T x\| \geq\|x\|, x \in K \cap \partial \Omega_{1} \text { and }\|T x\| \leq\|x\|, x \in K \cap \\
& \partial \Omega_{2} ;
\end{aligned}
$$

Then $T$ has a fixed point in $T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$.
Lemma 2.Assume (H1), (H2) hold. If $\boldsymbol{x} \in X$, then $\boldsymbol{x}$ is a solution of (1) if and only if

$$
\begin{array}{r}
x_{i}(k)=\sum_{s=0}^{\omega-1} G_{i}(k, s) \lambda b_{i}(s) f_{i}(\boldsymbol{x}(s)), \\
k, s \in[0, \omega], i=1, \ldots, n
\end{array}
$$

where

$$
\begin{array}{r}
G_{i}(k, s)=\frac{\prod_{r=s+1}^{k+\omega-1}\left(1-a_{i}(r)\right)}{1-\prod_{r=0}^{\omega-1}\left(1-a_{i}(r)\right)}, \\
k, s \in[0, \omega-1], i=1, \ldots, n .
\end{array}
$$

Note that the denominator in $G_{i}(k, s)$ is not zero since $0<a_{i}(k)<1$ for $k \in[0, \omega-1]$.
Proof. It is clear that (1) is equivalent to
$x_{i}(k+1)=\left(1-a_{i}(k)\right) x_{i}(k)+\lambda b_{i}(k) f_{i}(\mathbf{x}(k)) \quad i=1, \ldots, n$.
and that it can be written as
$\Delta\left(x_{i}(k) \prod_{r=0}^{k-1}\left(1-a_{i}(r)\right)^{-1}\right)=\lambda \prod_{r=0}^{k}\left(1-a_{i}(r)\right)^{-1} b_{i}(k) f_{i}(\mathbf{x}(k))$
By summing the above equation from $s=k$ to $s=k+\omega-$ 1 and since $x_{i}(k+\omega)=x_{i}(k)$, we have
$x_{i}(k)=\left[\prod_{r=0}^{k+\omega-1}\left(1-a_{i}(r)\right)^{-1}-\prod_{r=0}^{k-1}\left(1-a_{i}(r)\right)^{-1}\right]^{-1}$

$$
\lambda \sum_{k}^{k+\omega-1} \prod_{r=0}^{k}\left(1-a_{i}(r)\right)^{-1} b_{i}(k) f_{i}(\mathbf{x}(k))
$$

It is clear that $G_{i}(k, s)=G_{i}(k+\omega, s+\omega)$ for all $(k, s) \in$ $\mathbb{Z}^{2}$. A direct calculation shows that

$$
\begin{aligned}
m_{i}:= & \frac{\prod_{s=0}^{\omega-1}\left(1-a_{i}(s)\right)}{1-\prod_{s=0}^{\omega-1}\left(1-a_{i}(s)\right)} \leq G_{i}(k, s) \\
& \leq \frac{1}{1-\prod_{s=0}^{\omega-1}\left(1-a_{i}(s)\right)}=: M_{i}
\end{aligned}
$$

Define $\quad \sigma_{i}=\prod_{s=0}^{\omega-1}\left(1-a_{i}(s)\right)$. Clearly for $i=1, \ldots, n, \sigma_{i}=\frac{m_{i}}{M_{i}}>0$,

$$
\left|x_{i}\right|=\max _{k \in[0, \omega-1]}\left|x_{i}(k)\right| \leq M_{i} \sum_{k=0}^{\omega-1} \lambda b_{i}(k) f_{i}(\mathbf{x}(k)) .
$$

Therefore,

$$
\mathbf{x}(k) \geq m_{i} \sum_{k=0}^{\omega-1} \lambda b_{i}(k) f_{i}(\mathbf{x}(k)) \geq \frac{m_{i}}{M_{i}}\left|x_{i}\right|=\sigma_{i}\left|x_{i}\right|
$$

for $i=1, \ldots, n$. Now we define a cone
$K=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in X, k \in[0, \omega], x_{i}(k) \geq\right.$

$$
\left.\frac{m_{i}}{M_{i}}\left|x_{i}\right|=\sigma_{i}\left|x_{i}\right|, \forall i=1, \ldots, n\right\}
$$

It is clear that $K$ is a cone in $X$ and $\min _{k \in[0, \omega]} \sum_{i=1}^{n}\left|x_{i}(k)\right| \geq \sigma\|\mathbf{x}\|$ for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K$. For $r>0$, define $\Omega_{r}=\{\mathbf{x} \in K:\|\mathbf{x}\|<r\}$. Let $\mathbf{T}: K \backslash\{\mathbf{0}\} \rightarrow X$ be a map with components $\left(T_{1}, \ldots, T_{n}\right):$

$$
\begin{equation*}
T_{i} \mathbf{x}(k)=\sum_{s=0}^{\omega-1} G_{i}(k, s) \lambda b_{i}(s) f_{i}(\mathbf{x}(s)), \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

where

$$
G_{i}(k, s)=\frac{\prod_{r=s+1}^{k+\omega-1}\left(1-a_{i}(r)\right)}{1-\prod_{r=0}^{\omega-1}\left(1-a_{i}(r)\right)}, \quad k, s \in[0, \omega-1]
$$

$, i=1, \ldots, n$, satisfying

$$
\frac{\sigma_{i}}{1-\sigma_{i}} \leq G_{i}(k, s) \leq \frac{1}{1-\sigma_{i}}, \quad k \leq s \leq k+\omega
$$

We denote

$$
\mathbf{T x}(k)=\left(T_{1} \mathbf{x}(k), \ldots, T_{n} \mathbf{x}(k)\right)^{T}
$$

It is clear that $\mathbf{T x}(k+w)=\mathbf{T} \mathbf{x}(k)$. Thus this implies that $\mathbf{T}: K \backslash\{\mathbf{0}\} \rightarrow X$.

## Lemma 3.T( $K \backslash\{0\}) \subset K$.

Proof: For any $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K \backslash\{\mathbf{0}\}$, by (3) for all $k \in[0, \omega]$, where $i=1, \ldots, n$ we have

$$
\left|T_{i} \mathbf{x}\right|=\max _{k \in[0, \omega-1]}\left|T_{i} \mathbf{x}(k)\right| \leq M \sum_{s=0}^{\omega-1} \lambda\left|b_{i}(s) f_{i}(\mathbf{x}(s))\right| .
$$

Therefore,

$$
\begin{aligned}
T_{i} \mathbf{x}(k) & =\sum_{s=0}^{\omega-1} G_{i}(k, s) \lambda b_{i}(s) f_{i}(\mathbf{x}(s)) \\
& \geq m_{i} \sum_{s=0}^{\omega-1} \lambda\left|b_{i}(s) f_{i}(\mathbf{x}(s))\right| \\
& \geq \frac{m_{i}}{M_{i}}\left|T_{i} \mathbf{x}\right| .
\end{aligned}
$$

Hence

$$
T_{i} \mathbf{x}(k) \geq \sigma_{i}\left|T_{i} \mathbf{x}\right|, \quad i=1, \ldots, n
$$

This implies that $\mathbf{T}(K \backslash\{\mathbf{0}\}) \subset K$.
Lemma 4. $\boldsymbol{T}(K \backslash\{\boldsymbol{0}\}) \subset K$ is completely continuous operator.

Proof. Let $x_{m}(k), x_{0}(k) \in K \backslash\{\boldsymbol{0}\}$ with $x_{m}(k) \rightarrow x_{0}(k)$ as $m \rightarrow \infty$. From (3) and since $f(\xi)$ is continuous in $\xi$, as $m \rightarrow \infty$, we have

$$
\begin{aligned}
\left|T_{i} x_{m}(k)-T_{i} x_{0}(k)\right| & \leq M_{i} \sum_{s=0}^{\omega-1}\left|\lambda b_{i}(s)\right|\left|f_{i}\left(x_{m}(s)\right)-f_{i}\left(x_{0}(s)\right)\right| \\
& \rightarrow 0, \quad i=1, \ldots, n
\end{aligned}
$$

Hence $\left|T_{i} x_{m}(k)-T_{i} x_{0}(k)\right| \rightarrow 0$, it follows that the operator $\mathbf{T}=\left(T_{1}, \ldots, T_{n}\right)$ is continuous.

Further if $Y \subset K \backslash\{\mathbf{0}\}$ is a bounded set, then $\|\mathbf{x}\| \leq C_{1}=$ const for all $\mathbf{x} \in Y$. Set $C_{2}=\max _{k \in[0, \omega-1]} \lambda b_{i}(s) f_{i}(\mathbf{x}(s)), \mathbf{x} \in Y$ then from (3) we get, for all $\mathbf{x} \in Y$

$$
\left|T_{i} \mathbf{x}\right| \leq M \sum_{s=0}^{\omega-1} \lambda\left|b_{i}(s)\right|\left|f_{i}(\mathbf{x}(s))\right| \leq M \omega C_{2}, \quad i=1, \ldots, n
$$

This shows that $\mathbf{T}(Y)$ is a bounded set in $K$. Since $K$ is n-dimensional, $\mathbf{T}(Y)$ is relatively compact in $K$. Therefore $\mathbf{T}$ is a completely continuous operator.

Now we introduce some notations that will be used in the next following lemmas. For $r>0$, let

$$
\sigma=\min _{i=1, \ldots, n}\left\{\sigma_{i}\right\}
$$

$$
\begin{gathered}
C(r)=\max \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}_{+}^{n}, \sigma r \leq\|\mathbf{x}\| \leq r\right\}>0, \\
\Gamma=\sigma \sum_{i=1}^{n} m_{i} \sum_{s=0}^{\omega-1} b_{i}(s)>0, \quad \chi=\sum_{i=1}^{n} M_{i} \sum_{s=0}^{\omega-1} b_{i}(s)>0 .
\end{gathered}
$$

Lemma 5.Assume that (H1),(H2) hold. For any $\eta>0$ and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in K \backslash\{\boldsymbol{0}\}$, if there exists a $f_{i}$ such that $f_{i}(\boldsymbol{x}(k)) \geq \sum_{i=1}^{n} x_{i}(k) \eta$ for $k \in[0, \omega]$, then $\|\boldsymbol{T} \boldsymbol{x}\| \geq \lambda \bar{\Gamma} \eta\|\boldsymbol{x}\|$.
Proof. Since $\mathbf{x} \in K \backslash\{\mathbf{0}\}$ and $f_{i}(\mathbf{x}(k)) \geq \sum_{i=1}^{n} x_{i}(k) \eta$ for $k \in[0, \omega]$, we have

$$
\begin{aligned}
\|\mathbf{T x}\| & \geq \lambda \sum_{i=1}^{n} m_{i} \sum_{s=0}^{\omega-1} b_{i}(s) f_{i}(\mathbf{x}(s)) \\
& \geq \lambda \sum_{i=1}^{n} m_{i} \sum_{s=0}^{\omega-1} b_{i}(s) \sum_{i=1}^{n} x_{i}(k) \eta \\
& \geq \lambda \sum_{i=1}^{n} m_{i} \sum_{s=0}^{\omega-1} b_{i}(s) \sum_{i=1}^{n} \sigma_{i}\left|x_{i}\right| \eta \\
& \geq \lambda \sigma \sum_{i=1}^{n} m_{i} \sum_{s=0}^{\omega-1} b_{i}(s)\|\mathbf{x}\| \eta
\end{aligned}
$$

Thus $\|\mathbf{T x}\| \geq \lambda \Gamma \eta\|\mathbf{x}\|$.
Let $\hat{f}_{i}:[1, \infty) \rightarrow \mathbb{R}_{+}^{n}$ be the function given by $\hat{f}_{i}(\theta)=\max \left\{f_{i}(\mathbf{x}): \mathbf{x} \in \mathbb{R}_{+}^{n}\right.$, and $\left.1 \leq\|\mathbf{x}\| \leq \theta\right\}, i=1, \cdots, n$. It is easy to see that $\hat{f}_{i}(\theta)$ is a nondecreasing function on $[1, \infty)$. The following lemma is essentially the same as [5], Lemma 3.6 and [15], Lemma 2.8.

Lemma 6.[16],[15] Assume (H1) holds. If $\lim _{\|\boldsymbol{x}\| \rightarrow \infty} \frac{f_{i}(\boldsymbol{x})}{\|\boldsymbol{x}\|}$ exists (which can be infinty), then $\lim _{\theta \rightarrow \infty} \frac{\hat{f}_{i}(\theta)}{\theta}$ exists and $\lim _{\theta \rightarrow \infty} \frac{\hat{f}_{i}(\theta)}{\theta}=\lim _{\|\boldsymbol{x}\| \rightarrow \infty} \frac{f_{i}(\boldsymbol{x})}{\|\boldsymbol{x}\|}$.

Lemma 7.Assume that (H1), (H2) holds. Let $r>\frac{1}{\sigma}$ and if there exists an $\varepsilon>0$ such that $\hat{f_{i}}(r) \leq \varepsilon r, \quad i=1, \ldots, n$, then $\|\boldsymbol{T} \boldsymbol{x}\| \leq \lambda \chi \varepsilon\|\boldsymbol{x}\|$ for $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \partial \Omega_{r}$.

Proof. From the definition of $\mathbf{T}$, for $\mathbf{x} \in \partial \Omega_{r}$, we have

$$
\begin{aligned}
\| \mathbf{T} \mathbf{x} & \leq \lambda \sum_{i=1}^{n} M_{i} \sum_{s=0}^{\omega-1} b_{i}(s) f_{i}(\mathbf{x}(s)) \\
& \leq \lambda \sum_{i=1}^{n} M_{i} \sum_{s=0}^{\omega-1} b_{i}(s) \hat{f}_{i}(r) \\
& \leq \lambda \varepsilon \sum_{i=1}^{n} M_{i} \sum_{s=0}^{\omega-1} b_{i}(s)\|\mathbf{x}\| \\
& \leq \lambda \varepsilon \chi\|\mathbf{x}\|
\end{aligned}
$$

This implies that $\|\mathbf{T x}\| \leq \lambda \varepsilon \chi\|\mathbf{x}\|$.
In view of the definitions of $C(r)$, it follows that $0<$ $f_{i}(\mathbf{x}(k)) \leq C(r)$ for $k \in[0, \omega]$, if $\mathbf{x} \in \partial \Omega_{r}, r>0$. Thus it is easy to see that the following lemma can be shown in similar manners as in Lemma 7.

Lemma 8.Assume (H1), (H2) hold. If $\boldsymbol{x} \in \partial \Omega_{r}, r>0$, then $\|\boldsymbol{T x}\| \leq \lambda \chi C(r)$.

Proof. From the definitions of $\mathbf{T}$ for $\mathbf{x} \in \partial \Omega_{r}$, we have

$$
\begin{aligned}
\|\mathbf{T} \mathbf{x}\| & \leq \lambda \sum_{i=1}^{n} M_{i} \sum_{s=0}^{\omega-1} b_{i}(s) f_{i}(\mathbf{x}(s)) \\
& \leq \lambda \sum_{i=1}^{n} M_{i} \sum_{s=0}^{\omega-1} b_{i}(s) C(r) \\
& \leq \lambda \chi C(r)
\end{aligned}
$$

This implies that $\|\mathbf{T} \mathbf{x}\| \leq \lambda \chi C(r)$.

## 3 Main Results

Theorem 1.Let (H1),(H2) hold. Assume that $\lim _{\|\boldsymbol{x}\| \rightarrow 0} f_{i}(\boldsymbol{x})=\infty$ for $i=1, \ldots, n$.
(a)If $\lim _{\|x\| \rightarrow \infty} \frac{f_{i}(\boldsymbol{x})}{\|\boldsymbol{x}\|}=0, i=1, \ldots, n$, then for all $\lambda>0$, (1) has a positive periodic solution.
(b)If $\lim _{\|\boldsymbol{x}\| \rightarrow \infty} \frac{f_{i}(\boldsymbol{x})}{\|\boldsymbol{x}\|}=\infty, i=1, \ldots, n$, then for all sufficiently small $\lambda>0$, (1) has two positive periodic solution.
(c)There exists a $\lambda_{0}>0$ such that (1) has a positive periodic solution for $0<\lambda<\lambda_{0}$.

## Proof:

Part (a). From the assumptions, there is an $r_{1}>0$ such that

$$
f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad i=1, \ldots, n
$$

for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}$ and $0<\|\mathbf{x}\| \leq r_{1}$, where $\eta>0$ is chosen so that

$$
\lambda \Gamma \eta>1
$$

If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{1}}$, then

$$
f_{i}(\mathbf{x}(k)) \geq \sum_{i=1}^{n} x_{i}(k) \eta, \quad \text { for } \quad k \in[0,1], i=1, \ldots, n
$$

Lemma 5 implies that

$$
\begin{equation*}
\|\mathbf{T} \mathbf{x}\| \geq \lambda \Gamma \eta\|\mathbf{x}\|>\|\mathbf{x}\|, \quad \text { for } \quad \mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{1}} \tag{4}
\end{equation*}
$$

We now determine $\Omega_{r_{2}}$. Since $\lim _{\|\mathbf{x}\| \rightarrow \infty} \frac{f_{i}(\mathbf{x})}{\|\mathbf{x}\|}=0$, it follows from Lemma 6 that $\lim _{\theta \rightarrow \infty} \frac{\hat{f}_{i}(\theta)}{\theta}=0, i=1, \ldots, n$. Therefore there is an $r_{2}>\max \left\{2 r_{1}, \frac{1}{\sigma}\right\}$ such that

$$
\hat{f}_{i}\left(r_{2}\right) \leq \varepsilon r_{2}
$$

where the constant $\varepsilon>0$ satisfies

$$
\lambda \varepsilon \chi<1
$$

Thus, we have by Lemma 7 that

$$
\begin{equation*}
\|\mathbf{T x}\| \leq \lambda \varepsilon \chi\|\mathbf{x}\|<\|\mathbf{x}\|, \quad \text { for } \quad \mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{2}} . \tag{5}
\end{equation*}
$$

By Theorem 1 applied to (4) and (5), it follows that $\mathbf{T}$ has a fixed point in $K \backslash\{\boldsymbol{0}\} \cap\left(\bar{\Omega}_{r_{2}} \backslash \Omega_{r_{1}}\right)$, which is the desired positive solution of (1).
Part (b). Fix two numbers $0<r_{3}<r_{4}$, there exists a $\lambda_{0}$ such that

$$
\lambda_{0}<\frac{r_{3}}{\chi C\left(r_{3}\right)}, \quad \lambda_{0}<\frac{r_{4}}{\chi C\left(r_{4}\right)}
$$

By Lemma 8, it implies that for $0<\lambda<\lambda_{0}$

$$
\|\mathbf{T} \mathbf{x}\| \leq \lambda \chi C\left(r_{j}\right) \leq \frac{r_{j}}{\chi C\left(r_{j}\right)} \chi C\left(r_{j}\right)=r_{j}=\|\mathbf{x}\|
$$

Thus,

$$
\begin{equation*}
\|\mathbf{T x}\|<\|\mathbf{x}\| \text { for } \mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{j}}, \quad(j=3,4) . \tag{6}
\end{equation*}
$$

On the other hand, in view of the assumptions $\lim _{\|\mathbf{x}\| \rightarrow \infty} \frac{f_{i}(\mathbf{x})}{\|\mathbf{x}\|}=\infty$ and $\lim _{\|\mathbf{x}\| \rightarrow 0} f_{i}(\mathbf{x})=\infty$, there are positive numbers $0<r_{2}<r_{3}<r_{4}<\hat{H}$ such that

$$
f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad i=1, \ldots, n
$$

for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}$ and $0<\|\mathbf{x}\| \leq r_{2}$ or $\|\mathbf{x}\| \geq \hat{H}$ where $\eta>0$ is chosen so that

$$
\lambda \Gamma \eta>1
$$

Thus if $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{2}}$, then

$$
f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad i=1, \ldots, n
$$

Let $r_{1}=\max \left\{2 r_{4}, \frac{\hat{H}}{\sigma_{i}}\right\}$ if $\mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{1}}$, then

$$
\min _{k \in[0, \omega]} \sum_{i=1}^{n} \mathbf{x}(k) \geq \sigma_{i}\|\mathbf{x}\|=\sigma_{i} r_{1} \geq \hat{H}
$$

which implies that

$$
f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad i=1, \ldots, n
$$

Thus, by Lemma 5 implies that

$$
\begin{equation*}
\|\mathbf{T} \mathbf{x}\| \geq \lambda \Gamma \eta\|\mathbf{x}\|>\|\mathbf{x}\|, \quad \mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{1}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathbf{T} \mathbf{x}\| \geq \lambda \Gamma \eta\|\mathbf{x}\|>\|\mathbf{x}\|, \quad \mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{2}} \tag{8}
\end{equation*}
$$

It follows from Theorem 1 applied to (6), (7) and (8), $\mathbf{T}$ has two fixed points $x_{1}$ and $x_{2}$ such that $x_{1} \in K \backslash\{\mathbf{0}\} \cap \bar{\Omega}_{r_{3}} \backslash \Omega_{r_{2}}$ and $x_{2} \in K \backslash\{\mathbf{0}\} \cap \bar{\Omega}_{r_{1}} \backslash \Omega_{r_{4}}$, which are the desired distinct positive periodic solutions of (1) for $\lambda<\lambda_{0}$ satisfying

$$
r_{2}<\left\|x_{1}\right\|<r_{3}<r_{4}<\left\|x_{2}\right\|<r_{1}
$$

Part (c). Choose a number $r_{1}=1$. By Lemma 8 we infer that there exist a $\lambda_{0}=\frac{r_{1}}{\chi C\left(r_{1}\right)}>0$ such that

$$
\begin{equation*}
\|\mathbf{T} \mathbf{x}\|<\|\mathbf{x}\|, \quad \text { for } \quad \mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{1}}, \quad 0<\lambda<\lambda_{0} . \tag{9}
\end{equation*}
$$

On the other hand, in view of assumption $\lim _{\|\mathbf{x}\| \rightarrow 0} f_{i}(\mathbf{x})=\infty$, there exists a positive number $0<r_{2}<r_{1}$ such that $f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}$ and $0<\|\mathbf{x}\| \leq r_{2}$, where $\eta>0$ is chosen so that

$$
\lambda \Gamma \eta>1
$$

Thus, Lemma 5 implies that

$$
\begin{equation*}
\|\mathbf{T} \mathbf{x}\| \geq \lambda \Gamma \eta\|\mathbf{x}\|>\|\mathbf{x}\|, \quad \text { for } \quad \mathbf{x} \in K \backslash\{\mathbf{0}\} \cap \partial \Omega_{r_{2}} \tag{10}
\end{equation*}
$$

It follows from Theorem 1 applied to (9) and (10) that $\mathbf{T}$ has a fixed point in $K \backslash\{\mathbf{0}\} \cap \bar{\Omega}_{r_{1}} \backslash \Omega_{r_{2}}$. Consequently, (1) has a positive solution for $0<\lambda<\lambda_{0}$.

## 4 Application

Consider the following system of two equations

$$
\begin{align*}
\Delta x(k) & =-a_{1}(k) x(k)+\lambda b_{1}(k)\left(\sqrt{x^{2}(k)+y^{2}(k)}\right)^{-\alpha} \\
& +\lambda\left(\sqrt{x^{2}(k)+y^{2}(k)}\right)^{\beta},  \tag{11}\\
\Delta y(k) & =-a_{2}(k) y(k)+\lambda b_{2}(k)\left(\sqrt{x^{2}(k)+y^{2}(k)}\right)^{-\alpha} \\
& +\lambda\left(\sqrt{x^{2}(k)+y^{2}(k)}\right)^{\beta}, \quad k \in Z . \tag{12}
\end{align*}
$$

with $\alpha, \beta>0, a_{i}(k)>0, b_{i}(k)>0$ for $i=1,2$ are $\omega$-periodic. Note that
$f_{i}(x(k), y(k))=\left(\sqrt{x^{2}(k)+y^{2}(k)}\right)^{-\alpha}+\left(\sqrt{x^{2}(k)+y^{2}(k)}\right)^{\beta}$, $\mathrm{i}=1,2$. It is easy to verify that $a_{i}(k), b_{i}(k)$ satisfy the assumptions (H1) and (H2). Note that $\sqrt{x^{2}(k)+y^{2}(k)} \leq|x|+|y| \leq \sqrt{2} \sqrt{x^{2}(k)+y^{2}(k)}$. Thus

$$
f_{i}(x(k), y(k)) \leq(|x|+|y|)^{-\alpha}+(|x|+|y|)^{\beta}
$$

for $i=1,2$. By Theorem 1,

$$
\lim _{|x|+|y| \rightarrow 0}(|x|+|y|)^{-\alpha}+(|x|+|y|)^{\beta}=\infty .
$$

(a)If $0<\beta<1$, then for all $\lambda>0$, (11) has a positive periodic solution.

$$
\lim _{|x|+|y| \rightarrow \infty}(|x|+|y|)^{-\alpha-1}+(|x|+|y|)^{\beta-1}=0
$$

(b)If $\beta>1$, then for all sufficiently small $\lambda>0$ (11) has two positive periodic solutions.

$$
\lim _{|x|+|y| \rightarrow \infty}(|x|+|y|)^{-\alpha-1}+(|x|+|y|)^{\beta-1}=\infty .
$$

The following Corollary is an application of our theorems. Assume that $a_{1}, a_{2}$ satisfy (H1). Let $\alpha>0, \beta>0, \lambda>0$.
(a)If $0<\beta<1$, then for all $\lambda>0$, (11) has a positive periodic solution.
(b)If $\beta>1$, then, for all sufficiently small $\lambda>0$, (11) has two positive periodic solutions.
(c)There exists a $\lambda_{0}>0$ such that (11) has a positive periodic solution for $0<\lambda<\lambda_{0}$.

## Acknowledgement

The first author acknowlegdes the financial support by the Ministry of Higher Education for Fundamental Research of Grant Sciences ( $600-R M I / F R G S ~ 5 / 3 / F s t(9 / 2012)$ ) and Universiti Teknologi MARA for ( $600-$ RMI $/$ ST $/ D A N A 5 / 3 / D s t(453 / 2011)$ ) grant.

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

## References

[1] R. Agarwal and D. O'Regan. Singular differential and integral equations with applications, Kluwer, 2003.
[2] J. Chu and J. Nieto. Impulsive periodic solutions of firstorder singular differential equations, Bull. Lond. Math. Soc. 40, (2008), 143-150.
[3] D. Q. Jiang, J. J. Wei. Existence of positive periodic solutions for Volterra integro-differential equations, Acta. Math. Sci, 21B no.4, (2002), 553-560.
[4] D. Q. Jiang, J. J. Wei. Existence of positive periodic solutions of nonautonomous delay differential equation, Chin. Ann of Math., 20A no.6, (1999), 715-720.
[5] M. Krasnosel'skii. Positive solutions of operator equations, Noordhoff, Groningen, 1964.
[6] W. G. Kelly and A. C. Peterson. Difference equations, An Introduction with Applications, Academic Press, San Diego, 2001.
[7] R. Ma, T. Chen and Y. Lu, Positive periodic solutions of nonlinear first-order funtional difference equations, Discrete Dynamics in Nature and Society, Vol 2012, Article IC 419536, 15 pages.
[8] F. Merdivenci. Green matrices and positive solutions of a discrete boundary value problem, Panamer. Math.J., 5(1) : (1995), 25-42.
[9] F. Merdivenci. Two positive solutions of a boundary value problem for difference equations, J. Differ. Equations Appl., 1(3) : (1995), 263-270.
[10] M. Mohamed and O. Omar. Positive periodic solutions of singular first order functional difference equation. Int. Journal of Math. Analysis, Vol. 6, (2012) no. 54, 2665-2675.
[11] D. O'Regan and H.Wang. Positive Periodic solutions of systems of first ordinary differential equations, Results in Mathematics, 48, (2005), 310-325.
[12] Y. Raffoul. Positive periodic solutions of nonlinear functional difference equations, Electron. J. of Differential Equations, Vol. 202, (2002) No. 55, pp. 1-8.
[13] Y. N. Raffoul and Christopher Tisdell. Positive Periodic Solutions of Functional Discrete Systems and Population Models, Adv. Difference Equations, Vol.3, (2005), 369-380.
[14] H. Wang. Positive periodic solutions of functional differential equations, J. of Differential Equations 202, (2004), 354-366.
[15] H. Wang. On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. , 281, (2003), 287-306.
[16] H. Wang. Positive periodic solutions of singular systems of first order ordinary differential equations. Appl. Math. Comput. 218, (2011), 1605-1610.
[17] Z. Zeng. Existence of positive periodic solutions for a class of nonautonomous difference equations, Electron. J. of Differential Equations, No. 03, (2006), 1-18.


[^0]:    * Corresponding author e-mail: mesliza@perlis.uitm.edu.my

