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Abstract: We establish the existence of one or more than one positive periodic solutions of singular systems of first order difference
equations ∆x(k) =−a(k)x(k)+λb(k)f(x(k)). The proof of our results is based on the Krasnoselskii fixed point theorem in a cone.
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1 Introduction

Let R = (−∞,∞),R+ = [0,∞), Rn
+ = ∏n

i=1R+, for any
x = (x1, . . . ,xn) ∈ Rn

+. In this paper, we investigate the
existence and multiplicity of positive solutions of singular
first-order for non-autonomous systems of difference
equations

∆x(k) =−a(k)x(k)+λb(k)f(x(k)), (1)

where a(k) = diag[a1(k),a2(k), . . . ,an(k)],
b(k) = diag[b1(k),b2(k), . . . ,bn(k)], Z is the set of
integers, ω ∈ N is a fixed integer, λ > 0 and ai,bi are ω−
periodic and continuous with 0 < ai(k) < 1 for all
k ∈ [0,ω −1] and fi ∈C(Rn

+\{0},(0,∞)) for i = 1, . . . ,n.
Here ∆x(k) = x(k+1)− x(k), for k ∈ Z.

The existence of positive solutions for differential and
difference equations has been studied extensively in recent
years. Some appropriate references would be [1,3,4,8,9,
16,15,17,14,11]. To our knowledge, there are few works
on the existence results of positive solutions of the type
problem (1), see for example [17,12,13,7]. However those
results do not deal with singular problems.

Agarwal and O’Regan [1] provided some results on
solutions of singular first order differential equations. Chu
and Nieto [2] showed the existence of periodic solutions
for singular first order differential equations with
impulses based on a nonsingular alternative of Leray. The
results in [1,2] for first ordr differential equations deal
with a single equation. Motivated by the work of Wang
[16], we will establish the existence of one or more than

one positive periodic solutions for the following
first-order non-autonomous singular systems

x′i(t)=−ai(t)xi(t)+λbi(t) fi(x1(t), · · · ,xn(t)), i= 1, · · · ,n,
(2)

where λ > 0 is a positive paramater. We will obtain the
discrete analogue of (2) and thus generalize the work of
Mohamed et. al [10] to systems. The proof of our result is
based on the well-known Kranoselskii fixed point theorem
[5].

2 Preliminaries

Let X be the set of all real ω−periodic sequences x : Z→
Rn
+.

X =
{

x : [0,ω ]→ Rn
+ : x(k+ω) = x(k),k ∈ Z

}
.

Endowed with the maximum norm ∥x∥ = ∑n
i=1 |xi| where

|xi| = maxk∈Z |xi(k)|, x = (x1,x2 . . . ,xn)
T . Then X is a

Banach space. First we make assumptions for the problem
(1).

(H1)ai : Z → (0,1),∑ω−1
i=0 bi > 0 are continuous and

ω-periodic such that, ai(k) = ai(k + w),
bi(k) = bi(k + w) for i = 1,2, . . . ,n where ω is a
constant denoting the common period of the systems.

(H2) fi :Rn
+\{0}→ (0,∞) is continuous, where i= 1, . . . ,n.

We now state the Kranoselskii Fixed Point Theorem
[5].
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Lemma 1.Let X be a Banach space, and let K ⊂ X be a
cone in X. Assume Ω1,Ω2 are open subsets of X with 0 ∈
Ω1,Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2 \Ω1)→ K

be a completely continuous operator such that either

(i)∥T x∥ ≤ ∥x∥ ,x ∈ K ∩ ∂Ω1 and ∥T x∥ ≥ ∥x∥ ,x ∈ K ∩
∂Ω2; or

(ii)∥T x∥ ≥ ∥x∥ ,x ∈ K ∩ ∂Ω1 and ∥T x∥ ≤ ∥x∥ ,x ∈ K ∩
∂Ω2;

Then T has a fixed point in T : K ∩ (Ω̄2 \Ω1)→ K.

Lemma 2.Assume (H1), (H2) hold. If x ∈ X, then x is a
solution of (1) if and only if

xi(k) =
ω−1

∑
s=0

Gi(k,s)λbi(s) fi(x(s)),

k,s ∈ [0,ω ], i = 1, . . . ,n

where

Gi(k,s) =
∏k+ω−1

r=s+1 (1−ai(r))

1−∏ω−1
r=0 (1−ai(r))

,

k,s ∈ [0,ω −1], i = 1, . . . ,n.

Note that the denominator in Gi(k,s) is not zero since
0 < ai(k)< 1 for k ∈ [0,ω −1].
Proof. It is clear that (1) is equivalent to

xi(k+1) = (1−ai(k))xi(k)+λbi(k) fi(x(k)) i= 1, . . . ,n.

and that it can be written as

∆

(
xi(k)

k−1

∏
r=0

(1−ai(r))−1

)
= λ

k

∏
r=0

(1−ai(r))−1bi(k) fi(x(k)).

By summing the above equation from s = k to s = k+ω −
1 and since xi(k+ω) = xi(k), we have

xi(k) =

[
k+ω−1

∏
r=0

(1−ai(r))−1 −
k−1

∏
r=0

(1−ai(r))−1

]−1

λ
k+ω−1

∑
k

k

∏
r=0

(1−ai(r))−1bi(k) fi(x(k)).

It is clear that Gi(k,s)=Gi(k+ω,s+ω) for all (k,s)∈
Z2. A direct calculation shows that

mi :=
∏ω−1

s=0 (1−ai(s))

1−∏ω−1
s=0 (1−ai(s))

≤ Gi(k,s)

≤ 1
1−∏ω−1

s=0 (1−ai(s))
=: Mi.

Define σi = ∏ω−1
s=0 (1 − ai(s)). Clearly for

i = 1, . . . ,n,σi =
mi
Mi

> 0,

|xi|= max
k∈[0,ω−1]

|xi(k)| ≤ Mi

ω−1

∑
k=0

λbi(k) fi(x(k)).

Therefore,

x(k)≥ mi

ω−1

∑
k=0

λbi(k) fi(x(k))≥
mi

Mi
|xi|= σi |xi| ,

for i = 1, . . . ,n. Now we define a cone

K = {x = (x1, . . . ,xn) ∈ X ,k ∈ [0,ω],xi(k)≥
mi

Mi
|xi|= σi |xi| ,∀i = 1, . . . ,n}.

It is clear that K is a cone in X and
mink∈[0,ω] ∑n

i=1 |xi(k)| ≥ σ ∥x∥ for x = (x1,x2, . . . ,xn) ∈ K.
For r > 0, define Ωr = {x ∈ K : ∥x∥< r} . Let
T : K\{0}→ X be a map with components (T1, . . . ,Tn) :

Tix(k) =
ω−1

∑
s=0

Gi(k,s)λbi(s) fi(x(s)), i = 1, . . . ,n. (3)

where

Gi(k,s) =
∏k+ω−1

r=s+1 (1−ai(r))

1−∏ω−1
r=0 (1−ai(r))

, k,s ∈ [0,ω −1]

,i = 1, . . . ,n, satisfying

σi

1−σi
≤ Gi(k,s)≤

1
1−σi

, k ≤ s ≤ k+ω.

We denote

Tx(k) = (T1x(k), . . . ,Tnx(k))T .

It is clear that Tx(k+w) = Tx(k). Thus this implies that
T : K\{0}→ X . �

Lemma 3.T(K\{0})⊂ K.

Proof: For any x = (x1, . . . ,xn) ∈ K\{0}, by (3) for all
k ∈ [0,ω], where i = 1, . . . ,n we have

|Tix|= max
k∈[0,ω−1]

|Tix(k)| ≤ M
ω−1

∑
s=0

λ |bi(s) fi(x(s))| .

Therefore,

Tix(k) =
ω−1

∑
s=0

Gi(k,s)λbi(s) fi(x(s))

≥ mi

ω−1

∑
s=0

λ |bi(s) fi(x(s))|

≥ mi

Mi
|Tix| .

Hence
Tix(k)≥ σi |Tix| , i = 1, . . . ,n.

This implies that T(K\{0})⊂ K. �

Lemma 4.T(K\{0}) ⊂ K is completely continuous
operator.
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Proof. Let xm(k),x0(k) ∈ K\{0} with xm(k) → x0(k) as
m → ∞. From (3) and since f (ξ ) is continuous in ξ , as
m → ∞, we have

|Tixm(k)−Tix0(k)| ≤ Mi

ω−1

∑
s=0

|λbi(s)| | fi(xm(s))− fi(x0(s))|

→ 0, i = 1, . . . ,n.

Hence |Tixm(k)−Tix0(k)| → 0, it follows that the operator
T = (T1, . . . ,Tn) is continuous.

Further if Y ⊂ K\{0} is a bounded set, then
∥x∥ ≤ C1 = const for all x ∈ Y. Set
C2 = maxk∈[0,ω−1] λbi(s) fi(x(s)),x ∈ Y then from (3) we
get, for all x ∈ Y

|Tix| ≤ M
ω−1

∑
s=0

λ |bi(s)| | fi(x(s))| ≤ MωC2, i = 1, . . . ,n.

This shows that T(Y ) is a bounded set in K. Since K is
n-dimensional, T(Y ) is relatively compact in K.
Therefore T is a completely continuous operator. �

Now we introduce some notations that will be used in
the next following lemmas. For r > 0, let

σ = min
i=1,...,n

{σi}

,

C(r) = max
{

f (x) : x ∈ Rn
+,σr ≤ ∥x∥ ≤ r

}
> 0,

Γ = σ
n

∑
i=1

mi

ω−1

∑
s=0

bi(s)> 0, χ =
n

∑
i=1

Mi

ω−1

∑
s=0

bi(s)> 0.

Lemma 5.Assume that (H1),(H2) hold. For any η > 0
and x = (x1, . . . ,xn) ∈ K\{0}, if there exists a fi such that
fi(x(k)) ≥ ∑n

i=1 xi(k)η for k ∈ [0,ω], then
∥Tx∥ ≥ λΓ η ∥x∥.

Proof. Since x ∈ K\{0} and fi(x(k)) ≥ ∑n
i=1 xi(k)η for

k ∈ [0,ω], we have

∥Tx∥ ≥ λ
n

∑
i=1

mi

ω−1

∑
s=0

bi(s) fi(x(s))

≥ λ
n

∑
i=1

mi

ω−1

∑
s=0

bi(s)
n

∑
i=1

xi(k)η

≥ λ
n

∑
i=1

mi

ω−1

∑
s=0

bi(s)
n

∑
i=1

σi |xi|η

≥ λσ
n

∑
i=1

mi

ω−1

∑
s=0

bi(s)∥x∥η .

Thus ∥Tx∥ ≥ λΓ η ∥x∥ . �
Let f̂i : [1,∞)→ Rn

+ be the function given by

f̂i(θ)=max
{

fi(x) : x ∈ Rn
+, and 1 ≤ ∥ x ∥ ≤ θ

}
, i= 1, · · · ,n.

It is easy to see that f̂i(θ) is a nondecreasing function on
[1,∞). The following lemma is essentially the same as [5],
Lemma 3.6 and [15], Lemma 2.8.

Lemma 6.[16],[15] Assume (H1) holds. If lim∥x∥→∞
fi(x)
∥x∥

exists (which can be infinty), then limθ→∞
f̂i(θ)

θ exists and

limθ→∞
f̂i(θ)

θ = lim∥x∥→∞
fi(x)
∥x∥ .

Lemma 7.Assume that (H1), (H2) holds. Let r > 1
σ and if

there exists an ε > 0 such that f̂i(r) ≤ εr, i = 1, . . . ,n,
then ∥Tx∥ ≤ λ χε ∥x∥ for x = (x1, . . . ,xn) ∈ ∂Ωr.

Proof. From the definition of T, for x ∈ ∂Ωr, we have

∥Tx∥ ≤ λ
n

∑
i=1

Mi

ω−1

∑
s=0

bi(s) fi(x(s))

≤ λ
n

∑
i=1

Mi

ω−1

∑
s=0

bi(s) f̂i(r)

≤ λε
n

∑
i=1

Mi

ω−1

∑
s=0

bi(s)∥x∥

≤ λεχ ∥x∥ .

This implies that ∥Tx∥ ≤ λεχ ∥x∥. �

In view of the definitions of C(r), it follows that 0 <
fi(x(k)) ≤ C(r) for k ∈ [0,ω], if x ∈ ∂Ωr, r > 0. Thus it
is easy to see that the following lemma can be shown in
similar manners as in Lemma 7.

Lemma 8.Assume (H1), (H2) hold. If x ∈ ∂Ωr,r > 0, then
∥Tx∥ ≤ λ χC(r).

Proof. From the definitions of T for x ∈ ∂Ωr, we have

∥Tx∥ ≤ λ
n

∑
i=1

Mi

ω−1

∑
s=0

bi(s) fi(x(s))

≤ λ
n

∑
i=1

Mi

ω−1

∑
s=0

bi(s)C(r)

≤ λ χC(r).

This implies that ∥Tx∥ ≤ λ χC(r). �

3 Main Results

Theorem 1.Let (H1),(H2) hold. Assume that
lim∥x∥→0 fi(x) = ∞ for i = 1, . . . ,n.

(a)If lim∥x∥→∞
fi(x)
∥x∥ = 0, i = 1, . . . ,n, then for all λ > 0,

(1) has a positive periodic solution.
(b)If lim∥x∥→∞

fi(x)
∥x∥ = ∞, i = 1, . . . ,n, then for all

sufficiently small λ > 0, (1) has two positive periodic
solution.

(c)There exists a λ0 > 0 such that (1) has a positive
periodic solution for 0 < λ < λ0.
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Proof:
Part (a). From the assumptions, there is an r1 > 0 such
that

fi(x)≥ η ∥x∥ , i = 1, . . . ,n.

for x = (x1, . . . ,xn) ∈ Rn
+ and 0 < ∥x∥ ≤ r1, where η > 0

is chosen so that
λΓ η > 1

If x = (x1, . . . ,xn) ∈ K\{0}∩∂Ωr1 , then

fi(x(k))≥
n

∑
i=1

xi(k)η , for k ∈ [0,1], i = 1, . . . ,n.

Lemma 5 implies that

∥Tx∥ ≥ λΓ η ∥x∥> ∥x∥ , for x ∈ K\{0}∩∂Ωr1 . (4)

We now determine Ωr2 . Since lim∥x∥→∞
fi(x)
∥x∥ = 0, it

follows from Lemma 6 that limθ→∞
f̂i(θ)

θ = 0, i = 1, . . . ,n.
Therefore there is an r2 > max

{
2r1,

1
σ
}

such that

f̂i(r2)≤ εr2

where the constant ε > 0 satisfies

λεχ < 1

Thus, we have by Lemma 7 that

∥Tx∥ ≤ λεχ ∥x∥< ∥x∥ , for x ∈ K\{0}∩∂Ωr2 . (5)

By Theorem 1 applied to (4) and (5), it follows that T has
a fixed point in K\{0}∩ (Ω̄r2\Ωr1), which is the desired
positive solution of (1). �
Part (b). Fix two numbers 0 < r3 < r4, there exists a λ0
such that

λ0 <
r3

χC(r3)
, λ0 <

r4

χC(r4)
.

By Lemma 8, it implies that for 0 < λ < λ0

∥Tx∥ ≤ λ χC(r j)≤
r j

χC(r j)
χC(r j) = r j = ∥x∥.

Thus,

∥Tx∥< ∥x∥ for x ∈ K\{0}∩∂Ωr j , ( j = 3,4). (6)

On the other hand, in view of the assumptions
lim∥x∥→∞

fi(x)
∥x∥ = ∞ and lim∥x∥→0 fi(x) = ∞, there are

positive numbers 0 < r2 < r3 < r4 < Ĥ such that

fi(x)≥ η ∥x∥ , i = 1, . . . ,n

for x = (x1, . . . ,xn) ∈ Rn
+ and 0 < ∥x∥ ≤ r2 or ∥x∥ ≥ Ĥ

where η > 0 is chosen so that

λΓ η > 1.

Thus if x = (x1, . . . ,xn) ∈ K\{0}∩∂Ωr2 , then

fi(x)≥ η ∥x∥ , i = 1, . . . ,n.

Let r1 = max
{

2r4,
Ĥ
σi

}
if x ∈ K\{0}∩∂Ωr1 , then

min
k∈[0,ω]

n

∑
i=1

x(k)≥ σi ∥x∥= σir1 ≥ Ĥ,

which implies that

fi(x)≥ η ∥x∥ , i = 1, . . . ,n.

Thus, by Lemma 5 implies that

∥Tx∥ ≥ λΓ η∥x∥> ∥x∥, x ∈ K\{0}∩∂Ωr1 , (7)

and

∥Tx∥ ≥ λΓ η∥x∥> ∥x∥, x ∈ K\{0}∩∂Ωr2 . (8)

It follows from Theorem 1 applied to (6), (7) and (8), T has
two fixed points x1 and x2 such that x1 ∈ K\{0}∩Ω̄r3\Ωr2

and x2 ∈ K\{0}∩ Ω̄r1\Ωr4 , which are the desired distinct
positive periodic solutions of (1) for λ < λ0 satisfying

r2 < ∥x1∥< r3 < r4 < ∥x2∥< r1.

�
Part (c). Choose a number r1 = 1. By Lemma 8 we infer
that there exist a λ0 =

r1
χC(r1)

> 0 such that

∥Tx∥< ∥x∥ , for x ∈ K\{0}∩∂Ωr1 , 0 < λ < λ0.
(9)

On the other hand, in view of assumption
lim∥x∥→0 fi(x) = ∞, there exists a positive number
0 < r2 < r1 such that fi(x) ≥ η ∥x∥ for
x = (x1, . . . ,xn) ∈ Rn

+ and 0 < ∥x∥ ≤ r2, where η > 0 is
chosen so that

λΓ η > 1.

Thus, Lemma 5 implies that

∥Tx∥ ≥ λΓ η ∥x∥> ∥x∥ , for x ∈ K\{0}∩∂Ωr2 .
(10)

It follows from Theorem 1 applied to (9) and (10) that T
has a fixed point in K\{0}∩ Ω̄r1\Ωr2 . Consequently, (1)
has a positive solution for 0 < λ < λ0. �

4 Application

Consider the following system of two equations

∆x(k) =−a1(k)x(k)+λb1(k)(
√

x2(k)+ y2(k))−α

+λ (
√

x2(k)+ y2(k))β , (11)

∆y(k) =−a2(k)y(k)+λb2(k)(
√

x2(k)+ y2(k))−α

+λ (
√

x2(k)+ y2(k))β , k ∈ Z. (12)
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with α ,β > 0,ai(k) > 0,bi(k) > 0 for i = 1,2 are
ω-periodic. Note that

fi(x(k),y(k))= (
√

x2(k)+ y2(k))−α +(
√

x2(k)+ y2(k))β ,

i=1,2. It is easy to verify that ai(k),bi(k) satisfy the
assumptions (H1) and (H2). Note that√

x2(k)+ y2(k)≤ |x|+ |y| ≤
√

2
√

x2(k)+ y2(k). Thus

fi(x(k),y(k))≤ (| x |+ | y |)−α +(| x |+ | y |)β

for i = 1,2. By Theorem 1,

lim
|x|+|y|→0

(| x |+ | y |)−α +(| x |+ | y |)β = ∞.

(a)If 0 < β < 1, then for all λ > 0, (11) has a positive
periodic solution.

lim
|x|+|y|→∞

(| x |+ | y |)−α−1 +(| x |+ | y |)β−1 = 0

(b)If β > 1, then for all sufficiently small λ > 0 (11) has
two positive periodic solutions.

lim
|x|+|y|→∞

(| x |+ | y |)−α−1 +(| x |+ | y |)β−1 = ∞.

The following Corollary is an application of our
theorems. Assume that a1,a2 satisfy (H1). Let
α > 0,β > 0,λ > 0.

(a)If 0 < β < 1, then for all λ > 0, (11) has a positive
periodic solution.

(b)If β > 1, then, for all sufficiently small λ > 0, (11) has
two positive periodic solutions.

(c)There exists a λ0 > 0 such that (11) has a positive
periodic solution for 0 < λ < λ0.
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