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Abstract: We establish the existence of one or more than one positive periodic solutions of singular systems of first order difference
equations Ax(k) = —a(k)x(k) + Ab(k)f(x(k)). The proof of our results is based on the Krasnoselskii fixed point theorem in a cone.
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1 Introduction

Let R = (—00700)7R+ = [0’00)7 Rrjr = H;I:IRJM for any
X = (x1,...,x,) € R%. In this paper, we investigate the
existence and multiplicity of positive solutions of singular
first-order for non-autonomous systems of difference
equations

Ax(k) = —a(k)x(k) + Ab(k)f(x(k)), (1)

where a(k) = diaglai(k),ax(k),...,a,(k)],
b(k) = diag[b;(k),ba(k),...,by(k)], Z is the set of
integers, @ € N is a fixed integer, A > 0 and a;,b; are ®—
periodic and continuous with 0 < g;(k) < 1 for all
ke [0,0—1]and f; € C(R}\{0},(0,0)) fori=1,...,n.
Here Ax(k) = x(k+1) —x(k), fork € Z.

The existence of positive solutions for differential and
difference equations has been studied extensively in recent
years. Some appropriate references would be [1,3,4,8,9,
16,15,17,14,11]. To our knowledge, there are few works
on the existence results of positive solutions of the type
problem (1), see for example [17,12,13,7]. However those
results do not deal with singular problems.

Agarwal and O’Regan [1] provided some results on
solutions of singular first order differential equations. Chu
and Nieto [2] showed the existence of periodic solutions
for singular first order differential equations with
impulses based on a nonsingular alternative of Leray. The
results in [1,2] for first ordr differential equations deal
with a single equation. Motivated by the work of Wang
[16], we will establish the existence of one or more than

one positive periodic solutions for the following
first-order non-autonomous singular systems

Xi(t) = —a;()x;i(t) + Abi(t) fi(x1(2), - s xu(2)), i=1,-- ,n,
2
where A > 0 is a positive paramater. We will obtain the
discrete analogue of (2) and thus generalize the work of
Mohamed et. al [10] to systems. The proof of our result is
based on the well-known Kranoselskii fixed point theorem

[5].

2 Preliminaries

Let X be the set of all real w—periodic sequences x : Z —
R%.

X={x:[0,0] > R} :x(k+ o) =x(k),k € Z}.

Endowed with the maximum norm ||x|| = ¥, |x;| where
|x:| = maxgez |xi(k)|, x = (x1,%2...,x,)7. Then X is a
Banach space. First we make assumptions for the problem

(1.

HDa; : Z — (O,l),):f‘;)l b; > 0 are continuous and
ow-periodic  such  that, a;(k) = ai(k + w),
bi(k) = bi(k+w) for i = 1,2,...,n where ® is a
constant denoting the common period of the systems.

(H2)f; : R\ {0} — (0, 00) is continuous, where i = 1,...,n.

We now state the Kranoselskii Fixed Point Theorem

[5].
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Lemma 1.Let X be a Banach space, and let K C X be a
cone in X. Assume €21,£2; are open subsets of X with 0 €
Q1,0 C 2, and let

T:KN(Q\ Q) =K

be a completely continuous operator such that either

()| Tx|| < ||x]|,x € KNILy and |Tx|| > ||x]|,x € KN
£; or

(ii)||Tx|| > ||x|| ,x € KNIy and ||Tx| < ||x||,x € KN
Q5

Then T has a fixed pointin T : KN (92, \ Q1) — K.

Lemma 2.Assume (H1), (H2) hold. If x € X, then x is a
solution of (1) if and only if

w1
xi(k) = ;) Gi(k,s)Abi(s) fi(x(s)),

k,se[0,0],i=1,...,n
IS (U —ai(n)

-T2 (1—ai(r)
kisel0,0—1],i=1,...,n.

Gi (k, S)

Note that the denominator in G;(k,s) is not zero since
0<ai(k)<1forkel0,m—1].
Proof. It is clear that (1) is equivalent to
xi(k+1)=(1—a;(k))x;(k)+Ab;i(k) fi(x(k)) i=1,...,n.

and that it can be written as

k—1 k
A (xi(k) [1¢ —ai(r))1> =2 H)(l —ai(r) " bi(k) fi(x (k).

r=0

By summing the above equation from s =ktos =k+ ® —
1 and since x;(k+ @) = x;(k), we have

kro—1 k=1 !
xi(k) = [ HO (l—ai(r))‘l—H)(l—ai(’))_ll
kro—1 k
2 ; 1})(1—ai(r))_lbi(k)ﬁ(x(k))-

Itis clear that G;(k,s) = G;(k+®,s+ o) for all (k,s) €
7Z2. A direct calculation shows that

2o (1-ai(s)

m; = — SG(k,S)
e (1 —as) T
1
< — =:M;.
-T2 (1—ai(s))
Define o = [1°,'(1 — ai(s)). Clearly for

w—1
il = max (k)| SMiI;)lbi(k)ﬁ(X(k))

Therefore,
w—1 m;
x(k) > m; Y Abi(k) fi(x(k)) > = x| = o; i,
=0 M;
fori=1,...,n. Now we define a cone
K={x=(x1,...,x,) € X,k €[0,0],x;(k) >
m; .
ﬁli [xi| = o |xi|,Vi=1,...,n}.
It is «clear that K is a <cone in X and
mingc(o o) Liey [Xi(k)| > o [|x]| for x = (x1,x2,...,x,) €K.

For r > 0, define @, = {xeK:|x||<r}. Let
T : K\ {0} — X be a map with components (71,...,T,) :

o—1
Tx(k)= Y. Gi(k,s)Abi(s)fi(x(s)),  i=1,....n. 3)
s=0
where
285 (1 —ai(r)
Gi(k7s): 1— sj(;],l 171‘ ) k,SE[0,0)—H
Hr=o ( a,(r))
J=1,...,n, satisfying
; 1
% < Gik,s) < . k<s<k+o.
1 — O; 1 — O;
We denote

Tx(k) = (Tix(k), ..., Tx (k).

It is clear that Tx(k +w) = Tx(k). Thus this implies that
T:K\{0} — X.O

Lemma 3.7(K\ {0}) C K.
Proof: For any x = (x1,...,x,) € K\ {0}, by (3) for all

k €[0,w], where i = 1,...,n we have
-1
|Tix| = rmax |Tix(k)| <M Sgo Abi(s) fi(x(s))] -
Therefore,

w—1
Tix(k) = ZO Gi(k,s)Abi(s) fi(x(s))

o-—1
>m; Y A bi(s) fi(x(s))|
s=0
> 0\ Tix)
M;
Hence

Tx(k) > 6i|Tix|,
This implies that T(K\ {0}) C K. O

i=1,....,n

Lemma 4.T(K\{0}) C K is completely continuous
operator.
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Proof. Let x,,(k),xo(k) € K\{0} with x,,(k) — xo(k) as
m — oo. From (3) and since f(&) is continuous in &, as
m — oo, we have

w—1
|Tixm (k) — Tixo (k)| < M; Z(,) [Abi(s)[1fi(xm(s)) — fi(xo(s))|

—0, i=1,...,n.
Hence |Tix,, (k) — Tixo (k)| — 0, it follows that the operator
T=(T,...,T,) is continuous.
Further if ¥ C K\{0} is a bounded set, then
Ix| < € = const for all x € Y. Set

G = maxye(o,p—1) Abi(s) fi(X(s)),x € Y then from (3) we
get, forallx e Y

w-1

ITx| <MY A|bi(s)||fi(x(s))| < M@Cs, i=1,....n.
s=0

This shows that T(Y) is a bounded set in K. Since K is

n-dimensional, T(Y) is relatively compact in K.

Therefore T is a completely continuous operator. [

Now we introduce some notations that will be used in
the next following lemmas. For r > 0, let

C(r) = max {f(x) : x € R} 07 < x| < r} >0,

n

n w—1 w—1
F=c) mY bi(s)>0, x=Y MY bi(s)>0.
i=1 s=0 i=1 s=0

Lemma 5.Assume that (H1),(H2) hold. For any 1 > 0
andx = (x1,...,x,) € K\ {0}, if there exists a f; such that
fite(k)) = YL, xi(k)n  for k€ [0,0],  then
I Tx|| > A7 ||x].
Proof. Since x € K\ {0} and fi(x(k)) > Y} ,x;i(k)n for
k € [0, o], we have

n

w—1
ITx[| = 4 ;m ZO bi(s)fi(x(s))

n o—1 n
>AY mi Y bi(s) ) x(k)n
i=1 s=0 i=1

n w—1 n
>AY mi Y bi(s)) oilxin
=1 s=0 i=1

n

w—1
>Ac Y mi Y bi(s)||x[|n.
i=1 s=0

Thus | Tx|| > A ||x]|. O
Let f; : [1,00) — R, be the function given by

fi(0)=max {fi(x):xeR}, and 1 < || x|| < 0},i=1,--,n.

It is easy to see that f;(6) is a nondecreasing function on
[1,00). The following lemma is essentially the same as [5],
Lemma 3.6 and [15], Lemma 2.8.

Lemma 6./16],[15] Assume (H1) holds. If limjy) .. 4%

exists (which can be infinty), then limg_, o & 596) exists and

limg_, £0)

i £x)
=l oo T

Lemma 7.Assume that (H1), (H2) holds. Let r > é and if

there exists an € > 0 such that f,(r) <er, i=1,...,n,
then ||Tx|| < Axe||x|| forx = (x1,...,x,) € 0L,

Proof. From the definition of T, for x € d£2,, we have

n w—1
|ITx|| < A ;Mi ;) bi(s) fi(x(s))

S }, iMi Z b,(s)f,(r)

5s=0
n -1
<Ae) M) bi(s) x|
i=1 s=0
<Aex|x|l-
This implies that || Tx|| < Aey [|x]|. O
In view of the definitions of C(r), it follows that 0 <
fi(x(k)) < C(r) for k € [0,w], if x € R, r > 0. Thus it

is easy to see that the following lemma can be shown in
similar manners as in Lemma 7.

Lemma 8.Assume (HI), (H2) hold. If x € dQ,,r > 0, then
[Tx|| < A2C(r).

Proof. From the definitions of T for x € d€,, we have

n

w—1
ITx|| <2 ;Mi ZO bi(s) fi(x(s))

This implies that | Tx|| < AxC(r). O

3 Main Results
Theorem 1.Let  (HI),(H2) hold.  Assume  that
lime”_mf,-(x) = oofor i= 1, Py (2

(a)IflimeH%mJﬁi—’i) =0,i=1,...,n, then for all A >0,
(1) has a positive periodic solution.

(DI Timje) sn ﬁ = i = 1,....n, then for all
sufficiently small A > 0, (1) has two positive periodic
solution.

(c)There exists a Ay > 0 such that (1) has a positive
periodic solution for 0 < A < A.
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Proof:

Part (a). From the assumptions, there is an r; > 0 such
that

i=1,...,n

fitx) = n|xll,

for x = (x1,...,x,) € R and 0 < [|x|| < ry, where n >0
is chosen so that
Al'n > 1

Ifx= (x1,...,x,,) S K\ {0}ﬂ8.(2r1, then

™=

fi(x(k)) > for ke€l0,1],i=1,...,n.

xi(k)n,
1

Lemma 5 implies that

|Tx|| > AN ||x|| > [x]|, for xeK\{0}NJQ, . (4)
We now determine £,,. Since lim“x“ﬁw% =0, it

follows from Lemma 6 that limg_,., L 599)

=0,i=1,...,n.
Therefore there is an r, > max {2ry, é} such that

filr) <er
where the constant € > 0 satisfies
Aex <1
Thus, we have by Lemma 7 that

ITx|| <Aex||x|| < [[x||, for xeK\{0}NIQ,,. (5)
By Theorem 1 applied to (4) and (5), it follows that T has
a fixed point in K\ {0} N (£,,\€;,), which is the desired
positive solution of (1). [

Part (b). Fix two numbers 0 < r3 < ry4, there exists a Ay
such that

r3 rq
Mo M 2y

By Lemma 8, it implies that for 0 < A < Ay

<

ITx[| < AxC(rj) <

L xC(rj) =rj=|x].

Thus,
ITx|| < ||x]| for x € K\ {0}08.er, (j=3,4). (6)

On the other hand, in view of the assumptions
: i(x .
limyx o ffuin) = oo and limyy 0 fi(x) = oo, there are

positive numbers 0 < rp < r3 <rsq < A such that

fix) znlx|, i=1,....n

for x = (x1,...,%,) € R™ and 0 < ||x|| < rp or |x|| > H
where 17 > 0 is chosen so that

Al'n > 1.

Thus if X = (x1,...,x,) € K\ {0} N9Q,,, then
fix)znlxl, i=1,...,n

Let | = max {2r4, g} if x € K\ {0} N9Q,,, then

n
min Y x(k) > o;||x|| = 6,1y > H
ke[O.w]; ()— t” || il = 11,

which implies that
LX) =nx||, i=1,...,n.
Thus, by Lemma 5 implies that
ITx|[ > Al x| > [)x[|, x € K\{0} N9, ()
and
ITx|[ > Al |[x]| > [)x[|, x € K\{0}NdQ,,. (8)

It follows from Theorem 1 applied to (6), (7) and (8), T has
two fixed points x; and x, such thatx; € K\ {0} N Q,,\Q2;,
and x, € K\ {0} N Q,,\Q,,, which are the desired distinct
positive periodic solutions of (1) for A < A satisfying

< HXIH <r3<n< ||X2|| <r.

O
Part (c). Choose a number r; = 1. By Lemma 8 we infer
that there exist a g = —+L— > 0 such that

2C(r1)
|ITx| < [x||, for xe€K\{0}NdQ,, 0<A <.
©)
On the other hand, in view of assumption

lim| |0 fi(X) = oo, there exists a positive number
0 < rp < rp such that fi(x) > n|x| for
X = (x1,...,%) € R% and 0 < ||x|| < rp, where n > 0 is
chosen so that

Al'n > 1.

Thus, Lemma 5 implies that

|Tx|| > AN x| > ||x]|, for x€K\{0}NJQ,.

(10)
It follows from Theorem 1 applied to (9) and (10) that T
has a fixed point in K\ {0} N2, \£,,. Consequently, (1)
has a positive solution for 0 < A < Ag. O

4 Application

Consider the following system of two equations

Ax(k) = —ar (k)x(k) + A1 (k) (1) x* (k) +y* (k))

+ A (\/x2(k) +y2 (k)P (11)
Ay(k) = —ax (k)y(k) + Aby (k) (\/x2 (k) + y*(k))~*
+ A/ 2(k)+y2(k)P, kez. (12)
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with o, > 0,a;(k) > 0,b;(k) > 0 for i = 1,2 are
w-periodic. Note that

Fila(k), y(Rk)) = (/2 (k) +32(k) %+ (1) (k) +52 (k)P

i=1,2. It is easy to verify that a;(k),b;(k) satisfy the
assumptions (H1) and (H2). Note that
2 (k) +32(K) < x|+ ] < VZy/2 (k) +52(k). Thus

fila(k)y(®) < (Ix [+ 1y )%+ (| x [+ ]y )P

fori=1,2. By Theorem 1,

lim (x| +[y)7 %+ (x| + |y )P =eo.
[+

(@)If 0 < B < 1, then for all A > 0, (11) has a positive
periodic solution.

lim (x| + [y )"+ (x| + |y )P =0

[l +[y[ e

(b)If B > 1, then for all sufficiently small A > 0 (11) has
two positive periodic solutions.

im (L |+ [y )7 (x| + [y )P = e

[l +[y[ e

The following Corollary is an application of our
theorems. Assume that ap,ap satisfy (HI1). Let
oa>0,>0,1>0.

(@)If 0 < B < 1, then for all A > 0, (11) has a positive
periodic solution.

(b)If B > 1, then, for all sufficiently small A > 0, (11) has
two positive periodic solutions.

(c)There exists a Ay > 0 such that (11) has a positive
periodic solution for 0 < A < Ay.
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