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Abstract:: : In this paper, we present a new approach to resolve linear weakly-singular partial integro-differential 

equations by first removing the singularity using Taylor's approximation and transform the given partial integro-

differential equations into an partial differential equation. After that the fourth order compact finite difference 

scheme and collocation method is presented to obtain system of algebraic equations which solved to compute the 

unknown function. The efficiency and accuracy of the method is validated by its application to several distinct test 

problems which have exact solutions.. 

Keywords: T weakly-singular partial integro-differential equations; Taylor's approximation; fourth order compact 

finite difference scheme; collocation method. 

 

Any functional equation in which the unknown function appears under the sign of integration is called an integral 

equation. In many instances the integral equation originates from the conversion of a boundary-value problem or an 

initial-value problem associated with a partial or an ordinary differential equation. Integral equations arise in a great 

many branches of science; for example, in potential theory, acoustics, elasticity, fluid mechanics, raditive transfer 

theory of population, etc. Also integro-differential equations (IDEs) arise widely in mathematical models of certain 

biological and physical phenomena. 

In this paper we study the linear weakly-singular parabolic integro-differential equations with a memory term: 
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It is associated by the boundary and initial conditions  
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.)(  ttk
 

The solution  )(., tu  and the source term  )(.,tf  take values in ])1,0([2L , and the initial data 0u   is an element of 

])1,0([2L . Equations of type (1.1) may be thought of as a model problem occurring in the theory of heat conduction 

in materials with memory, population dynamics and viscoelasticity (e.g., Friedman & Shinbrot, 1967 [5]; Heard, 

1982 [6]; Renardy et al., 1987 [11]). Due to the wide application of these equations, they must be solved successfully 

with efficient numerical methods. Many authors have considered numerical methods for a linear problem of the form 

(1.1). Typically, the time discretization is affected by a combination of finite difference and quadratures. Finite 

difference in time and finite elements in space have been discussed in the case of a smooth kernel (e.g., Sloan & 

Thomée, 1986 [12]; Cannon & Lin, 1988, 1990 [2,3]; Yanik & Fairweather, 1988 [15]; Thomée & Zhang, 1989 [14]; 

Lin et al., 1991 [9]; Zhang, 1993 [16]; Mclean, Thomée. & Wahlbin (1996) [10]). For the nonsmooth kernel case we 

refer to Chen et al. (1992) [4] and Larsson et al. (1998) [8]. Collocation method has been discussed in (Te Riele 

(1982) [13]; Brunner, Pedas, & Vainikko, (2001) [1]) 

Our contribution in this paper is to develop a new approach to resolve linear weakly-singular partial integro-

differential equations in one dimensional space with non-homogeneous Dirichlet boundary conditions. The suggested 

numerical scheme starts with removing the singularity using Taylor's approximation and transforming the given 

second-order partial integro-differential equations into partial differential equation, then we use the discretization in 
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time by the 2-point Euler backward finite difference method. After that we use compact finite difference scheme and 

then we use a collocation method to obtain system of algebraic equations which solved to compute the unknown 

function. The proposed techniques are programmed using Matlab ver. 7.8.0.347 (R2009a). 

The paper is organized as follows: In Section 2, we introduce a method of solution for weakly-singular partial 

integro-differential equations with varying boundary conditions by using Taylor's approximation, then we give a brief 

introduction to a high accurate compact finite difference formula for partial differential equations with varying 

boundary conditions, then we use collocation method. In Section 3, the proposed method is directly applicable to 

solve several distinct numerical examples to support the efficiency of the suggested numerical method. Conclusions 

are drawn in Section 4. 
 

1. Method of Solution 

We propose an approximate solution for solving weakly-singular partial integro-differential equations. 

The advantage of this method is that we remove the singularity of the kernel of weakly-singular partial 

integro-differential equations at ts   by judiciously applying Taylor’s approximation and then 

transforming the given weakly-singular partial integro-differential equation into partial differential 

equation. Next, the discretization in time by the 2-point Euler backward differentiation formula is 

manipulated to convert the partial differential equation into ordinary differential equation. Then we use 

compact finite difference scheme and collocation method to obtain system of algebraic equations which 

solved to compute the unknown function. 
 

2.1 Taylor’s approximation 

Consider the following weakly-singular integro-differential equation partial  
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It is associated by the boundary and initial conditions 
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(2.1.2) 
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Rewrite equation (2.1.1) as: 
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equivalently 
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By using Taylor’s approximation of ),( sxu  about ts  , 
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From equation (2.1.8) into equation (2.1.6), then 
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2.3 Compact Finite Difference Schemes 

In this section, we give a brief introduction to a high accurate compact finite difference formula for 

partial differential equations with varying boundary conditions. 

 

2.3.1 Formulation of High-Order Compact Schemes 

Compact Schemes are based on a fourth order accurate approximation to the derivative calculated from 

ordinary differential equation. To developed the scheme for one-dimensional uniform Cartesian grids with 

spacing x h  , let us introduce the following notations [7]: If ( )j ju u x , then we use notations 
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to denote the standard forward finite difference and backward finite difference schemes for first derivative. 

Also, 
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is the first-order central finite difference with respect to x. The standard second-order central finite 

difference is denoted as jxu
2  and is defined as 
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By using the Taylor’s series expansion, a fourth and sixth orders accurate finite difference for the first and 

second derivatives can be approximated by 
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2.3.2 Compact finite difference method for solving partial differential equations 

Here, we use the fourth order compact finite difference method to solve problem (2.1.11) with 

boundary and initial conditions (2.1.2, 2.1.3). First the discretization in time by the 2-point Euler backward 

differentiation formula is manipulated to convert the partial differential equation into ordinary differential 

equation. To construct a numerical solution, we first consider the nodal points ),( ij tx  defined in the 

region ],0[]1,0[ T  where 

,,10 1110 hxxxxxx jjnn    

and 

0 1 10 , .i i it t t T t t          

In such a case we have hjx j   for 0,1, 2, , ,j n  and it i   for 0,1,2, .i   
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Next, the 2-point Euler backward differentiation formula is manipulated to approximate ,tu  given in 

equation (2.1.11), at the time-level 1it   for .,2,1,0 i  Therefore, we have 
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Then, a compact (implicit) approximation for  xu   with fourth-order accuracy will be given as 
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Using this estimate and considering the discrete solution of equation (2.3.2.4) which satisfies the 

approximation, we get 
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Then, we use collocation method to obtain system of algebraic equations which solved to compute the 

unknown function. Let ( )iU x  be a function that approximates ( , )iu x t  for the time-level , iti  and is a 

linear combination of n+1 shape functions which is expressed as: 
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where 
n
mimc 0}{   are the unknown real coefficients, to be evaluated, and the )(xm  are any knowing basis 

functions then equation (2.3.2.7) rewrite as 
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Replacing iU  by the approximate solution given by equation (2.3.2.8) yields the following linear system 
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The system (2.3.2.11) consists of  1n  equation in the  1n  unknowns 
n
mimc 0}{  . To get a solution 

of this system we need two additional conditions. These conditions are obtained from the boundary 

conditions (2.1.2) 
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The system (2.3.2.11), equations (2.3.2.13) and (2.3.2.14) consist of  1n  equations in  1n  

unknowns; this system is of the form 
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1. Numerical Experiment 
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In this section, we illustrate the procedure of solving equations (2.1.1) - (2.1.3), which determines the 

solution of second-order linear weakly-singular Volterra integro-differential equations, by the following 

examples. 

 

Example 1: 

),( txf  is given so that the theoretical solution of this problem is 
 txtxu 2),( . with 0)(1 tg  

 ttg )(2 , and .)()(  ststk  

 

Example 2: 

),( txf  is given so that the theoretical solution of this problem is 
 txtxu )1(),( 2

. with 

 ttg )(1  
 ttg 2)(2 , and .)()(  ststk  

Example 3: 

),( txf  is given so that the theoretical solution of this problem is 
xettxu ),( . with ttg )(1  

ettg )(2 , and .)()(  ststk  

 

Table 1. Comparison between errors for example (1) at different values of t and α 

 

x 

Error = Exact Solution – Approximate Solution 

0.5t , 0.0001  0.99t , 0.99  

0.00001  0.001  0.001  0.01  

0 0 0 0 0 

0.1 2.225921E-012 2.592349E-010 2.048393E-008 7.836406E-007 

0.2 8.890201E-012 9.202759E-010 7.579116E-008 1.974225E-006 

0.3 1.999799E-011 2.021653E-009 1.680804E-007 3.738129E-006 

0.4 3.554923E-011 3.563578E-009 2.972824E-007 6.117390E-006 

0.5 5.554582E-011 5.546054E-009 4.633994E-007 9.074575E-006 

0.6 7.995948E-011 7.969080E-009 6.664292E-007 1.245283E-005 

0.7 1.090826E-010 1.083265E-008 9.064390E-007 1.580844E-005 

0.8 1.399774E-010 1.413611E-008 1.181334E-006 1.793725E-005 

0.9 2.021050E-010 1.775938E-008 1.556349E-006 1.558932E-005 

1.0 0 0 0 0 

 

 

 

Table 2. Comparison between errors for example (2) at different values of t and α 

 

x 

Error = Exact Solution – Approximate Solution 

0.2t , 0.9  0.88t , 0.000  

0.008  0.08  0.001  0.0003  

0 0 0 0 0 

0.1 2.054346E-005 7.726289E-004 1.469400E-005 4.662220E-006 

0.2 2.769627E-005 1.361490E-003 1.494817E-005 4.463612E-006 

0.3 3.108444E-005 1.794813E-003 1.566809E-005 4.702448E-006 

0.4 3.368075E-005 2.087028E-003 1.667295E-005 5.002568E-006 

0.5 3.635822E-005 2.239629E-003 1.796495E-005 5.390698E-006 

0.6 3.922739E-005 2.241258E-003 1.954406E-005 5.864671E-006 

0.7 4.180561E-005 2.067031E-003 2.141033E-005 6.428415E-006 
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0.8 4.227779E-005 1.677058E-003 2.355939E-005 7.028519E-006 

0.9 3.471607E-005 1.014067E-003 2.635256E-005 8.417137E-006 

1.0 0 0 0 0 

 

Table 3. Comparison between errors for example (3) at different values of t and α 

 

x 

Error = Exact Solution – Approximate Solution 

1t , 0.008  0.6t , 0.008  

0.001  0.01  0.03  0.0003  

0 0 0 0 0 

0.1 3.116725E-010 2.025832E-009 3.715719E-009 7.433532E-011 

0.2 3.390599E-010 2.777027E-009 6.063877E-009 7.726120E-011 

0.3 3.748142E-010 3.211664E-009 7.684957E-009 8.570855E-011 

0.4 4.142329E-010 3.585804E-009 8.896511E-009 9.470069E-011 

0.5 4.577960E-010 3.966887E-009 9.817073E-009 1.046629E-010 

0.6 5.059440E-010 4.363681E-009 1.041000E-008 1.156670E-010 

0.7 5.591589E-010 4.736420E-009 1.046469E-008 1.278846E-010 

0.8 6.177343E-010 4.907646E-009 9.507786E-009 1.405323E-010 

0.9 6.960064E-010 4.192716E-009 6.608457E-009 1.674956E-010 

1.0 0 0 0 0 

 

 

Tables (1-3) display, the error for different values of t and α. It is observed that all the results of the 

proposed approximation for the new approach are in good agreement with the exact ones and exhibit the 

expected convergence. 

 

 
 

 

9. Conclusion 
We have reduced the solution of a class of linear weakly-singular partial integro-differential equations 

to the solution of partial differential equations by removing the singularity using an appropriate Taylor’s 

approximation, then the discretization in time by the 2-point Euler backward finite difference method. 

After that the fourth-order accurate compact finite difference scheme for partial differential problems was 

developed. The method reduces the underlying problem to linear system of algebraic equations, which can 

be solved successively to obtain a numerical solution at varied time-levels We have considered several 

distinct examples to illustrate our new approach and have verified our solutions. 
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