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Abstract: We introduce a new class of augmented Lagrangian function, which includes the well-known essential quadratic augmented
Lagrangian as special cases. Based on this new function, we propose a multiplier algorithm, whose main feature is that the multiplier
sequence does not require to be bounded. Global convergence to optimal solutions and KKT points are established, respectively.
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1. Introduction. on theory analysis or algorithm designs; for example expo-
nential augmented Lagrangian [15], modified barrier func-
This paper is concerned with the following nonlinear pro- tions [10], nonlinear Lagrangian [17] etc. At the same time,

gramming problem the convergence properties of augmented Lagrangian meth-
P) min f(x) ods have been developed; see [2,5,6,8,13] for the details.
s.t. gi(z) <0, i=1,---,m,wheref andg; : R" — _ e .
fori = 1,---,m are all continuously differentiable func- However, an essential assumption imposed in the above
tions. Denoted byX the feasible region and by* the algorlthms is the b_oundedness of FheT Lagranglap mulu—
solution set. Thelassical Lagrangian functiofs plier sequence. This undoubtedly Ilmlts the_appllcatlons
of augmented Lagrangian methods in practice. More re-
- cently, this question attracts much attention of many schol-
L(z) = f(z) + Z)‘igi(x)’ ars, and the important step in this direction includes [1,
i=1 3,4,9]. Nevertheless, it should be noted that the prefor-
where)\; e fori=1,---,m. mation of these algorithms are all restricted the iterative

A main drawback involved in the above Lagrangian sequencgz;} to be convergent in advanced. Hence, our
function is that for nonconvex programming problems amain aim in this paper is to establish the convergence prop-
nonzero duality gap maybe arisen, which leads to the fail-erty of augmented Lagrangian methods without requiring
ure of using dual methods to find the solution of the primalthe boundedness of Lagrangian multipliers, and moreover
problem. To overcome this difficulty, Henstence [7] and to study the case even when the iterative sequence is di-
Powell [11] proposed independently the fimigmented vergent. More specially, we first introduce a new class of
Lagrangian functiorby adding a second-order penalty termaugmented Lagrangian functions, which including the es-
to the classical Lagrangian function. It was extended sig-sential quadratic augmented as special cases. The corre-
nificantly by Rockafellar [12] and established its augmentedponding multiplier algorithms based on this class of aug-
Lagrangian dual theory, including the zero duality gap propmented Lagrangian is proposed. The global convergence
erty and the existence of global/local saddle points. Sinceproperty is established without requiring the boundedness
then, various augmented Lagrangian functions were proef Lagrangian multiplier sequence; for example, every ac-
posed by many authors according to different requirementumulation points of iterative sequen¢e;} is a global
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optimal solution. Even ifx; } is divergent, we further de- multipliers associated are not restricted to be bounded, which
velop the necessary and sufficient conditions for the conimake the algorithm applicable for many problems in prac-
vergence off (z1) to the optimal value. Finally, under the tice. Let us denote

Mangasarian-Fromovitz constraint qualification, we show, _ i h _ 4
that{x"*} converges to a KKT point of primal problem. ¢ s ¢(s),  where £ € [-00,0). “)

The paper is organized as follows. In section 2, we i“'According to the monotonicity ab by property(A;), we
troduce a new class of augmented Lagrangian function anginow thats < 0. The case of = —oo corresponds to that
propose the multiplier algorithm. Section 3 is devoted t0 4 js ynhounded from below.
the convergence property of our algorithms. Numerical re- (Multiplier algorithm based on L):
ports are given in Section 4. o .

Step 0Select an initial point® € R, \Y € [0, —&/2) for
i=1,---,m,andcy > 0. Setk := 0,

2. Multiplier Algorithm Step 1Compute

ML — max{0, p(crgi (%)) + A3 (crgs (2F)) (5
In this section, we first introduce a nggneralized essen- ’ x0, Hlengil m)) 1 (exgile™)) )
gglfl%géjggratlc augmented Lagrangian functidar (P), o1 > (k+1) maX{LZ()\erlf}’ (6)

=1
1 & ; k41 w0y k41
Lz \.c) :— = 2 {0 ’ A V=22 $tep 2Findz € S* (N cpg),
(@, 4,¢) f(x)+20 ;{ma {0, olegi(@))+Aid z}('Séep 3lf ¢+ € X and\F+! ¢ A(2F+1), then STOP; other-

wise, letk := k + 1 and go back to Step 1.
where(z, A\,¢) € R™ x R™ x R, and, denotes the * g P

all positive real scalars, i.e;,. = {a € |a > 0}. The The following lemma gives the relationship between
functions : R — R involved in (1) satisfies the following ~the penalty parametey. and the multipliers\*.

properties: Lemma 1Let (A\*,c;) be given as in Algorithm 2. Then

(Ap)continuously differentiable and strictly increasing on the following terms
R with ¢(0) = 0 and¢(a) > a fora > 0. M (k)2

If, in particular,¢(o) = a for all a €, thenL reduces > —
to the essential quadratic augmented Lagrangian function ” F
introduced by Rockafellar; see [12] for more information. are all approaches to zero @s— oc.
Compared with [9, 14, 16], an important point made above
is that¢ is not required to be convex. Hence the augmente(JD
Lagrangians we introduce here is more general.
Given(x, A, ¢), theLagrangian relaxation probleras-
sociated with the augmented Lagrangiarns defined as
(Lxe) min L(z, A, c)
s.t. « € R". Its solution set is denoted b (), ¢).
Recall that a vector is said to be a KKT point of (P)

roof.This is clear from (6).

3. Convergence Analysis

For establishing the convergence property of Algorithm 2,
we first consider the perturbation analysis of (P). Given
a > 0, define the perturbation of feasible region as

if there exist\; €, foralli = 1,---,m such that the
following system hold X(a)={z € R"|gi(z) < ;i =1,---,m},
m and the perturbation of level set as
Nigi () :la’ foralli=1,---m, (3) It is clear thatX (0) coincides with the feasible set of (P).

. The corresponding perturbation function is given as:
where the second condition is referred to as the well-known P gp 9

complementarity conditiorFor notational simplification, v(a) = inf{f(z)|z € X(a)}.
the collect set of multipliers satisfying (2) and (3) is de-  The following result shows that the perturbation value

noted byA(z). _ function is upper semi-continuous at zero.
Throughout this paper we always assume fhiatbounded
from below, i.e., Lemma 2.The perturbation function is upper semi-continuous
foim in}g F(z) > —oo. at zero from right.
me n

. L - o Prooflt only needs to show that
This assumption is rather mild in optimization problem,

because otherwise the objective functjpcan be replaced limsup v(a) < v(0),

by /(). The multiplier algorithm based on the gener- “—%"

alized essential quadric augmented Lagrandiais pro-  which is followed by the fact(a) < v(0), sinceX (0) C
posed below. One of its main feature is that the LagrangianX («) for all a > 0.
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Lemma 3Forany A €™ andc > 0, one has
S*(A¢) C{x € R"|L(xz,\,c) <v(0)}.

ProofFor anyz € S*(\, ¢), we have
L(z, M\, ¢) = inf{L(xz,\,c)|z € R"}

< inf{L(z, A\, )|z € X(0)}

< inf{f(x)]o € X(0)}

= U(O)’
where the second inequality uses the fagtg;(x)) < 0

where the second inequality comes from the fact) > a
for all @ > 0 by property(A;), and the last inequality
follows from the nonnegativity of* by (5) (noting that
¢'(a)) > 0 for all « € since¢ is nondecreasing). Taking
limits in the above inequality yields(0) = + oo, which is
a contradiction. The proof is complete.

Lemma 5Let(\*, ¢;,) be given as in Algorithm 2. For any
e > 0, one has

{z € R"|L(z, \*, ;) < v(0) + g} C Le).

forall z € X(0), since¢ is nondecreasing by the property \yheneveti is sufficiently large.

(A1)

Lemma 4Let(\*, ¢;.) be given as in Algorithm 2. For any

e > 0, one has
{z € R"|L(z,\* cr) <v(0) + ¢} C X(e).

whenevetr is sufficiently large.

ProofFor arbitrarilyz € {x € R"|L(x, \*, ;) < v(0) +
5}, it follows from (1) that

F(@) < 0(0) + 5+ S ()2, (©)

2 20k im1

As k is large enough, Lemma 1 ensures that

Proof We prove this result by contradiction. Suppose that , m

we can find areg > 0 and an infinite subsequendéé C
{1,2,---} such that

M e {x e RYL(z,\¥,c) <v(0)+¢€}, VEeK, (7)
but

¢ X(eg), VkeK.

It follows from (7) that

v(0) + € > L(2%, M%), (8)

Sincez* ¢ X (¢g), then there exists an indéxand an
infinite subsequenc&, C K such thatg;, (z*) > . It
follows from (8) that

w(0) + e

> Lot g i{maxz{o, Olengi(=)) + A} — (D)2}

= Fot g {ma {0, 6(engiy (7)) + A } - ()}
oo 3 {0, ousi(2) + M = ()

> £t gm0, engiy(2F) + X ) - ()}

Jrﬁ Z {max®{0, ¢(crgi(2*)) + AT} = (M)}

i#io
> ot L) + g (N 5 SO
- J* 2 10 (2] 10 20](; oy 7

1FL0

>f*+cfk€g+eo)\k b g (AF)2
- 2 0 2 pa !

Ck ) 1 m o
> fot —eg — — E AD)7S
_f+260 2Cki:1( z)

Ly o<
Ck =1
which together with (9) justifies the desired result.

With these preparation, the global convergence prop-
erty of Algorithm 2 can be given, which shows that if the
algorithm terminates in finite steps, then we obtain a KKT
point of (P); otherwise every limit point dfz* } would be
the optimal solution of (P).

Theorem 1Letz* be the iterative sequence generated by
Algorithm 2. Then If 2*} is terminated in finite steps, then
we get a KKT point of (P); otherwise, every limit point of
z* belongs taX *.

ProofAccording to the termination criterion of Algorithm

2, the first part is clear. Let us consider the second part.
For anye > 0, it follows from Lemmas 3-5 that whehis
large enough we have

S*(\¥ cp) C {x € R™|L(z,\*, cx) < v(0)}
C {x € R"|L(z, \*, ¢x) < v(0) + g}
C X(e) N L(e).
Thus,
2% € X(e) N L(e). (10)

Note thatX (¢) and L(e) are closed, due to the continuity
of fandg; forall i = 1,---,m. Taking the limit in (10)
yieldsz* € X (e) N L(e), which further shows that* e

X (0) N L(0), sincee > 0 is arbitrary, i.e.x* € X*. The
proof is complete.

The foregoing result is applicable to the case when
{z*} at least has an accumulation point. However, a nat-
ural question ariseiow does the algorithm perform as
{z*} is divergent?The following theorem gives an answer.
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Theorem 2Let{z*} be an iterative sequence generalized where the last step is due to the fagtz*) < ¢;, since

by Algorithm 2. Then z* € X (¢;, ) and¢ is nondecreasing by the propefty; ).

lim f(z*) = v(0) (11) Taking the_: limits in both sides of (15) and using Lemma 1
k—o0 and (14), it follows from (11) that

if and only ifv(«) is lower semi-continuous at = 0 from 5

right. v(0) = klim f(z®) < 0(0) — 50,

ProofSufficiency. According to the proof of Theorem 1
[cf. (10)], we know that
v(e) < f(2%) < v(0) +e, (12) We conclude this paper by establishing the convergence

wheneve: is sufficiently large. Since(a) is lower semi-  Of the lagrangian multiplier sequen¢a*} in the presence
continuous at = 0, taking the lower limitation in (12) of Mangasarian-Fromovitz constraint qualification. Let us

: first recall that M.F. constraint qualification is said to be
yields - * i ; n
o o . satisfied at:*, if there existsh, €” such that
v(0) < hmégrlfv(e) < hkm inf f(x®)

(Vgi(x*),ho) <0, Viel(z"),
wherel(z*) = {ilg;(z*) = 0,i = 1,---,m}. Here we

which leads to a contradiction. The proof is complete.

< limsup f(z") <v(0) +e.

k—oo a
Sincee > 0 is arbitrary, the above estimate gives us further assume tha satisfies
lim f(z*) = v(0). (A2)¢'(s) < 1 whenevers is sufficiently small, i.e., there
k—oo existssy < 0 such tha’(s) < 1forall s < sg.

Necessity. Suppose on the contrary thad not lower
semicontinuous at zero from right, then there must eX|st
8o > 0ande; — 0™ (as j — oo) such that

Iearly, this assumption holds automatically whign)) =

v(e;) <v(0) —do, Vj. (13)  Theorem 3Let {z*} be the iterative sequence generated
Let & be fixed. Since;; — 0 we can choose an subse- by Algorithm 2 andc* is one of its limit points. Then
quencejy, satisfyinge;, ¢, < 1/k. Hence (a)lf M.F. constraint qualification is satisfied at*, then
€.k — 0 ask — oo, Ak is bounded and any of its limit points, say, sat-

. . L N isfies(z*, A*) is a KKT point of (P).

\t’;’]h'tCh' together with the continuity a5, further implies (b).If the linearly independent constraint qualification holds
a at «*, we further obtain that the multiplier sequence

p(€juen) =0 ask — oo. (14) {MYfori=1,---,m are convergent.

In addition, letz* € X<€f;’“) with f(zké) < v(e) + 3. ProofWe assume without loss ofgeneralltytﬁm ol
. N < 5
:%?g:h further impliesf (%) < v(0) — 5 by (13). There- x*. It follows from Theorem 1 that* € X*. If ¢ gé I(x )
i thengl( k) < 0 ask large enough. This means the exis-
f(z®) tence ofe; > 0 such thatg;(z*) < —eo wheneverk is
1 sufficiently large. Therefore,
= L M\ o) — 5= Y {max?{0, ¢(cxgi(a*)) + Af}
2, lim cpg;(2%) = —oo.
n2 k—oo
—(N)) Hence, taking into account of the propertigsl), (A4s)
_ ”}g Ll b, o) — & Z {maX {0, é(cngs(s™) + )\f}and Step 1 in Algorithm 2, we obtain
rzeER™
. AT = max{0, ¢(crgi (")) + A} (crgi(2®))  (16)
_()\_)2} < max{0,\F} = \F <... <\,
< inf Lz, ¥, cp) + — Zo‘f)Q where the second equation comes from the nonnegativity
zER™ Ck of \; according to the construction in Algorithm 2. This

Lo justifies the boundednega} for i ¢ I(z*). SinceA} <
< FE 5 3 {max{0, ¢(crgi(=F) + AP} — (AF)?} A < —3& (see Step Oin Algorithm 2) antim_ ¢(crg:(«")) =
ks ¢ by (4), then

m

1 . .
o > (2 Jim g(ergi(a*)) + A7 < €/4 <0,
=1
s T Therefore, taking limit in (16) yields
0 ] k\2
S0 e 2 (9lencsc) + M) Whim AF =0, vig 102, (17)
@© 2012 NSP
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We now show that\¥ for i € I(z*) are bounded as 4. Numerical Results
well. If this is not true, then we can find an infinite subse-

quencek C {1,2,---, } such that To give some insight into the behavior of our proposed al-
gorithm, we solve the following nonconvex programming

— k
Ty = Z Ai = oo, ask — oo (18)  problems by lettingy take the following different func-
i€l(zr) tions:

Sincex*~1 € S*(\*~1 ¢x_1) by Algorithm 2, accord- 161(a) = a,

ing to the well-known of optimality conditions for uncon- 2 4, (a) = (1 + la)® -1,

strained optimization problem we must have 3.¢3(a) = a(ln(l ra?)+ 1)

Vo L(z* 1 A 1) =0, dps(@) = a+a’.

which together with (5) means that The test was done at a PC of Pentium 4 with 2.8GHz
m CPU and 1.99GB memory. The computer codes were writ-

V(R + Zx\fvgi(xk%) —0. (19) ten in Matlab 7.0. Numerical results are reported in the

following Table, wherek is the number of iterationgy, is
the penalty parametek” is multipliers, andf (z*) is the

. ko . At
Slnce;—; is bounded, we can assume without loss of gen-Objective value.

i=1

erality that Example 18] min 0.5(z1 + 22)? + 50(xs — x1)? +
Ao ) . sin?(z1 + )
T, — A, Viel(z"). s.t. (21— 1)+ (w9 —1)% + (sin(xy +22) —1)2 =15 <0
Since Example Z18] min 0.5(z; +22)? +50(zo — 1) + 23+
A\F |x3 — sin(zy + x2)]
Y. 7 =1 st. (21— 124 (32— 1)+ (22— 1)2—1.5<0
i€l (x*) k

taking limit with respect td: € K in the above equation Example 319] min f(x) = =5(z1+22)+7(w4—3ws)+

. x%—i—x%
gives us 4202 4 a2

Z ;\;:1, s.t. Z?:lx?—i—xl—xg—l—a:g—u—SSO
i 1(z*) x%+2x§+x§+2xifxlfx4710§0

~ 208 + a3+ a3 +22; —29 —24—5<0
which implies that\! for i € I(z*) are not all zero. Divid-
ing on both sides of (19) b¥}, taking limit with respect  Example 419] min f(z) = (z1 —10) +5(z2 — 12)* +

tok € K, and using (18), we get 25 4 3(xq — 11)?
~ + 103:?) + 7x% + J;‘% — 4xex7 — 1026 — 827
> AVgi(a®) =0. s.t. 202 + 325 + 23 + 4o + 5wy — 127 <0
iel(xz*) Tx1 + 3xo + 10x§ + x4 —x5 —282<0

231, —|—$§ + 6:1:% —8xr7 —196 <0

Thus 423 + 23 — 3z1w9 + 223 + S — 1127 <0

0=( > XV )h)= S X(Vale),ho) <0,

eI eI Comparing with their numerical behaviors givenin Ta-

bles 1-4, it is clear that Algorithm 2 is more preferable
where the last step is due to the fact that at least one ofyhen ¢ is nonconvex tham(a) = «, since the iterative
A} is not zero. This leads to a contradiction. Therefore, westepk is fewer and penalty coefficient, is smaller.
establish the boundedness)¥t Let \* be a limit point of
Ak, 1t follows from (17) that\* = 0 for i ¢ I(z*) and
from (19) that

Vi )+ Y AVe) =0, .

iel(z) Research of Jinchuan Zhou was partly supported by Na-
) . ) tional Natural Science Foundation of China (11101248,
i.e., A" € A(z"). This establishes Part (a). Part (b) can 11171247, 71101140), Shandong Province Natural Science
be proved in the same vein, just noting that in the pres+oundation (ZR2010AQ026), and Young Teacher Support
ence of linearly independence constraint qualification theprogram of Shandong University of Technology. The au-
Lagrangian multiplier is unique. This together with the thors are grateful to the anonymous referee for a careful

boundedness ok for i = 1,---,m ensure the conver- checking of the details and for helpful comments that im-
gence to the unigue accumulation point. proved this paper.
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Table 1 Numerical Results of Example 4.1 Table 3 Numerical Results of Example 4.3

pi(a) k Ck f(a*) pi(a) k ck f(a*)

o1 () 2 2.0000 0.3141 o1() 1 10.2288 -43.9121
4 4.0000 0.3012 4 19.4016 -44.0044
6 6.0000 0.3004 8 37.3764 -44.0051

d2(a) 2 2.0000 0.2739 d2(a) 1 2.4000 -44.0926
3 3.0000 0.2992 4 19.9795 -44.0190
4 4.0000 0.3004 6 21.3354 -44.0098

o3(a) 2 2.0000 0.2331 ¢3(a) 1 10.0128 -44.8715
4 4.0000 0.2992 3 19.3040 -44.0044
5 5.0000 0.3004 4 24.9815 -44.0000

da(a) 2 2.0000 0.2845 da(ax) 1 3.3715 -45.5757
3 3.0000 0.2998 3 8.2728 -44.0347
4 4.0000 0.3004 4 10.7013 -44.0180

Table 2 Numerical Results of Example 4.2 Table 4 Numerical Results of Example 4.4

$i(a) k Ck f(ah) bi() k ck F(zF)
¢1(a) 2 2.0000 0.3052 b1 (a) 1 1.0000 679.6946
4 4.0000 0.3007 2 0.1637 680.5644
6 6.0000 0.3004 5 0.1516 680.6300
¢2(a) 2 2.0000 0.2739 b2 (a) 1 1.0000 679.8201
3 3.0000 0.2991 2 0.1420 680.5978
4 4.0000 0.3004 4 0.1435 680.6300
¢3(a) 2 2.0000 0.2629 b3(a) 1 1.0000 679.9210
3 3.0000 0.2974 2 0.1421 680.5856
> 5.0000 0.3004 4 0.1435 680.6300
pa(@) 2 2.0000 0.2759 PN E) 1 1.0000 679.9520
3 3.0000 0.2976 2 0.1421 680.5871
4 4.0000 0.3004 4 0.1435 680.6300
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