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Abstract: SystemC is an emerging standardhardware description languagefor system-level modeling and design. Formal semantics
could give its meaning in a mathematically rigorous and unambiguous way. In this paper, we formalize SystemC both from processes
and simulation environment by process algebra, which enables that deduction and verification of the whole simulation procedure are
in an integrated and convenient manner. Meanwhile, in order to accommodate event-driven and concurrent properties of SystemC,
we adopt event structure characterized by true concurrency, as semantic model of both SystemC and its simulation environment for
denotational semantics and operational semantics, as well as demonstrate the correspondence between them. As a result, we propose a
unified framework for formalizing SystemC.
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1. Introduction

In hardware design procedures, hardware description lan-
guages (HDLs) are typically used to express designs at var-
ious levels of abstraction.HDLs are high level program-
ming languages, whose programming constructs usually
contain of assignments, conditions, iterations and appro-
priate extensions for real-time, concurrency and data struc-
tures being suitable for modeling hardware. SystemCHDL,
developed by Open SystemC initiative (OSCI), is a mod-
eling language based on C++. It models the system at dif-
ferent levels of abstraction, fills the gap between hardware
and software design, provides a unifying language for hard-
ware/software specifications, and becomes an IEEE stan-
dard [3] for system level modeling and design. SystemC
contains C++ libraries and simulation kernel for creating
behavioral and register-transfer level designs and provides
a common development environment needed to support
software engineers working in C/C++ and hardware en-
gineers working inHDLs such asVHDL, Verilog, etc.

Although SystemC comes with a well-writtenLanguage
Reference Manual[3] and a reference implementation of
the simulator, the documentation leaves some open ques-
tions w.r.t. the precise and rigorous meaning. However, a
precise formal semantic of SystemC is mandatory for var-
ious applications in simulation, synthesis and formal veri-
fication, provides a completely unambiguous specification
of the language, and contributes significantly to the shar-
ing, portability and integration of various applications. On
the other hand, compared with otherHDLs, e.g., Verilog
and VHDL, there exist some new and interesting program-
ming features of SystemC: processes trigger events ac-
tively instead of generating by the changes of states (e.g.,
Verilog), events represent some general conditions during
the execution of program, and can be notified and can-
celed on many separate occasions. There are three kinds
of event notifications: immediate event notification, delta-
cycle delayed notification and timed notification. Timed
notifications can be canceled via ‘cancel’ statements be-
fore they are triggered. Delayed notifications on the same
event override each other and only one delayed notification
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survives. All of these new features make it worthwhile to
give a precise semantics of the language.

Since SystemC is essentially an event-drivenHDL, it
is convenient and natural that the semantic model could
reflect these interesting features, fortunately, event struc-
ture [4,5] answers precisely to our need. Event structure
is capable of specifying causality, concurrency and choice
between events. It has shown its strength in the construc-
tion of parallel and distributed systems, as well as in the
initial steps of asynchronous circuit design. It was used
successfully for the analysis and synthesis of digital sys-
tems [6]. Moreover, it is easy to do action refinement oper-
ation [7] on event structures, which is congruent with the
top-down design of SystemC. Meanwhile, partial order re-
duction over it also facilitates the verification.

Our research focuses on a unified way to study Sys-
temC and its simulation environment for two reasons. Firstly,
according to the point of formal specification, processes
and attached environment could not be split (as mentioned
in [8]). Process is the cornerstone of semantics of a lan-
guage. Environment shows the dynamic occasion of pro-
cesses. Therefore it is a prerequisite to investigate both
processes and the environment. For SystemC, the unified
way makes the simulation exact, simple and optimized.

Secondly, compared to some well-known model check-
ing successes like the JAVA-PATHFINDER, why does pro-
gramming language, like C and C++ are more difficult to
be verified? Because Java programming language is com-
piled to the same byte code for Java virtual machines run-
ning on all kinds of operation systems. Java essentially
encapsulates both the executable codes and information
of environment, which simplifies the model-checking pro-
cess. However, the executable codes for C and C++ depend
on their compilers and operating systems.

In this paper, we study SystemC to precisely obtain a
unified semantic of both SystemC and its simulation envi-
ronment with a well-defined semantic model, which is the
first step to find an effective and applied way of verifica-
tion of SystemC.

1.1. Related work

Although there are some works on formal semantics [9]
and algebraic laws for the hardware modeling languages
[10] by far, to the best of our knowledge, there is no pub-
lication concerning the unification of processes and simu-
lation environment of SystemC.

The simulation semantics of SystemC in the form of
distributed Abstract State Machine (ASM) specifications
and the denotational semantics for a synchronous subset
of SystemC were studied in [11] and [12] respectively. In
[13], the SystemC Process State Machines were described
as a variation of theUML method state machines. In [10],
the event-driven properties, operational semantics and al-
gebraic law of SystemC were well studied, but the envi-
ronment was not involved.

Moreover, previously, we have studied the SystemC by
a well-defined event based sub-set of SystemC language,
e.g., SystemCPA [14], which is similar to K.L. Man’s
SystemCFL [9,15,16], but Man’s article focuses on SystemCFL

but not the environment of running processes and event-
driven model.

1.2. Notations

In this article we denote an action with lower Greek letter,
and the corresponding event ise with a suffix of this letter.
In order to reflect the essentials of the user defined actions,
includingAssign, Test, Change, Notify, Clock> and
Clock⊥ are also used. Moreover, the capital lettersP , Q
andB are used to denote the names of processes or be-
haviors andG, E andX for set. We use letters with math
style, e.g.,D andA, to denote the special set, mapping and
so on.

1.3. Organization

The paper is organized as follows: In Section 2, we show
some basic notations and definitions of timed stable event
structure, process algebra and its semantics. In Section 3,
we depict the syntax of SystemC in detail and propose a
unified modeling framework for both processes and simu-
lation environment. We conduct a case study in Section 4
and conclude in Section 5.

2. Real-Timed Extension of Stable Event
Structures and Process Algebra

Event structureis model of processes as events constrained
by relations of consistency and enabling [4], which allow
modeling of systems by specifying branching structure,
causal ordering and concurrent running. An event structure
is a set of events together with relations of partial-order
and conflict. The partial-order relation models causality,
whereas the conflict relation expresses alternative choices
between events. Two events which are neither causally de-
pendent nor in conflict may occur concurrently. In this
sense, event structures provide explicit and separate rep-
resentations of causality, choice and concurrency [17].

Stable event structureswere introduced by Winskel to
overcome the unique enabling problem of prime event struc-
tures [4]. This kind of event structures has an enabling re-
lation, denoted̀ , relating a (usually finite) set of events to
a single event. The interpretation ofX ` e for a setX of
events and an evente is thate is enabled if all events inX
have occurred. Events are the occurrence of actions, then
a event structure are always involved a well-defined action
set, letA be the set.

An event structure is defined as a tupleE = (E, ],`
), whereE is a countable set of events;] ⊆ E × E is
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a symmetric and irreflexive relation, theconflict relation;
`⊆ Con×E is anenabling relationsuch thatX ` e∧X ⊆
Y ∈ Con ⇒ Y ` e (hereCon is the set of finite conflict-
free subsets ofE, i.e. those finite subsetsX ⊆ E for which
holds:∀e, e′ ∈ X : ¬(e]e′)). An event structure is called
stableif X ` e∧Y ` e∧X∪Y ∪{e} ∈ Con ⇒ X∩Y ` e.
The setConf(E) of configurations ofE consists of those
C ⊆ E which are secured (∀e ∈ C : ∃{e0, . . . , en} ⊆ C
s.t.(en = e)∧ ∀i ≤ n : {e0, . . . , ei−1} ` ei) and conflict-
free (∀e, e′ ∈ C : ¬(e]e′)).

Since the time-related properties, e.g., time-delay, is
essential duringSystemCsimulation, we will extend the
stable event structure with a real-time extension. Assum-
ing a global clock [5] which approximates the time of ev-
ery snapshot by a natural number. In our model, events are
attached with time delays and the causalities. This kind of
extension can be interpreted as: an event with a delayt will
be not bundled by the time constraint at the timet since the
start of the system and may happen at any time fromt (if
enabled) and a causality witht delays enabled eventt time
units. Note: the occurrences of events themselves take no
time, i.e. events happen ‘instantaneously’ [5].

LetN be the set of natural numbers, then time domain
can be denoted bỹN = N ∪ {∞}, where∞ > n for any
n ∈ N. We useCF (S) to denote that all the events in set
S is conflict-free.

CF (S) = ∀e, e′ ∈ S : (e 6= e′) ⇒ ¬(e]e′)

andCFL(S) to the set of events that conflict withS:

CFL(S) = {e | e ∈ E ∧ e′ ∈ S ∧ ¬CF ({e, e′})}
Definition 1.A timed event structure is a septupleT E =
(E, ],`, l,D, T ) with:

• E, a set ofevents;
• ] ⊆ E × E, the (irreflexive and symmetric)conflict

relation;
• `⊆ P(E)× E, theenablingrelation;
• l : E → A, theaction-labelingfunction;
• D : E → Ñ, theevent delayfunction;
• T :`→ Ñ, thecausality delayfunction.

such that
1. ∀X ⊆ E, e ∈ E : X ` e ⇒ CF (X ∪ {e});
2. ∀X,Y ⊆ E, e ∈ E : (X ` e ∧ Y ` e) ⇒

(¬CF (X ∪ Y ) ∨X = Y ).

In the following, we will consider only timed stable event
structure and call it simply event structure.

The event structureT E = (E, ],`, l,D, T ) hascor-
rect timing iff for any e ∈ E andX ` e, T (X) ≤ D(e).
In what follows, only timed event structures with correct
timing are considered.

Moreover, event structure can be depicted by figures,
in which events are denoted by closed dots, conflict rela-
tions by a dotted line, enabling relations by drawing an
arrow from each event inX to e and connecting all arrows
by a small line, action labels are given near the dot, events
and causality delays are depicted near the corresponding

dots and lines respectively, and zero time unit delay is
usually omitted. So the event structure pictured inFig-
ure 4 (a) can be described as(E, ],`, l,D, T ) with E =
{eα, eβ , eη, eγ}, ] = {(eβ , eη)}, `= {({eα}, eβ), ({eα},
eη), ({eη}, eγ)}, l = {(eα, α), (eβ , β), (eη, η), (eγ , γ)},
D = {(eα, 3), (eβ , 14), (eγ , 11)} andT = ∅.

Behaviors of system specified by aT E are described
by explaining which subsets of events constitute possi-
ble (partial) runs of the represented system. These subsets
are modeled by sequences of timed events termedtraces.
Traces are sequences oftimed eventsσ = (e1, t1) · · ·
(en, tn), wheret1 ≤ t2 ≤ · · · ≤ tn, with (ei, ti) show-
ing ei occurred at timeti. Let [σ] denote the sequence of
events inσ without time, i.e.,[σ] = e1 · · · en , [σ] the set
of events in[σ] andσ the set of timed events. We useσi

to denote a trace of lengthi, i.e. σi = (e1, t1) · · · (ei, ti).
Now, e is enabled after[σ] if there exist certain events that
occurred earlier with the flow relation pointing toe, and
meanwhilee should not in conflict with other earlier events
in [σ], that is:en([σ]) = {e | e 6∈ CFL([σ]) ∧ e 6∈ [σ] ∧
(∃X ⊆ [σ] : X ` e)}. Let time(σ, e) denote the minimal
time instant from whiche can occur, two aspects should be
considered:(i) e’s absolute delayD(e), (ii) the time rela-
tive to all e’s causality, sotime(σi, e) = Max({D(e)} ∪
H}) with H = {t + ti|∃X ⊆ [σ] : T (X, e) = t}. Let
[σi−1] = e1 · · · ei−1 be the(i − 1)-th prefix of [σ], so the
definition of trace is as following:

Definition 2.A traceof timed event structureT E = (E, ],`
, l,D, T ) is a sequenceσ of timed events(e1, t1) · · · (en, tn)
with ei ∈ E, ti ∈ Ñ andi ∈ N, satisfying

• e1 · · · en with ei ∈ en([σi−1]);
• ∀i : (ei) ⇒ (ti > time(σi, ei));
• ∀i, j : (i < j) ⇒ (ti 6 tj).

A state of an execution of a timed event structureT E is
called atimed configurationTC = σ. Let Conf(T E) de-
note the set of timed configurations ofT E . Say that there is
a transition from a timed configurationTC to a timed con-
figurationTC ′ and writeTC → TC ′ iff TC ⊆ TC ′. It is
easy to see that→ includes a partial order onConf(T E).
Moreover, the class of this structure is denoted bySES
for convenience.

2.1. Process Algebra

We use theprocess algebraas the language to express
behaviors of SystemC and its environments. The process
algebra in this article is a time extension of LOTOS[18],
which is a standard language without data types and value
passing. Two timed features are attached, e.g., delay func-
tion restricting the occurrence time of atomic actions and
transition between events, this two delay constraints are
the most important to main features of SystemC, includ-
ing notifications, notification canceling, notification over-
riding, event waiting, time delaying, sensitivity lists, con-
current processes and delta-cycle. The syntax of (timed)
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process algebra is as following:

P ::= 0 | √ | (t)α.P1 | P1 + P2 | P1; P2 |
P1 ‖G P2 | P [H] | B (1)

A set of event based inference rules are depicted inFig-
ure1, which is also called astructural operational seman-

tics (SOS).P1
(e,α,t)−−−−→ P ′1, denotes that at timet, behavior

P1 can perform an evente labeled with actionα, and sub-
sequently evolve intoP ′1. Note an auxiliary constructt′ [P ]
(also used in [5]) shows ifP performs eventξ at time t,
thent′ [P ] performsξ at timet + t′.

2.2. The Denotational Semantics

The causality-based denotational semantics relates the syn-
tax of process algebra with event structure directly. This
type of semantics can give a rigorous and unambiguous in-
terpretation, and then show the true-concurrency character
essentially.

Let init(T E) denote the set of initial events ofT E ,
exit(T E) the set of successful termination events,pos(T E)
that events with non-zero delay:init(T E) , {e ∈ E |
¬(∃X ⊆ E : X ` e)}, exit(T E) , {e ∈ E | l(e) = δ}
andpos(T E) , {e ∈ E | D(e) 6= 0}. Let pin(T E) ,
pos(T E) ∪ init(T E). FunctionEJ K (also adopted in [5])
associates each process termPi ∈ P with an element of
SES, e.g.,EJ K : P 7→ SES. Then the causality based
denotational semantics can be defined withEJ K respec-
tively. Firstly, let EJPiK = T E i = 〈Ei, ]i,`i, li,Di, Ti〉,
for i = 1, 2 with E1 ∩ E2 = ∅. We show the denotational
semantics of syntax of PA step by step:

1. The semantics of deadlock (0), successful termina-
tion (

√
) and relabeling (H) are self-explanatory:

EJ0K , 〈∅, ∅, ∅, ∅, ∅, ∅〉.
EJ√K , 〈E, ∅, ∅, l,D, ∅〉
thatE = {eδ}, l = {(eδ, δ)}, andD = {(eδ, 0)}. And

EJP [H]K , 〈E, ],`, H ◦ l,D, T 〉
‘◦’ is operator for composition of functions)

2. The semantics of action-prefix ((t)α.)
For action prefix, an enabling relation is introduced

from a new eventeα to all initial events inT E1:

EJ(t)α.P1K , 〈E, ]1,`, l1 ∪ {(eα, α)},D, T 〉
with:

E = E1 ∪ {eα} for eα 6∈ E,

`=`1 ∪({{eα}} × pin(T E∞) ),
D = {(eα, t)} ∪ (E1 × {0}),
T = T1 ∪ {(({eα}, e),D1(e))|e ∈ pin(T E1)}.

3. The semantics of Choice (+)

EJP1 + P2K , 〈E1 ∪ E2, ],`1 ∪ `2, l1 ∪ l2,D1 ∪ D2,

T1 ∪ T2〉

1α

0.1α

1α

0.. 11 αη

1η
1α

1η

2α

0.0.. 211 ααη +

2α

0.2α

3α δ

.3α �√

�√

1α
1η

2α 3α δ

.);0.0..( 3211 αααη +

Figure 2 Examples of semantics foraction-prefix, sequential
andchoice

with:
] = ]1 ∪ ]2 ∪ {init(T E1)× init(T E2)}

Note: The choice between processes is resolved in interac-
tion with the environment.

4. The semantics of sequential (;)
EJP1; P2K , 〈E1 ∪ E2, ],`, l,D, T 〉
with:
] = ]1 ∪ ]2 ∪ { (e, e′) | e, e′ ∈ exit(T E1) ∧ e1 6= e2 }
`=`1 ∪ `2 ∪({exit(T E1)} × {pin(T E2)})
l = (l1\(exit(T E1)× {δ})) ∪ l2 ∪ (exit(T E1)× {τ})
D = D1 ∪ (E2 × {0})
T = T1 ∪ T2 ∪ {((exit(T E), e),D2(e))|e ∈ pin(T E2)}
EJP1; P2K is sequential operate. It equals toT E1 ∪ T E2

where enable relations are introduced from the successful
termination events ofT E1 to the initial events ofT E2.

5. The semantics of parallel (‖G)
This operator shows the behavior of communicated pro-

cesses, let set of synchronization events beG ⊆ A, Es
i ,

{ e ∈ Ei | li(e) ∈ Gδ} and non-synchronizing events
Ef

i , Ei\Es
i :

EJP1 ‖G P2K , 〈E, ],`, l,D, T 〉
that:
E = (Ef

1 × {∗}) ∪ ({∗} × Ef
2 ) ∪

{ (e1, e2) ∈ Es
1 × Es

2 | l1(e1) = l2(e2) }
(e1, e2)](e′1, e

′
2) with

(e1]e
′
1) ∨ (e2]e

′
2) ∨ (e1 = e′1 6= ∗ ∧ e2 6= e′2) ∨

(e2 = e′2 6= ∗ ∧ e1 6= e′1)
X ` (e1, e2) with

X = {(e, ∗)|X1 `1 e1 ∧ e ∈ X1 ∧ e 6∈ Es
1} ∪

{(∗, e′)|X2 `2 e2 ∧ e′ ∈ X2 ∧ e′ 6∈ Es
2} ∪

{(e, e′)|X1 `1 e ∧X2 `2 e′ ∧ e ∈ Es
1 ∧ e′ ∈ Es

2 ∧
e ∈ X1 ∧ e′ ∈ X2}

l(e1, e2) =

{
l2(e2) if e1 = ∗;
l1(e1) others.

D((e1, e2)) = max(D1(e1),D2(e2)) with Di(∗) = 0
T (X, (e1, e2)) = max(T1(X1, e1), T2(X2, e2))

with X1 ⊆ E1 ∧X1 `1 e1 ∧X2 ⊆ E2 ∧X2 `2 e2
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1. Successful terminated

√
ξ

(ξ,δ,t)−−−−→ 0

2. Action prefix

(t′ ≥ t)
(t)αξ.P1

(ξ,α,t′)−−−−−→ t′ [P1]
3. Alternative

3.1
P1

(ξ,α,t)−−−−−→ P ′1
P1 + P2

(ξ,α,t)−−−−−→ P ′1
3.2

P2
(ξ,α,t)−−−−−→ P ′2

P1 + P2
(ξ,α,t)−−−−−→ P ′2

4. Sequential

4.1
P1

(ξ,α,t)−−−−−→ P ′1 (α 6= δ)
P1; P2

(ξ,α,t)−−−−−→ P ′1; P2

4.2
P2

(ξ,α,t)−−−−−→ P ′2 (α = δ)
P1; P2

(ξ,α,t)−−−−−→ P2
5. Parallelism

5.1
P1

(ξ,α,t)−−−−−→ P ′1 (α 6∈ Gδ)
P1 ‖G P2

((ξ,∗),α,t)−−−−−−−→ P ′1 ‖G P2

5.2
P2

(ξ,α,t)−−−−−→ P ′2 (α 6∈ Gδ)
P1 ‖G P2

((∗,ξ),α,t)−−−−−−−→ P1 ‖G P ′2

5.3
P1

(ξ,α,t)−−−−−→ P ′1 ∧ P2
(φ,α,t)−−−−−→ P ′2 (α ∈ Gδ)

P1 ‖G P2
((ξ,φ),α,t)−−−−−−−→ P ′1 ‖G P ′2

6. Relabeling

P
(ξ,α,t)−−−−−→ P ′

P [H]
(ξ,H(α),t)−−−−−−−→ P ′[H]

7. Process instantiation

7.1
B

(ξ,α,t)−−−−−→ B′
(P := B)

Pφ
(φξ,α,t)−−−−−−→ φ(B′)

7.2
B

(ξ,α,t)−−−−−→ B′

φ(B)
(φξ,α,t)−−−−−−→ φ(B′)

Figure 1 Event based operational semantics for Process Algebra

δ

.
ΤClockτ �√

1α1η

2α 3α δ

1α1η

2α 3α

δ

�√.);0.0...(( 3211 αααητ +
ΤClock )

�√.);0.0...(( 3211 αααητ +
ΤClock

0..|| },{ endClockendClock
ττττ ΤΤ

�√.); endτ

τ

endτ

ΤClockτ ΤClockτ

ΤClockτ

Figure 3 Examples of semantics forparallel andrelabeling

6. The Semantics of Process Instantiation

The semantics of theprocess instantiationoperator is
much more complex. It involves fix-point semantics ac-
cording to a seminal work of Winskel [17], which shows
that categories of prime and stable event structures can
be related to a category of Scott domains by adjunctions,
e.g., for process instantiation,P := B, we shall look for
event structures satisfying equations of the formT E =
FB(T E). Let us see partial order relation on event struc-
tures, which is a time extension version of the one from
Winskel [4]:

Definition 3.LetT E i = 〈Ei, ]i,`i, li,Di, Ti〉, thenT E E
T E2 iff

E1 ⊆ E2,

]1 = ]2 ∩ (E1 × E1),
`1= {(X ∩ E1, e) | e ∈ E1 ∩X `2 e},
l1 = l2 ¹ E1,

D1 = D2 ¹ E1,

∀e ∈ E1, T2(X, e) = T1(X ∩ E1, e).

LetT E1£T E2£· · ·£T En be a partial order of〈SES, £〉,
andT E ′1, T E ′2, · · · ∈ SES are upper bounds of the order.
We can constructT E = 〈E, ],`, l,D, T 〉 to be thel.u.b.
(least upper bound) of the chainT E £ · · · £ T En, e.g.,
E = (E′

1 ∩ E′
2 ∩ · · · ) ∪ En, ] = (]′1 ∩ (E × E′

1)) ∪ · · · ,
l = (l′1 ¹ E) ∪ · · · , D = (D′1 ¹ E) ∪ · · · and T =
(T ′1 ¹ E) ∪ · · · . According to the definition 3,T E £

T E ′1, · · · andT E , · · ·£T E . So〈SES, £〉 is ac.p.o(com-
plete partial order). Moreover, it is easy to know that0,
e.g.,〈∅, ∅, ∅, ∅, ∅, ∅〉, is the least element under£. So this
partial order is apointed c.p.o.[19].

Then lettiT E i be the least upper bound under this
partial order,T E1 £T E2 £ · · ·£T En be a chain, the least
upper bound (underE) is as following:

tiT E i , (
⋃

i

Ei,
⋃

i

]i,`,
⋃

i

li,
⋃

i

Di, T )
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))..(..(: 11143 PPP γηβα +=

)(a

)(b

3

14

11

3

14

11

3

3

3

3 3

314

14
11

11

α

α

α

α

α

α
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β
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η

η

η

Figure 4 An example of semantics forinstantiation

with:

`= {(
⋃

j

Xj , e) | ∃k :

∀j ≥ k : Xj `j e ∧Xj+1 ∩ Ej = Xj}
T = {((

⋃

j

Xj , e), t) | ∃k :

∀j ≥ k : Tj(Xj , e) = t ∧Xj+1 ∩ Ej = Xj}
LetF be a function overSES, see the definition of conti-
nuity ofF :

Definition 4.Let 〈SES, £〉 be a pointed c.p.o.and F :
SES → SES. F is continuousiff F is monotonicand
for any chainT E £T E2 £ · · · , we haveE(F(tiT E i)) ⊆
E(tiF(T E i)).

Then let us investigate the process operators., ; ,+, []. Firstly,
we distinguish all action prefix and

√
occurrences by sub-

scription with a Greek letter, let the operator of subscrip-
tion be φ. For instance,P := (t)α.P + β.P becomes
φ(P ) := (t)αξ.Pφ + βχ.Pψ. And secondly, we denote for
operatorop ∈ PA the corresponding counterpart on event
structures byop.

Lemma 1.αξ., +, ‖G, ;, []andφ() arecontinuouson〈SES,
£〉.
Winskel has proven that., ; , +, [], ‖ continue on untimed
event structure in [4]. Therefore, we only need to do some
work to extend them with time, which is similar to [5]. The
proof is omitted without bothering readers.

LetFB be a function overSES with all process opera-
tors introduced before (like., ; , +, . . . ), then the semantics
of process instantiation is as following:

Definition 5.The semantics ofP := B isEJP K , tiF i
B(⊥).

In Figure 4, (a) shows the event structures forFB(⊥)
and (b) depictsEJBK.

2.3. Correspondence With Semantics

It is necessary to prove the consistency between the deno-
tational semantics over event structures and it’s operational
semantics deduced by the inference rules. The general way
is to get the coherence between the two semantics, which
means these two transition systems must be bi-simulative.

Let Ev be the set of events andAδ,τ be a set of actions
subscripted with a Greek letter. Then we can define the
transition between the event structure, e.g., event transition
system:

Definition 6.Anevent transition systemis a quadruple
(Conf(T E), −→, L), that

P
(e,α,t)−−−−→ P ′ with

e ∈ Ev ∧ P, P ′ ∈ Conf(T E) ∧ α ∈ A ∧ t ∈ Ñ,

a transitionrelation;
L = {(e, t) | ∃α ∈ A ∧ P, P ′ ∈ Conf(T E) ∧

P
(e,α,t)−−−−→ P ′}, a set of labels.

LetP be a SystemC behavior,TS(P ) is denoted as the
transition system obtained by applying the inference rules
of Figure 1 to P . On the other hand, the event structure
of P is EJP K. According to definition 6, an event based
transition system fromEJP K could be constructed, e.g.,
ETS(EJP K). These two systems are bisimular:

Lemma 2.∀B ∈ SystemPA, TS(B) and ETS(EJBK)
are bisimular.

We have the detailed definitions and proof, but omit them
in this paper.

3. Formalization of SystemC

Our work is based on the IEEE Standard 1666-2005 ver-
sion of SystemC [3] and to investigate formal semantics
of SystemC, which provides a complete and unambiguous
specification and contributes significantly to the sharing,
portability and integration of various applications includ-
ing simulation, synthesis and especially, formal verifica-
tion.

In order to do the formal analysis and verification, it
is necessary to rewrite the SystemC statements by a for-
mal language. Previously, we study the SystemC by a well-
defined event based sub-set, e.g., SystemCPA [14], which
is similar to K.L. Man’s SystemCFL [9,15,16], but Man’s
article does not include the environment of running pro-
cesses and an event-driven model.

However, the currentSystemC IEEE Standard[3] does
not include the ‘Watching statements’, e.g., local watching
and global watching, have been deprecated. Then it is not
necessary to express the SystemC statements by a specific
operator of process, e.g., the process algebra with timed
extension of equation 1 is enough to rewrite all the state-
ments of SystemC and powerful to cover all main features
of SystemC.
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The syntax described in equation 1 assumes a given
set of actions, containing four kinds abstracted from Sys-
temC:(1) asilentor internalaction denoted byτ , perform-
ing the invisible action doing nothing;(2) non-user de-
finedactions, denoted byANU , includingAssign, Test,
Change, Notify, ∆, Clock⊥ andClock>; (3) user de-
fined actions, denoted byAU , including all actions en-
abling the user defined events; and (4) a special action
δ indicates thesuccessful terminationof a process. Let
A = ANU ∪ AU .

The precedences of the composition operators are, in
descending order of their binding strength:{., ; , +, ‖, []}.
The operators inside the braces have equal binding strength.
In addition, operators of equal binding strength associate
to the left, and parentheses are omitted when they do not
introduce ambiguities.

The above algebraic syntax follows the principle of
compositionality, as a result, the interpretation of each com-
posite behavior expression can be defined as a function
of the interpretation of its constituents, e.g., a complex
SystemC behavior could be gained from composed sim-
ple ones.

For convenience, we use the special predicatesamev

to indicate that the events (Assign, Test or Change) deal
with the same variables:

samev(α1, α2) =

{
true α1, α2 for same variable;
false others.

with α1, α2 ∈ {Assign, Test, Change}.

3.1. Actions

3.1.1. User Defined Actions and Non-user Defined
Actions

User defined actionsmodel the user defined events in Sys-
temC statements, once these actions happen the events oc-
cur. And the names of these actions are the names of the
events with a prefix ‘ud ’. For example, the user defined
eventswrite andread (see bellow) correspond to the ac-
tionsud write andud read.
. . .

sc eventwrite, read;
. . .

Non-user defined actionsare much more complicated:
theAssign action models the assignment statement, hap-
pens while assigning the value of some expression to a
variable (the simple variables and signals); theChange
action will be enabled while some signals are being changed,
monitoring thesensitivity listand system clock (for clocked

2 H : A ∪ {τ, δ} → A ∪ {τ, δ} a relabeling function that
satisfiesH(τ) = τ , H(δ) = δ and forα ∈ A : H(α) 6= τ and
H(α) 6= δ.

thread); theTest action occurs while one condition is sat-
isfied, defined for modeling choice, like the ‘if-then’ state-
ments; theNotify action formalizes the notification state-
ments, happens once this statement occurs; the∆ action
occurs while one delta-cycle finish; and theClock> and
Clock⊥ are used to model the system clock, representing
the clock positive and negative which may also be included
in the sensitivity list (seeFigure5 line 11 andFigure8 line
10).

According to SystemC,Assign, Change, Test, Clock>
andClock⊥ are relevant: for a concrete variable, once one
Assign happens, the correspondingTest is enabled, oc-
curence of two differentTest actions lead to aChange be
enabled (for monitoring sensitivity list). Moreover,Notify
is relevant to∆ (see section 3.2).

For example, inFigure9,Assignload=true (line 5) and
Assignload=false (line 8) do not only enable the actions
Testload=true andTestload=false respectively, which are
used for determining the condition inFigure 6 line 4, but
also the actionChangeload (although this action is use-
less).

3.1.2.δ andτ

For the efficiency and clarity of studying systems, researchers
always reside in a specific abstraction level. In fact, it is
impossible to model a system without any abstraction. In-
visible action,τ , is from a lower abstraction of system,
which is silent and invisible to the higher researched level.
In the lower level,τ may be plentiful, but system will al-
ways perform some kinds of invisible actions before halted.
In this article,τ is only a placeholder in most cases if not
specially described. Moreover, for the clarity and vivid-
ness, we sometimes add a suffix forτ , for exampleτ∞
which representsτ being enabled after infinite time delay.

Similar to [5],δ is a special action, indicating thesuc-
cessful terminationof a process.

3.2. Processes

Of course, the processes defined in the kernel subset of
SystemC contain all kinds of processes in SystemC and
cover most of its statements. In this section, we introduce
the unified way of formalizing the processes of SystemC
and the simulation environment by process algebra theory.

The processes of a system usually do not run alone,
but adheres to their surrounding environment. We believe
the study of formalization of some concrete systems must
involve both the processes and their adjacent environment.
Here, the environment of processes of SystemC is essen-
tially the simulation environment, which includes system
clock and other things needed, for example, during a run-
ning of a process,Assign happens, the correspondingTest
triggered and maybe theChange for the same variable
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also enabled, all of which would be useful for the remain-
ing behaviors of the processes or even other parallel pro-
cesses. AlthoughTest andChange are not the real ac-
tions abstracted from SystemC, but actually needed for re-
acting with the simulation environment.

Let us continue fromaction prefixand system clock,
the basis for constructing process, whose timing proper-
ties are well represented by suffix. For an actionα and
a behaviorB, action prefix(t)α.B denotes, aftert time
units since the start of the system, a behavior which may
engage inα and after which it behaves likeP . Then the
simplest process may be(t)α.

√
and all complex ones are

constructed from the simple with process operators in a
compositional way. Then the system clock is denoted as
Pclock with Pclock := Clock>.Clock⊥.Pclock.

Like other hardware description languages, such as Ver-
ilog and VHDL, parallel, sequentiality, branch (choice) and
loop are the basic structures for a process of SystemC. Let
us depict these keys gradually.

SystemC deals with the variables and their values es-
sentially, of which the assignments and judgements are
often difficult to process forevent structurebased mod-
els. Unlike value-passing in CCS [20] or other similari-
ties, we add no individual and specific mechanism to pro-
cess algebra for this problem, but only several related ac-
tions and the environment. For simplicity, we only con-
sider the value of expression of an assignment statement,
which could be vividly formalized asAssignAsgn exp (only
Assign for simplicity here). Now assume an assignment
statement was met afterP1 was performed, this behavior
could be formalized asP1; (Assign.

√
), but its simulation

environment is much more complicated. OnceAssign oc-
curs,Test for this assignment is triggered (section 3.1.1),
and in order to ensure two differentTests could enable the
Change for the same variable,relabelingoperator should
be applied, so a complete form isP := P1;Assign.

√
andenv = τ ‖{Clock>,Clock⊥} Pclock ‖{Assign} (Assign.
Test.

√
[H]), thatH(Test′) = Change ∧ A(Test.0) 6=

A(Test′.0) ∧ samev(Test, Test′) ∧ (Test′ ∈ A(env))
andH(Test) = τ ,A(Test.0) = A(Test′.0), and
samev(Test, Test′), (Test′ ∈ A(env)).

After investigating the example above, we say the for-
malized process contributes to both the process itself and
the environment, as illustrated in the following snippet of
SystemC code:
P1 · · ·

if (load){
countval=din;

} else{
countval=countval+1;

}
dout=countval;

P2 · · ·
Formally, the above code show that an assignment oc-

curs after a choice, which could be modeled with sequen-
tial processes as a whole. The non-deterministic choice op-
erator here reacts with the environment. The formal repre-
sentation of the behavior of the above code snippet could

be:P := P1; (η.α1.0 + α2.0); α3.0;P2 andenv =
τ ‖{Clock>,Clock⊥} Pclock ‖ envp1 ‖{α1} (α1.γ1.0[H1])
‖{α2} (α2.γ2.0[H2]) ‖{α3} (α3.γ3.0[H3]) ‖{η} (ζ.η.0) ‖
envP2 , that

Hi(Test) = Changecount val ∧ A(γi.0) 6= A(Test.0) ∧
samev(γi, T est) ∧ Test ∈ A(env) with i = 1, 2

H3(Test) = Changedout ∧ A(γ3.0) 6= A(Test.0) ∧
samev(γ3, T est) ∧ Test ∈ A(env)

Hi(γi) = τ ∧ A(γi.0) = A(Test.0) ∧ samev(γi, T est) ∧
(Test ∈ A(env)) with i = 1, 2, 3.And

α1, α2, α3, ζ, γ1, γ2, γ3 andη be aliases for
Assigncount val=din, Assigncount val=count var+1,
Assigndout=count, Assignload=true, Testcount val=din,
Testcount val=count var+1, Testdout=count,
Testload=true separately.

Again, let us investigate the code for loop structure:
P1 · · ·

while(true){
load=true;
din=0;
P2 · · ·
load=false;
P3 · · ·

}
P4 · · ·

In general, the loop repeats some behaviors until a spe-
cific condition is not satisfied, for whichProcess instan-
tiation would be used. Because theP4 is behind a loop
whose condition will be always true, it should be ignored
for simplicity. Now the behavior of the whole codes above
will be P = P1;P ′ with P ′ = ε1.0; ε2.0;P2; ε3.0;P3;P ′.
And the environment,env = τ ‖{Clock>,Clock⊥} Pclock ‖
envP1 ‖ envP ′ with envP ′ = τ ‖{ε1} (ε1.ε1.0[H1]) ‖{ε2}
(ε2.ε2.0[H2]) ‖ envP2 ‖{ε3} (ε3.ε3.0[H3]) ‖ envP3 ‖
· · · , which will collect theTest andChange actions gen-
erated byP ′, and

Hi(Test) = Changecount val ∧ A(εi.0) 6= A(Test.0) ∧
samev(εi, T est) ∧ Test ∈ A(env) with i = 1, 2,

H3(Test) = Changedout ∧ A(ε3.0) 6= A(Test.0) ∧
samev(ε3, T est) ∧ Test ∈ A(env), and

Hi(εi) = τ ∧ A(εi.0) = A(Test.0) ∧ samev(εi, T est) ∧
(Test ∈ A(env)) with i = 1, 2, 3.And

ε1, ε2, ε3 andε1, ε2 andε3 be aliases for
Assignload=true, Assigndin=0, Assignload=false and
Testload=true, Testdin=0 andTestload=false separately.

Although action prefix, parallel, sequentiality, branch
(choice) and loop consist of the cornerstones for construct-
ing the processes of SystemC, most advantages, conve-
niences and plentiful properties would be missed if we stop
here. Let us show the specifics.

The first thing is how to deal with delta-cycle, which
involves the simulation procedure of the SystemC. The ba-
sic simulation model is(P1 ‖ · · · ‖ Pn) ‖ env, and regard-
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less ofenv, if all processes are successfully terminated ex-
cept for some delta-cycle notifications, a new delta-cycle
will be advanced, e.g.,Pis are synchronous on action∆
andNotify enables state of∆ in Pi. So our method is to
concatenate everyPi with ∆.

√
, as well as makeNotify

enable the∆ in Pi. Now, the simulation model would be
(P1; ∆.

√ ‖{∆} · · · ‖{∆} Pn; ∆.
√

) ‖ env.
Sensitivityis a very powerful and interesting thing in

SystemC. Dealing with the static sensitivity list of method
process is different from thread process (clock thread pro-
cess), both of which involve the user defined events,Change
action, system clock and a process. As for method process,
when triggered, it executes from beginning to end, then re-
turns control to the kernel, and cannot be terminated, e.g.,
once a sensitive event occurs, a monitoring method pro-
cess instance is triggered, and then executes from begin-
ning to end. Intuitively, if eventeα is in the sensitivity list
of method processP , α will trigger P onceα is enabled,
however, different occurrences ofeα may activateP many
times, so the way of formalizing this property of SystemC
involves the process instantiation as well. Let us show the
form, P ′ := τα.P ; τend.

√ ‖{τα,τend} (τα.τend.P
′), P ′

(with env = τ ‖{Clock>,Clock⊥} Pclock ‖{τα} (α.τα.0))
represents the processP with a sensitive actionα, and the
conjunction of relabeling function and process instantia-
tion makesP be triggered one by one. So assume a method
processP1 with the sensitivity list{e1, e2, eChange} (sec-
tion 3.1.1), say onceud e1, ud e2 or Change happened,
the processP1 runs, soP = (τud e1.0 ‖ τud e2.0 ‖
τChange.0); P1; τend.

√ ‖{τud e1,τend} (τud e1.τend.P )
‖{τud e2,τend} (τud e2.τend.P ) ‖{τChange,τend}
(τChange.τend.P ) is the formalization of the process with
sensitivity list (envP is not shown here for simplicity). But
a function associated with a thread or clocked thread pro-
cess instance is called once and only once by the kernel,
except when a clocked thread process is reset [3], so the
form of the thread processP with sensitivity list{eα} will
be simply likeα.P , and clocked thread process a normal
thread process only with sensitivity list{eClock> , eClock⊥}.

Notification, waiting and cancelstatements are all in-
volved in theuser defined events, formalizations of which
are shown below.

3.2.1. Notification Statements

There are three kinds of ‘notification statements’ used to
enable user defined events:
1 event.notify ();
2 event.notify (time);
3 event.notify (SC ZERO TIME );

The above SystemC statements are related toNotify
actions. Each of them enables one of theuser defined ac-
tions. Line 1 shows event will be enabled immediately, line
2 shows during some time units, the event will be enabled
and line 3 the action will be enabled in the next delta-cycle,
so they can be modeled as:

1.P := P1; (Notify.0); P2 with
env = τ ‖{Clock>,Clock⊥} Pclock ‖{Notify}
(Notify.ud e.0)

2.P := P1; (Notify.0); P2 with
env = τ ‖{Clock>,Clock⊥} Pclock ‖{Notify}
((t)Notify.ud e.0) and

3.P := P1; (Notify.0); P2 with
env = τ ‖{Clock>,Clock⊥} Pclock ‖{Notify}
(Notify.∆.ud e.0)

with P1, P2 be the behaviors before and after the notifica-
tion statement.

3.2.2. Cancel Statement

There is only one kind of ‘cancel statement’ used to reject
the notification.
event.cancel();

Thecancelstatement can be formalized as:P := P1; (τ∞.0); P2

env = τ ‖{Clock>,Clock⊥} Pclock ‖{ud e} ((∞)τ∞.ud e.0).
Note: only the timed notification (line 2 in previous figure)
can be canceled.

3.2.3. Wait Statements

Formalizing the ‘wait statements’ involvesChange action
and user defined actions. Let us show the syntax of ‘wait
statements’,
1 wait(time);
2 wait(event);
3 wait(event1| event2);
4 wait(event1& event2);
5 wait(time, event1| event2);
6 wait(time, event1& event2);
7 wait();

‘Wait statements’ can be easily formalized. Intuitively,
in line 5, if one of the events occurs during the time units
since the start of the system or after this time unit elapses,
the process would be resumed; likewise, while all of the
events occur or time elapse, process is resumed in line
6. Line 1, 2, 3, 4, are similar without time constraints.
The statement in line 7, represents ‘the process shall be
resumed on the static sensitivity, in the absence of static
sensitivity for this particular process, the process shall not
be resumed again during the current simulation’ [3]. Some
Change actions monitor the sensitivity list of a process,
the relation between these actions is disjunct, so once any
Change is enabled the process resumed. SupposingP1

andP2 be the formalism of statements before and after a
wait statement, then each of the statements listed in above
box can be formally expressed by the followings:

1.P1; (t)τ.0;P2,
2.P1; (τud e.0 + τ∞.0);P2 with

env = τ ‖{Clock>,Clock⊥} Pclock ‖{τud e} ud e.τud e.0
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//count.h
1 # include “systemc.h”
2 SC MODULE (count){
3 sc in <bool> load;
4 sc in <int> din;
5 sc in <bool> clock;
6 sc out <int> dout;
7 int countval;

8 void countup();

9 SC CTOR(count){
10 SC METHOD (countup);
11 sensitivepos<< clock;
12 }
13 };

Figure 5 count.h

3.P1; (τud e1.0 + τud e2.0); P2 with

env = τ ‖{Clock>,Clock⊥} Pclock ‖{τud e1}
ud e1.τud e1.0 ‖{τud e2} ud e2.τud e2.0

4.P1; (τud e1.0 ‖ τud e2.0 + τ∞.0); P2 with

env = τ ‖{Clock>,Clock⊥} Pclock ‖{τud e1}
ud e1.τud e1.0 ‖{τud e2} ud e2.τud e2.0

5.P1; (τud e1.0 + τud e2.0 + (t)τ.0); P2 with

env = τ ‖{Clock>,Clock⊥} Pclock ‖{τud e1}
ud e1.τud e1.0 ‖{τud e2} ud e2.τud e2.0

6.P1; (τud e1.0 ‖ τud e2.0 + (t)τ.0); P2 with

env = τ ‖{Clock>,Clock⊥} Pclock ‖{τud e1}
ud e1.τud e1.0 ‖{τud e2} ud e2.τud e2.0

7.P1; (τChange1 .0 + · · ·+ τChangem .0); P2 with

env = τ ‖{Clock>,Clock⊥} Pclock ‖{τChange1}
Change1.τChange1 .0 ‖ · · · ‖{τChangem}
Changem.τChangem .0

for τChangei monitor the sensitivity list (if the posi-
tive or negative clock wedge is monitored,τClock> or
τClock⊥ may be needed).

4. Case study

We demonstrate how to use event structure to represent
and deduce SystemC behaviors by the following case study.
These codes were first seen in [9]. Let us show the Sys-
temC codes (SeeFigure5, 6).

Actually we have shown (the part of) the formal spec-
ification of above codes in section 3.2 here the complete
version can be:P := τClock> .P1; τend.

√ ‖{τClock> ,τend}
(τClock> .τend.P ) with

P1 := (η1.α1.0 + α2.0); α3.
√

envP = τ ‖{τClock>} (Clock>.τClock> .0) ‖{α1}
(α1.γ1.0[H1]) ‖{α2} (α2.γ2.0[H2]) ‖{α3}
(α3.γ3.0[H3]) ‖{η1} (ε1.η1.0) ‖ · · ·

//count.cc
1 # include “systemc.h”
2 # include “count.h”
3 void count::countup( ){
4 if (load){
5 countval=din;
6 } else{
7 countval=countval+1;
8 }
9 dout=countval;
10 };

Figure 6 count.cc
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Figure 7 Event structure of count

that

Hi(Test) = Changecount val ∧ A(γi.0) 6= A(Test.0) ∧
samev(γi, T est) ∧ Test ∈ A(env) with i = 1, 2

H3(Test) = Changedout ∧ A(γ3.0) 6= A(Test.0) ∧
samev(γ3, T est) ∧ Test ∈ A(env)

Hi(γi) = τ ∧ A(γi.0) = A(Test.0) ∧
samev(γi, T est) ∧ (Test ∈ A(env)) with i = 1, 2, 3

( Let α1, α2, α3, γ1, γ2, γ3 andη1 be aliases for
Assigncount val=din, Assigncount val=count var+1,
Assigndout=count, Testcount val=din,
Testcount val=count var+1, Testdout=count, and
Testload=true.)

Similar to section 2.2, denotational semantics ofP may
be depicted by a figure. Moreover,P contains the process
instantiation operator, which makes the figure much more
complex. We describeP in Figure7, but the basic version,
e.g.,FB(⊥) for P , can be found inFigure3.

Unabriged SystemC codes not only involve the system
descriptions (like inFigure 5 andFigure 6), but also the
test-bench.Figure 8 andFigure 9 show test-bench codes
of the above descriptions.

The formal specification of the above test-bench part
is Q = τClock> .Q1 (pictured inFigure 10, (a) forFB(⊥)
and (b) forQ) with Q1 = ε1.0; ε2.0; (Clock>.0+(∞)τ∞.0);
ε3.0; (Clock>.0 + (∞)τ∞.0); Q1, and the environment,
envQ = τ ‖{τClock>} (Clock>.τClock> .0) ‖ env′Q with
env′Q = τ ‖{ε1} ε1.η1.0[H1] ‖{ε2} ε2.η2.0[H2] ‖{ε3}
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// count sim.h
1 # include “systemc.h”
2 SC MODULE (countstim){
3 sc out <bool> load;
4 sc out <int> din;
5 sc in <bool> clock;
6 sc out <int> dout;
7 void stimgen( );

8 SC CTOR(count stim){
9 SC THREAD (stimgen);
10 sensitivepos(clock);
11 }
12 };

Figure 8 count sim.h

// count sim.cc
1 # include “systemc.h”
2 # include “count stim.h”
3 void countstim::stimeg( ){
4 while(true){
5 load=true;
6 din=0;
7 wait();
8 load=false;
9 wait();
10 }
11 };

Figure 9 count sim.cc
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Figure 10 Event structure of countsim

ε3.η3.0[H3] ‖ · · · , and

Hi(Test) = Changecount val ∧ A(ηi.0) 6= A(Test.0) ∧
samev(ηi, T est) ∧ Test ∈ A(env) with i = 1, 2

H3(Test) = Changedout ∧ A(η3.0) 6= A(Test.0) ∧
samev(η3, T est) ∧ Test ∈ A(env)

Hi(ηi) = τ ∧ A(ηi.0) = A(Test.0) ∧ samev(ηi, T est) ∧
(Test ∈ A(env)) with i = 1, 2, 3

(Let ε1, ε2, ε3 andη1, η2 andη3 be aliases for
Assignload=true, Assigndin=0, Assignload=false and
Testload=true, Testdin=0, Testload=false.)

Then the formalization for the whole codes will be
B := P ; ∆.

√ ‖{∆} Q; ∆.
√ ‖ env with env equals to

∞τ

1ε 2ε

∞

τ

∞τ τ

3ε

∞

ΤClockτ
ΤClockτ

ΤClock

⊥Clock

⊥Clock
2η 3η

1α
1η

2α 3α

δ

τ

endτ

1γ 3γ

1γ

ΤClockτ

ΤClockτ

ΤClockτ

ΤClock

Figure 11 Event Structure of the case-study

τ ‖{Clock>,Clock⊥} Pclock ‖ envP ‖ envQ. BothP andQ
involve the process instantiation, as a result, the scale of fi-
nal event structure is infinity, we depict the event structure
in Figure11.

Then, let us introduce the operational semantics of this
case-study, we do not elaborate the verbose form ofB, but
show a typical form to depict the way of using transition
rules to deduce a system. Let us use the follows as an ex-
ample:Q1 (Q1 = ε1.0; ε2.0; (Clock>.0 + (∞)τ∞.0);
ε3.0; (Clock>.0+(∞)τ∞.0); Q1). We first equip process
instantiationQ1 and all occurrences of action-prefix and√

with unique identifiers (Section 2.1), letQ1 := B that
B = ε1θ

.0; ε2κ .0; (Clock>.ξ.0 + (∞)τ∞ρ.0); ε3λ
.0;

(Clock>µ .0+(∞)τ∞ν .0); Q1φ
. Then we can have the fol-

lowing derivation:
Q1

(θ,ε1,0)−−−−−→
0

[ε2κ .0; (Clock>.ξ.0 + (∞)τ∞ρ.0); ε3λ
.0;

(Clock>µ .0 + (∞)τ∞ν .0); Q1φ
](rule 2)

(κ,ε2,0)−−−−−→
0

[0[(Clock>.ξ.0 + (∞)τ∞ρ.0); ε3λ
.0;

(Clock>µ .0 + (∞)τ∞ν .0); Q1φ
]](rule 2)

(ξ,Clock>,2)−−−−−−−−→
2

[0[0[ε3λ
.0; (Clock>µ .0 + (∞)τ∞ν .0);

Q1φ
]]](rule 3.1)

(λ,ε3,2)−−−−−→
0

[2[0[0[(Clock>µ .0 + (∞)τ∞ν .0); Q1φ
]

]]](rule 2)
(µ,Clock>,5)−−−−−−−−→

3

[0[2[0[0[Q1φ
]]]]](rule 3.1)

(φθ,ε1,5)−−−−−→
3

[0[t1 [0[0[φ(0[Q1φ
])]]]]](rule 7.2)

(φκ,ε2,7)−−−−−−→
3

[0[t1 [0[0[φ(2[0[Q1φ
]])]]]]](rule 2)

· · ·
Here we have introduced both the denotational seman-

tics and operational one of the case study, we do this in
a unified way, i.e., formalizing the codes and showing a
uniform denotational semantics and operational semantics
which do not distinguish processes and simulation envi-
ronment.

c© 2012 NSP
Natural Sciences Publishing Cor.
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5. Conclusion

In this article, we have introduced the way of rewriting
SystemC statements by process algebra and a unified for-
mal framework of simulation, and the event structure based
denotational, operational semantics and the correspondence
between them. At the end of this paper, we presented a case
study to show a way to model real SystemC codes reason-
ably.

The work about the formalization of SystemC dose not
end. Our future research will focus on two valuable issues:
1. the action refinement for the top-down design;2. the
(event structure based) verification of unified process and
environment.
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