Appl. Math. Inf. Sci.6, No. 2, 345-356 (2012) £ .50\ 345

Applied Mathematics & Information Sciences
An International Journal

© 2012 NSP
Natural Sciences Publishing Cor.

A Mathematical Characterization of System Design and
Modeling

Xibin Zhad, *Anping Hé-3, Jinzhao W&*, Guowu Yang, Yi Yand, Ning Zhod, Shihan Yang Lian Li?

! Key Laboratory for Information System Security of Ministry of Education, School of Software, Tsinghua University, China.
2 Guangxi Key laboratory of Hybrid Computational and IC Design Analysis, Naning, China.

3 School of Information Science and Engineering, Lanzhou University, China.

4 School of Computer and Information Technology, Beijing Jiaotong University, China.

5 School of computer Science and Software Engineering, University of Electronic Science and Technology, China.

Published online: 1 May 2012

Abstract: SystemC is an emerging standdardware description languager system-level modeling and design. Formal semantics

could give its meaning in a mathematically rigorous and unambiguous way. In this paper, we formalize SystemC both from processes
and simulation environment by process algebra, which enables that deduction and verification of the whole simulation procedure are

in an integrated and convenient manner. Meanwhile, in order to accommodate event-driven and concurrent properties of SystemC,
we adopt event structure characterized by true concurrency, as semantic model of both SystemC and its simulation environment for
denotational semantics and operational semantics, as well as demonstrate the correspondence between them. As a result, we propose a
unified framework for formalizing SystemC.

Keywords: Denotational semantics, Operational semantics, Bi-simulation, Process algebra, Timed stable event structure.

1. Introduction Although SystemC comes with a well-writteanguage
Reference ManudB] and a reference implementation of
the simulator, the documentation leaves some open ques-

. - tions w.r.t. the precise and rigorous meaning. However, a
In hardware design pr ocedures, hardware despnpnon Ianprecise formal semantic of SystemC is mandatory for var-
guagesKiDLs) are typically used to express designs at var-;

ious levels of abstractioDLs are high level program- ious applications in simulation, synthesis and formal veri-

ming lanauages. Whose proaramming constructs usuallfication, provides a completely unambiguous specification
con'?ain 0?‘ asgsi ﬁments cl?ongitions it%rations and a ro)énc the language, and contributes significantly to the shar-

. SIg i ’ PP ing, portability and integration of various applications. On
priate extensions for real-time, concurrency and data struc;

tures being suitable for modeling hardware. SysteiiL the other hand, compared with otéDLs, e.g., Verilog

R ; and VHDL, there exist some new and interesting program-

gﬁr\:el%%edugyeobp:slgﬁt%zf IRI';IT?S(\:I/§|S(C'[)|’§E CSI),SItSer?] r:tog}_ming features of SystemC: processes trigger events ac-
g languag . o y tively instead of generating by the changes of states (e.g.,
ferdent Ifevels odf abstractlonafllls the.fg;/ap t;etween h?rd\évarglerilog) events represent some general conditions during
and software design, provides a unifying language for hard; ' e °
ware/software specifications, and becomes an IEEE stant—h e execution of program, and can be notified and can

dard [3] for system level modeling and design. S stemcceled on many separate occasions. There are three kinds
: ys : . 9 gn. SYsSeML ¢ ovent notifications: immediate event notification, delta-
contains C++ libraries and simulation kernel for creating

: : . . 2 cycle delayed notification and timed notification. Timed
behavioral and reg|ster-transf¢r level designs and prov'deﬁotifications can be canceled via ‘cancel’ statements be-
a common development environment needed to suppo

I . o
software engineers working in C/C++ and hardware en_l‘tore they are triggered. Delayed natifications on the same

gineers working irHDLs such a&HDL, Verilog, etc event override each other and only one delayed notification

* Corresponding author: e-mail: hapetis@gmail.com

© 2012 NSP
Natural Sciences Publishing Cor.

346 % NSy Xibin Zhao et al : A Mathematical Characterization of System Design and Modeling

survives. All of these new features make it worthwhile to Moreover, previously, we have studied the SystemC by

give a precise semantics of the language. a well-defined event based sub-set of SystemC language,
Since SystemC is essentially an event-drivHDL, it e.g., System&" [14], which is similar to K.L. Man’s

is convenient and natural that the semantic model couldSystemCe [9,15, 16], but Man’s article focuses on SystefhC

reflect these interesting features, fortunately, event strucbut not the environment of running processes and event-

ture [4,5] answers precisely to our need. Event structuredriven model.

is capable of specifying causality, concurrency and choice

between events. It has shown its strength in the construc-

tion of parallel and distributed systems, as well as in the1 2. Notations

initial steps of asynchronous circuit design. It was used

successfully for the analysis and synthesis of digital sys4n this article we denote an action with lower Greek letter,
tems [6]. Moreover, it is easy to do action refinement oper-and the corresponding eventisvith a suffix of this letter.
ation [7] on event structures, which is congruent with the |n order to reflect the essentials of the user defined actions,
top-down design of SystemC. Meanwhile, partial order re-including Assign, Test, Change, Notify, Clockt and
duction over it also facilitates the verification. CZOCICL are also used. Moreover, the Capita| |etté>r,$2

Our research focuses on a unified way to study Sysand B are used to denote the names of processes or be-
temC and its simulation environment for two reasons. Firstlyaviors andz, E and X for set. We use letters with math
according to the point of formal specification, processesstyle, e.g.> and.4, to denote the special set, mapping and
and attached environment could not be split (as mentionedg on.
in [8]). Process is the cornerstone of semantics of a lan-
guage. Environment shows the dynamic occasion of pro-
cesses. Therefore it is a prerequisite to investigate botI%_& Organization
processes and the environment. For SystemC, the unifie

way makes the simulation exact, simple and optimized. The paper is organized as follows: In Section 2, we show
__Secondly, compared to some well-known model checkgome pasic notations and definitions of timed stable event
ing successes like the JAVA-PATHFINDER, why does pro- gy ctyre, process algebra and its semantics. In Section 3,
gramming ’I)anguage, like C and C++ are more difficult 10 e gepict the syntax of SystemC in detail and propose a
be verified? Because Java programming language is coMjpitied modeling framework for both processes and simu-

piled to the same byte code for Java virtual machines runyaiinn environment. We conduct a case study in Section 4
ning on all kinds of operation systems. Java essentially; 4 conclude in Section 5.

encapsulates both the executable codes and information

of environment, which simplifies the model-checking pro-

cess. However, the executable codes for C and C++ depe . .

on their compilers and operating systems. nf Real-Timed Extension of Stable Event

In this paper, we study SystemC to precisely obtain aStructures and Process Algebra

unified semantic of both SystemC and its simulation envi-

ronment with a well-defined semantic model, which is the Event structurés model of processes as events constrained

first step to find an effective and applied way of verifica- by relations of consistency and enabling [4], which allow

tion of SystemC. modeling of systems by specifying branching structure,
causal ordering and concurrent running. An event structure
is a set of events together with relations of partial-order
and conflict. The partial-order relation models causality,

1.1. Related work whereas the conflict relation expresses alternative choices
between events. Two events which are neither causally de-

Although there are some works on formal semantics [9]pendent nor in conflict may occur concurrently. In this

and algebraic laws for the hardware modeling languagesense, event structures provide explicit and separate rep-

[10] by far, to the best of our knowledge, there is no pub-resentations of causality, choice and concurrency [17].

lication concerning the unification of processes and simu- Stable event structuragere introduced by Winskel to

lation environment of SystemC. overcome the unigue enabling problem of prime event struc-

The simulation semantics of SystemC in the form of tures [4]. This kind of event structures has an enabling re-

distributed Abstract State Machind$M) specifications lation, denotedt, relating a (usually finite) set of events to

and the denotational semantics for a synchronous subsetsingle event. The interpretation &f + e for a setX of

of SystemC were studied in [11] and [12] respectively. In events and an eventis thate is enabled if all events ikX

[13], the SystemC Process State Machines were describethve occurred. Events are the occurrence of actions, then

as a variation of th&/ ML method state machines. In [10], a event structure are always involved a well-defined action

the event-driven properties, operational semantics and aket, letA be the set.

gebraic law of SystemC were well studied, but the envi- An event structure is defined as a tugle= (E,,+

ronment was not involved.), where E is a countable set of events;C E x E is

(© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 2, 345-356 (2012) / www.naturalspublishing.com/Journals.asp % E.S =y 347

a symmetric and irreflexive relation, tlvenflict relation
FC Conx E is anenabling relatiorsuch thatX + eAX C
Y € Con = Y F e (hereCon is the set of finite conflict-
free subsets o, i.e. those finite subsef§ C F for which
holds:Ve, e’ € X : =(ete’)). An event structure is called
stableif X - eAY FeAXUYU{e} € Con = XNY Fe.
The setCon f(€) of configurations of consists of those
C C E which are secured/e € C : F{ep,...,e,} CC
s.t.(e, =e)AVi<n:{ep,...,e;—1} F e;) and conflict-
free (Fe,e’ € C': —(efle))).

dots and lines respectively, and zero time unit delay is
usually omitted. So the event structure picturedrig-
ure 4 (a) can be described &%, t,+,1,D,7) with E =
{eareprenexhr b = {(ep,eq)}, F= {({ea} €5), ({eal,
en):({enhen) i b = {(ea,). (e5,8). (eg. 1), (4,7},

= {(eou 3)7 (657 14)a (e’W 11)} and7 = (Z)

Behaviors of system specified byZe€ are described
by explaining which subsets of events constitute possi-
ble (partial) runs of the represented system. These subsets
are modeled by sequences of timed events terimaees

Since the time-related properties, e.g., time-delay, isTraces are sequences tihed eventso = (e, 1) - --

essential duringsystemGsimulation, we will extend the

(en,tn), Wheret; < ty < -+ < ¢, With (e;, ¢;) show-

stable event structure with a real-time extension. Assuming e; occurred at time;. Let [o] denote the sequence of

ing a global clock [5] which approximates the time of ev- events ino without time, i.e.[0] = e; - --e, , [o] the set
ery snapshot by a natural number. In our model, events aref events injc] and@ the set of timed events. We usg

attached with time delays and the causalities. This kind oo denote a trace of lengthi.e.o; = (ey,t1)--- (es, ;)

extension can be interpreted as: an event with a delaly
be not bundled by the time constraint at the tinsence the
start of the system and may happen at any time ftdqih
enabled) and a causality witldelays enabled evettime

Now, e is enabled aftefo] if there exist certain events that
occurred earlier with the flow relation pointing & and
meanwhilee should not in conflict with other earlier events

in [o], thatisien([o]) = {e | e € CFL([o]) Ae & [o] A

units. Note: the occurrences of events themselves take NBX C [o] : X F e)}. Lettime(o, e) denote the minimal

time, i.e. events happen ‘instantaneously’ [5].

time instant from whick can occur, two aspects should be

LetN be the set of natural numbers, then time domaincgnsidered(i) e's absolute delayD(e), (ii) the time rela-

can be denoted by = N U {oo}, whereco > n for any
n € N. We useC'F'(S) to denote that all the events in set
S is conflict-free.

CF(S)=Ve,e' € S:(e#¢€') = —(efe)
andCF L(S) to the set of events that conflict wift
CFL(S)={e|lee EAe € SA-CF({e,e'})}

Definition 1.A timed event structure is a septupl&€ =
(E,t,F,1,D,T) with:

e [/, a set ofevents

ot C E x FE, the (irreflexive and symmetricpnflict
relation;

e -C P(E) x E, theenablingrelation;

e | : E — A, theaction-labelingunction;

e D : E — N, theevent delayfunction;

e 7 :F— N, thecausality delayunction.
such that

1L.YXCE,eecE: XFe= CF(XU{e});

2VX,)Y CEe€ E: (X FeANY Fe =
(-CF(XUY)vX=Y).

In the following, we will consider only timed stable event
structure and call it simply event structure.

The event structur@ € = (E,4,+,1,D,T) hascor-
rect timingiff for any e € EandX F e, 7(X) < D(e).

tive to all e’s causality, sdime(o;,e) = Max({D(e)} U
H}) with H = {t + ;|]3X C [0] : T(X,e) = t}. Let
[0i—1] = e1---e;—1 be the(i — 1)-th prefix of[s], so the
definition of trace is as following:

Definition 2.Atraceof timed event structuréé = (E, £,
,1, D, T)isasequence of timed eventée,t1) - - - (en, tn)
withe;, € E,t; € Nandi € N, satisfying

eey e, With e; € en([o;_1]);

o Vi : (e;) = (t; = time(oy,€;));

oVi,j : (i<j)= (t: <tj).

A state of an execution of a timed event structiigis
called atimed configuratiori’'C = 7. LetCon f(7E) de-
note the set of timed configurationsDE. Say that there is
a transition from a timed configuratidnC' to a timed con-
figurationTC’ and writeTC — TC' iff TC C TC'. ltis
easy to see that includes a partial order offon f(7E).
Moreover, the class of this structure is denotedsdy.S
for convenience.

2.1. Process Algebra

We use theprocess algebraas the language to express
behaviors of SystemC and its environments. The process
algebra in this article is a time extension of LOTOS[18],

In what follows, only timed event structures with correct which is a standard language without data types and value

timing are considered.

passing. Two timed features are attached, e.g., delay func-

Moreover, event structure can be depicted by figurestion restricting the occurrence time of atomic actions and
in which events are denoted by closed dots, conflict relatransition between events, this two delay constraints are
tions by a dotted line, enabling relations by drawing anthe most important to main features of SystemC, includ-
arrow from each event iX to e and connecting all arrows ing notifications, notification canceling, notification over-
by a small line, action labels are given near the dot, eventsiding, event waiting, time delaying, sensitivity lists, con-
and causality delays are depicted near the correspondingurrent processes and delta-cycle. The syntax of (timed)

© 2012 NSP
Natural Sciences Publishing Cor.

348 Fron\

Xibin Zhao et al

: A Mathematical Characterization of System Design and Modeling

process algebra is as following:
P:=0 | \/ | (t)Oé.Pl | P1 +P2 | Pl;PQ |

Pille P, | PH] | B (e
A set of event based inference rules are depictelliga
ure 1, which is also called atructural operational seman-

tics (SOS).P; ACLUN P/, denotes that at timeg behavior
Py can perform an eventlabeled with actiorw, and sub-

sequently evolve intd/. Note an auxiliary construét[P]
(also used in [5]) shows iP performs event at timet,

thent'[P] performs¢ at timet + ¢/

2.2. The Denotational Semantics

¢ ¢ &8
a,.0 a,.0 ag.y
h a, h a,
>
VG : :
24) 3 o
[]
7,.0,.0 n.a,.0+a,0 (7.0,.0+a,.0), a5y

Figure 2 Examples of semantics faction-prefix sequential
andchoice

with:
ﬁ = fjl U ﬁQ U {ant(’]—gl) X ZTLZt(TEQ)}

The causality-based denotational semantics relates the syNoteé: The choice between processes is resolved in interac-
tax of process algebra with event structure directly. Thistion with the environment.

type of semantics can give a rigorous and unambiguous in-

4. The semantics of sequentia) (

terpretation, and then show the true-concurrency charactef[Py; P,] £ (Ey U Ey, 8,-,1,D, T)

essentially.

Let init(7) denote the set of initial events Gf¢,
exit(T E) the set of successful termination evepts; (7€)
that events with non-zero delaiit(7€) £ {e € E |
“3X CE:XFe)},exit(TE) £ {ec E|l(e) =3}
andpos(T&) = {e € E | D(e) # 0}. Letpin(TE) =
pos(TE) Uinit(TE). Functionf]] (also adopted in [5])
associates each process teFine P with an element of
SES,e.q.£]] : P+~ SES. Then the causality based
denotational semantics can be defined vfth] respec-
tively. Firstly, letE[P] = T&; = (Ei, 4i,Fi, 1, Di, o),
fori = 1,2 with E; N E, = (. We show the denotational
semantics of syntax of PA step by step:

1. The semantics of deadlocR), successful termina-
tion (/) and relabeling {7) are self-explanatory:

E[0] £ (0,0,0,0,0,0).

EIV] = (E,0,0,1,D,0)

thatE = {es},1 = {(es,9)}, andD = {(es,0)}. And
E[P[H]] & (E,4,-,Hol,D,T)

‘o’ is operator for composition of functions)

2. The semantics of action-prefixtfc.)

For action prefix, an enabling relation is introduced
from a new eveng,, to all initial events in7 £:

Elt)a.P] & (B, t1,F,1 U{(ea,)}, D, T)
with:
E=FE,U{e,}fore, ¢ E,
F=F1 U({{ea}} x pin(T&)),
D = {(ea;t)} U (E1 x {0}),
T =T U{(({ea},e),Di(e))le € pin(TE1)}.
3. The semantics of ChoiceH
E[P, + Po] = (E1 U Ey, i, U, 1y Uly, Dy U Dy,
T1UT)

with:

f=f Ut U{(e€)]|e e €exit(TE 1) Ney #ea }

F=t1 Ut U({exit(TE1)} x {pin(TE2)})

= (L\(exit(TE&1) x {0})) Ula U (exit(TE1) x {7})

D =D; U (FE3 x {0})

T =T UL U{((exit(TE),e),Dz(e))|e € pin(TE2)}
E[Py; P7] is sequential operate. It equalsT&E; U 7&5
where enable relations are introduced from the successful
termination events of £ to the initial events off &,.

5. The semantics of paralle]| &)

This operator shows the behavior of communicated pro-
cesses, let set of synchronization event&be A, Ef =
{e € E;|li(e) € G°} and non-synchronizing events
El & B\Es:

E[P1 g P2] & (B, t,F,1,D,T)
that:
E=(E/ x {x})u({x} x E{) U
{ (e1,e2) € EY x E3 | li(e1) = la(e2) }
(e1,e2)d(e], e5) with
(exfie]) V (eafieh) V (e1 = €] # * Nea # e5) V
(ea =¢€h #xNey #e))
X F (e1,e2) with
X =A(e,#)|[X1Fieshee Xy ANeg Ej}U
{(x,€)|XaFaeaNe € XoNe € E5}U
{(e;e")| X1 1 eAXoba e Ne€ Ef Ne' € E5 A
ee X1 Ne € Xa}

feven = {42

D((e1,e2)) = max(Di(e1), Da(ez)) with D;(x) =0
T(X, (e1,e2)) = max(Ty (X1, e1), T2(X2, €2))
Wltth §E1 /\X1 |_1 el /\X2 gEQ/\XQ "2 €9

if ep =%;
others.

(© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 2, 345-356 (2012) / www.naturalspublishing.com/Journals.asp % E.S =y 349

1. Successful terminated

\/g (£,5,t) 0
2. Action prefix

>

&,a,t! ’
()t [Py]

(t)ag.Pl
3. Alternative
P (&;00t)
P+ P
4. Sequential
Py

Py; Py
5. Parallelism

(& a,t) P,

[0
R m—

L 3.2 L

Pl/ Py + P

3.1

(&, a,t) P2,

(& a,t)
—_—
(& ,t)
—_

/ (&,x,t) ’
i} (a # 6) 4o Pr———PF (,_y

41 —
Pl Py PPy, 22, py

P, (&,a,t) P’
J%),a,t
P lle Ps ((&,%),0,t)
P (&;00t)
P |lc P2
6. Relabeling
P (Lat) P’
P[H] (&, H(a),t) P'[H]
7.Process instantiation
(&,a,t) ’
7.1 B({bg) B (P := B) 7.2 B
Py ——— ¢(B’) #(B)

P, (&,a,t) Pz,

51
=,6),a,t
Lt Py |lg P

L (a & G%) 5.2
P llc P2 Py g P2

(¢,00,t) P

Pl llc P,

(o & G%)

Pl//\PQ

5.3
((€§,¢),0,t)
-t

(€ G¥)

(§,,t) B’

»(B")

(9, a,t)
_

Figure 1 Event based operational semantics for Process Algebra

i . e Definition 3.Let7E&; = (E;, 4;,b4,1;, D;, T;), thenT € <
*—re as J

Tciock, -V Toioak, -((7:0,.0+ @,.0);,05.v)

Ey C Es,

1 =120 (B x En),
FH={(XNEje)|ec EyNX Fye},
Iy =1 Ey,

D1 =D | En,

Ve € B, To(X,e) = T1(X N Ey,e).

®*O

>
-

Teiock, (70,04 0,.0),034); Ty v ”(rmw‘rw) Tciock; “Tend .0

Figure 3 Examples of semantics fparallel andrelabeling

Let7&,4TE2<---<IT E,, be apartial order ofSES,),
and7 &}, TE,,--- € SES are upper bounds of the order.
We can construcf £ = (E,4,+,1,D,7T) to be thel.u.b.
(least upper bound) of the chathé < --- <1 7€, e.q.,

6. The Semantics of Process Instantiation E=(E\NE,N---)UBw,t= (N (ExE)U---,
The semantics of thprocess instantiatiooperatoris | = (4 [E)u---, D = (D} | E)U--- andT =
much more complex. It involves fix-point semantics ac- (7 [E) U ---. According to the definition 378 <

cording to a seminal work of Winskel [17], which shows 7€}, -- andT€,---ITE. So(SES, Q) is ac.p.o(com-
that categories of prime and stable event structures caflete partial order). Moreover, it is easy to know tigat
be related to a category of Scott domains by adjunctions€-9-,(0,0,0,0,0,0), is the least element undet. So this
e.g., for process instantiatio®, := B, we shall look for ~ partial order is gointed c.p.o[19].

event structures satisfying equations of the fdfii = Then letL; 7&; be the least upper bound under this
Fp(TE). Let us see partial order relation on event struc-partial order7 £, <T7E, <---<ITE,, be achain, the least
tures, which is a time extension version of the one fromypper bound (under) is as following:

Winskel [4]:
uTE A (Bt H U UDsT)

© 2012 NSP
Natural Sciences Publishing Cor.

350 % NS Y Xibin Zhao et al : A Mathematical Characterization of System Design and Modeling

2.3. Correspondence With Semantics

It is necessary to prove the consistency between the deno-
tational semantics over event structures and it's operational
semantics deduced by the inference rules. The general way
is to get the coherence between the two semantics, which
means these two transition systems must be bi-simulative.
Let Ev be the set of events andf™ be a set of actions
subscripted with a Greek letter. Then we can define the
transition between the event structure, e.g., event transition

@ " system:
Definition 6.An event transition systeiis a quadruple
P = a3(Bia-P +11.(ViiP)) (Conf(TEL -, L), that
. . . o (e,a,t) ;o
Figure 4 An example of semantics fanstantiation P —/—— P"with

ec EuAP,P € Conf(TE) A€ ANt €N,
a transitiorrelation;

with: L={(e,t) | Ja € ANP,P" € Conf(TE) A
F={(JXj.e) | 3 p Y, pry asetof labels
J Let P be a SystemC behavidr,S(P) is denoted as the
Vi>k:X;FjeANXj11NE; =X} transition system obtained by applying the inference rules
T . of Figure 1 to P. On the other hand, the event structure
- {((U Xjre),t) | Tk of P is E[P]. According to definition 6, an event based
J transition system fron€[P] could be constructed, e.g.,
Vi>k:Tj(Xje) =t A X1 NE; = X} ETS(E[P]). These two systems are bisimular:
Let F be a function oveS ES, see the definition of conti- Lemma2VB € System”#, TS(B) and ETS(E[B])
nuity of F: are bisimular.

We have the detailed definitions and proof, but omit them

Definition 4.Let (SES, <) be apointed c.p.oand F : in this paper.

SES — SES. F is continuousiff 7 is monotonicand
forany chain7€ IT7&,<---, we havel (F(L;TE;)) C
E(LF(TE)). 3. Formalization of SystemC
Then let us investigate the process operatorst, []. Firstly,
we distinguish all action prefix angl occurrences by sub-
scription with a Greek letter, let the operator of subscrip-
tion be ¢. For instanceP := (t)a.P + [5.P becomes
¢(P) := (t)ae.Py + By.Py. And secondly, we denote for
operatorop € P A the corresponding counterpart on even
structures byp.

Our work is based on the IEEE Standard 1666-2005 ver-

sion of SystemC [3] and to investigate formal semantics

of SystemC, which provides a complete and unambiguous

specification and contributes significantly to the sharing,

tportability and integration of various applications includ-
ing simulation, synthesis and especially, formal verifica-
tion.

Lemma 14, T, ”?7 : ﬂandﬂ arecontinuousn (SES, In order to do the formal analysis and verification, it

Q) is necessary to rewrite the SystemC statements by a for-
= mal language. Previously, we study the SystemC by a well-
Winskel has proven that;, +, [], || continue on untimed ~defined event based sub-set, e.g., Syst€n{C4], which

event structure in [4]. Therefore, we only need to do somd$ Similar to K.L. Man's System€ [9, 15, 16], but Man’s
work to extend them with time, which is similar to [5]. The article does not include the environment of running pro-

proof is omitted without bothering readers. cesses and an event-driven model.

Let 5 be a function oveS ES with all process opera- However, the currerBystemC IEEE Standa] does
tors introduced before (like;, +, ...), then the semantics Not include the V\(atchmg statements’, e.g., local wa_tc_hmg
of process instantiation is as following: and global watching, have been deprecated. Then it is not

necessary to express the SystemC statements by a specific
Definition 5.The semantics df := Bis&E[P] £ L; Fi(L). oOperator of process, e.g., the process algebra with timed
extension of equation 1 is enough to rewrite all the state-
In Figure 4, (a) shows the event structures 165 (L) ments of SystemC and powerful to cover all main features
and (b) depict€[B]. of SystemC.

(© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 2, 345-356 (2012) / www.naturalspublishing.com/Journals.asp % E.S =y 351

The syntax described in equation 1 assumes a givethread); thel'est action occurs while one condition is sat-
set of actions, containing four kinds abstracted from Sys-isfied, defined for modeling choice, like the ‘if-then’ state-
temC:(1) asilentorinternalaction denoted by, perform- ments; theVot: fy action formalizes the notification state-
ing the invisible action doing nothind2) non-user de- ments, happens once this statement occursttation
finedactions, denoted byl v, including Assign, Test, occurs while one delta-cycle finish; and tG&ock+ and
Change, Notify, A, Clock, andClockr; (3) user de- Clock, are used to model the system clock, representing
fined actions denoted byA,;, including all actions en- the clock positive and negative which may also be included
abling the user defined events; and (4) a special actiotin the sensitivity list (se€igure5 line 11 and-igure 8 line
o0 indicates thesuccessful terminationf a process. Let 10).

A=Any U Ay. According to SystemCAssign, Change, Test, ClockT

The precedences of the composition operators are, imndClock | are relevant: for a concrete variable, once one
descending order of their binding strengfh;;, +, ||, []}. Assign happens, the correspondifigzst is enabled, oc-
The operators inside the braces have equal binding strengtturence of two differerif’est actions lead to & hange be
In addition, operators of equal binding strength associateenabled (for monitoring sensitivity list). Moreové¥oti fy
to the left, and parentheses are omitted when they do nas relevant taA (see section 3.2).
introduce ambiguities. For example, irfFigure 9, Assignioaa—true (line 5) and

The above algebraic syntax follows the principle of Assignieei=raise (line 8) do not only enable the actions
compositionalityas a result, the interpretation of each com-T'est;qa=true ANATESt00a=false FESPECtively, which are
posite behavior expression can be defined as a functionsed for determining the condition Fgure 6 line 4, but
of the interpretation of its constituents, e.g., a complexalso the actiorChange;,.q (although this action is use-
SystemC behavior could be gained from composed simiess).
ple ones.

For convenience, we use the special predicatec,
to indicate that the eventslgsign, T'est or Change) deal 31 2 s andr
with the same variables:

For the efficiency and clarity of studying systems, researchers
always reside in a specific abstraction level. In fact, it is
impossible to model a system without any abstraction. In-
visible action,r, is from a lower abstraction of system,
with ay, g € {Assign, Test, Change}. which is silent and invisible to the higher researched level.
In the lower level;- may be plentiful, but system will al-
ways perform some kinds of invisible actions before halted.
3.1. Actions In thi; article,r ?s only a placeholder in most cases if. not
specially described. Moreover, for the clarity and vivid-
])] ness, we sometimes add a suffix farfor exampler,,
3.1.1. User Defined Actions and Non-user Defined which represents being enabled after infinite time delay.
Actions Similar to [5], ¢ is a special action, indicating tseic-
cessful terminatioof a process.
User defined actionsiodel the user defined events in Sys-
temC statements, once these actions happen the events oc-
cur. And the names of these actions are the names of th
events with a prefixud_'. For example, the user defined §'2' Processes
eventswrite andread (see bellow) correspond to the ac-

true «i,ap for same variable
false others

same, (a1, ag) = {

tionsud_write andud_read. Of course, the processes defined in the kernel subset of
. SystemC contain all kinds of processes in SystemC and
sceventwrite, read; cover most of its statements. In this section, we introduce

the unified way of formalizing the processes of SystemC

Non-user defined actiorsse much more complicated: and the simulation environment by process algebra theory.
the Assign action models the assignment statement, hap- The processes of a system usually do not run alone,
pens while assigning the value of some expression to &ut adheres to their surrounding environment. We believe
variable (the simple variables and signals); thkange the study of formalization of some concrete systems must
action will be enabled while some signals are being changéayolve both the processes and their adjacent environment.
monitoring thesensitivity listand system clock (for clocked Here, the environment of processes of SystemC is essen-
tially the simulation environment, which includes system

2H: AuU{ré — AU{r 6} arelabeling function that ~clock and other things needed, for example, during a run-
satisfiesH (1) = 7, H(§) = 6 and fora € A : H(a) # 7and ning of a processdssign happens, the correspondiiigst
H(a) # 6. triggered and maybe th€hange for the same variable

© 2012 NSP
Natural Sciences Publishing Cor.

352 % eSS) Xibin Zhao et al : A Mathematical Characterization of System Design and Modeling

also enabled, all of which would be useful for the remain-be: P := P;; (n.01.0 + a2.0); a3.0; P, andenv =
ing behaviors of the processes or even other parallel pror ||;ciock+,ciock ., } Petock || €nvp, [l{a,} (a1.71.0[H1])
cesses. Althougfi'est and Change are not the real ac- |[|{4,} (@2.72.0[H3]) |[{as} (Oég.’Yg.OEHg]) llgny (¢-0.0) ||
tions abstracted from SystemC, but actually needed for reenvp,, that
acting with the simulation environment.
Let us continue fromaction prefixand system clock, Hi(Test) = Changecount.val A A(7:-0) # A(Test.0) A
the basis for constructing process, whose timing proper- same, (i, Test) A Test € A(env) with i = 1,2
ties are well represented by suffix. For an actiorand H3(Test) = Changegour A A(73.0) # A(Test.0) A
a behaviorB, action prefix(t)a.B denotes, aftet time samey (y3, Test) A Test € A(env)
units since the start of the system, a behavior which may
engage i and after which it behaves likB. Then the Hi(vi) = 7 A A(7:.0) = A(Test.0) A same, (i, Test)
simplest process may l§¢)a./ and all complex ones are (Test € A(env)) withi =1,2,3.And
constructed from the simple with process operators in a .
compositional way. Then the system clock is denoted asié’s?%a?" G 2 Esas?d;z be aliases for
Pclock with Pclock = CZOCk‘T.ClOCk’L.PclOCk. A g count,val:dzrz - g count,val;coznt,varJrlr '
Like other hardware description languages, such as Vefs 9" deut=counts £255tGMoad=true; £ €Steount val=din,

ilog and VHDL, parallel, sequentiality, branch (choice) and %:ZCW;LMM_;ZLS;;};{J ;/ » Testaout=counts
. oad=true .
loop are the basic structures for a process of SystemC. Le Again, let us investigate the code for loop structure:

us depict these keys gradually. p
SystemC deals with the variables and their values es- ~ !

sentially, of which the assignments and judgements are while(true) {

often difficult to process foevent structurdbased mod- I(;)iﬁilg'frue;
els. Unlike value-passing in CCS [20] or other similari- P
ties, we add no individual and specific mechanism to pro- 2)

. load=false;
cess algebra for this problem, but only several related ac- P

tions and the environment. For simplicity, we only con- }
sider the value of expression of an assignment statement,P
T

which could be vividly formalized adssign asgn_czp (ONly | | the behavi i
Assign for simplicity here). Now assume an assignment ... | 9€neral, the loop repeats some behaviors until a spe-
statement was met aften Was performed, this behavior cific condition is not satisfied, for whicRrocess instan-
] , . ; ;
could be formalized a®; (Assign.,/), but its simulation tiation would be used. Because tH#g is behind a loop
environment is much more complicated. Ontesign oc- whose clprjdmon W”rll bg arllwqys trui, it SthIU|d %e |gnt())red
curs,Test for this assignment is triggered (section 3.1.1), fo.r simplicity. NOV,“ e e/ avior of the whole co esa/ ove
’ . will be P = P;; P/ with P! = €1.0;¢5.0; Py;€3.0; P3; P/,
and in order to ensure two differefitsts could enable the - ’ e (e
; . And the environmengnv = 7 ||{ciock+,Clock, } Petock ||
Change for the same variableelabelingoperator should ith . T OLH
be applied, so a complete form B := Py; Assign.,/ ' | envpr with enver =7 [[ge,) (€1:€1.0[H1]) l[fea)
andenv = 7 ” Piock H) (Assign (GQ'EQ'Q[HQ])_ H ENVPp, ||{63} (63'63'0[H3]) ” _6711}133 H
Test./[H]) tﬁgltoﬁgfiff’?}f 522ng{eAZSii’Z}Test 0) % -, which will collect theTest andChange actions gen-
. y = . /
A(Test'.0) A same,(Test, Test') A (Test' € A(env)) erated by, and
andH (Test) = 7, A(Test.0) = A(Test’.0), and H;(Test) = Changecountval N A(g;.0) # A(Test.0) A
/ !
same, (Test, Test'), (Test” € A(env)). samey (e, Test) A Test € A(env) withi = 1,2,

After investigating the example above, we say the for-
malized process contributes to both the process itself and 173(1'est) = Changeaou A Ales.0) # A(Test.0) A

the environment, as illustrated in the following snippet of ~ same,(es, Test) A Test € A(env), and

SystemC code: H;(g;) =7 N A(g;.0) = A(Test.0) A samey,(g;, Test) A

Py it (load) { (Test € A(env)) withi =1,2,3.And

countval=din; €1, €2, €3 andeq, 9 andes be aliases for
} elsq ASSignload:truei ASSigndin:Oi ASSignload:false and
countval=countval+1; Testioad=true, T€stgin—o aNdTest oad=faise SEParately.
Although action prefix, parallel, sequentiality, branch
dout=countval, (choice) and loop consist of the cornerstones for construct-
Ps-- ing the processes of SystemC, most advantages, conve-

Formally, the above code show that an assignment ocniences and plentiful properties would be missed if we stop
curs after a choice, which could be modeled with sequenhere. Let us show the specifics.

tial processes as a whole. The non-deterministic choice op- The first thing is how to deal with delta-cycle, which
erator here reacts with the environment. The formal repreinvolves the simulation procedure of the SystemC. The ba-
sentation of the behavior of the above code snippet couldic simulation model i$P; || --- || P..) || env, and regard-

(© 2012 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 2, 345-356 (2012) / www.naturalspublishing.com/Journals.asp % E.S =y 353

less ofenwv, if all processes are successfully terminated ex- 1.P := Py; (Notify.0); P, with
cept for some delta-cycle notifications, a new delta-cycle env = 7 |[{ciock+,Clock . } Petock |{Notify}

will be advanced, e.g.P;s are synchronous on actiafh (Notify.ud_e.0)

and Noti fy enables state ofl in P;. So our method is to 2.P := Py; (Notify.0); P> with

concatenate everf; with A.,/, as well as makéVoti fy env = T |ltciockr ,Clock, } Petock l{Notify}

enable theA in P;. Now, the simulation model would be ((t)Notify.ud_e.0) and

(P1; AN l1ay -+ llgay Pos AY) || env. 3.P := Py; (Notify.0); Py with
Sensitivityis a very powerful and interesting thing in env = T ||{Ciock+,Clock 1 } Pelock ||{Notify}

SystemC. Dealing with the static sensitivity list of method ~ (Notify.A.ud_e.0)

process is different from thread process (clock thread pro- .) -

cess), both of which involve the user defined evefitsinge Wlth Py, P, be the behaviors before and after the notifica-
action, system clock and a process. As for method procesd!on statement.

when triggered, it executes from beginning to end, then re-

turns control to the kernel, and cannot be terminated, e.qg.,

once a sensitive event occurs, a monitoring method pro3.2.2. Cancel Statement

cess instance is triggered, and then executes from begin-

ning to end. Intuitively, if event,, is in the sensitivity list There is only one kind of ‘cancel statement’ used to reject

of method proces®, o will trigger P oncea is enabled, e notification.

however, different occurrences@f may activateP many eventcancel):

times, so the way of formalizing this property of SystemC Thecancelétatement can be formalized &:= Pi; (7.0.0); Py
involves/ the process instantiation as well. Let us, shoyv theem — 7 lictoon ctoons s Petoot |lfu ((OO)T;O.ud ’e.OC)X.D. ;
form, P’ := 7a.P;Tena-v/ Il{rarrenay (Ta-Tena-), P Note: only the timed notification (line 2 in previous figure)

(with env = 7 ||{ClockT Clock, } Peiock ||{7— } (a~Ta-O))
O oc o can be canceled.
represents the procegswith a sensitive action, and the

conjunction of relabeling function and process instantia-

tion makesP be triggered one by one. So assume a method)

processP; with the sensitivity list{e1, €2, ecnange } (S€C- 3-2-3- Wait Statements
tion 3.1.1), say oncad_el, ud_e2 or Change happened,

the proces$; runs, soP = (Tyd.e1-0 || Tude2-0 || Formalizing the ‘wait statements’ involvé&hange action
TChange-0); P1; Tend vV | {ruger,rena} (Tude1-Tend-P) and user defined actions. Let us show the syntax of ‘wait
||{Tud,5:23‘rend} (Tud7€2'T€nd'P) ||{7-Ch,angey7-€:nd} statements’,

(TChange-Tend-P) is the formalization of the process with 1 wait(time);

sensitivity list nvp is not shown here for simplicity). But 2 wait(event);

a function associated with a thread or clocked thread pro3 wait(eventl event2);
cess instance is called once and only once by the kernel4 wait(eventX: event2);
except when a clocked thread process is reset [3], so thB wait(time, eventlevent2);

form of the thread proced3 with sensitivity list{e, } will 6 wait(time, eventX: event2);
be simply likea.P, and clocked thread process a normal 7 wait();
thread process only with sensitivity l§tciock » €clock , }- ‘Wait statements’ can be easily formalized. Intuitively,

Notification, waiting and cancedtatements are all in- in line 5, if one of the events occurs during the time units
volved in theuser defined event®rmalizations of which since the start of the system or after this time unit elapses,
are shown below. the process would be resumed; likewise, while all of the

events occur or time elapse, process is resumed in line
6. Line 1, 2, 3, 4, are similar without time constraints.
3.2.1. Notification Statements The statement in line 7, represents ‘the process shall be
resumed on the static sensitivity, in the absence of static
sensitivity for this particular process, the process shall not
%e resumed again during the current simulation’ [3]. Some
) Change actions monitor the sensitivity list of a process,
1 evenmotify); the relation between these actions is disjunct, so once any
2 evenmotify (time); Change is enabled the process resumed. Supposing
3 evenmotify (SCZERO TIME); and P, be the formalism of statements before and after a

The above SystemC statements are relatedldify \ajt statement, then each of the statements listed in above

tions Line 1 shows event will be enabled immediately, line

2 shows during some time units, the event will be enabled 1.Py; (t)7.0; Ps,

and line 3 the action will be enabled in the next delta-cycle, 2.P;; (7yde.0 + 70-0); P2 with

so they can be modeled as: env = T ||{cCiock+,Clock, } Pelock ||{rya.} Ud-€.Tudc.0

There are three kinds of ‘notification statements’ used t
enable user defined events:

© 2012 NSP
Natural Sciences Publishing Cor.

354 % eSS) Xibin Zhao et al : A Mathematical Characterization of System Design and Modeling

/lcount.h /lcount.cc

1 #include “systemc.h” 1 #include “systemc.h”

2 SC_.MODULE (count) 2 #include “count.h”

3 scin <bool> load; 3 void count::countup() {

4 scin <int> din; 4 if (load) {

5 scin <bool> clock; 5 countval=din;

6 scout <int> dout; 6 } els¢{

7 int countval; 7 countval=countval+1;
8

8 void countup(); 9 dout=counival;
10 };

9 SC_CTOR(count){

10 SC_.METHOD (countup);

11 sensitivepos < < clock;

12 '} Figure 6 count.cc

13 }

Figure 5 count.h

3.P1; (Tude1-0 + Tud_e2.0); Po with
env = T ||{Clock+,Clock. } Petock |{ruacr}
ud-el.7yqe1-0 || {7, ..} Ud€2.Tyd.c2.0
4.P1; (Tude1-0 || Tude2.0 + 7oo.0); P With Figure 7 Event structure of count
env = T ||{Clock+,Clock. } Petock |{ruaon}
ud_el.7yq.¢1.0 ||{Tud762} ud_e2.7yq.¢2.0
5.P1; (Tude1-0 + Tud_e2.0 + (£)7.0); Py with
env = T ||{Clock,Clock, } Petock |{ruacr}
ud_el.Tyge1-0 || {r,,..} Ud-€2.Tyq.c2.0
6.P1; (Tude1-0 || Tude2-0 + (£)7.0); P2 with

that

H;(Test) = Changecount_val N A(7;.0) # A(Test.0) A
ol P I samey (v, Test) N Test € A(env) withi = 1,2
MY =T [{Clockr Clock.} Telock [l{rua.e1} Hs(Test) = Changedout N A(7y3.0) # A(Test.0) A

deelTuge1.0 |{r, o1 Ud-€2.Tugc2.0
7P “ 60 :_d’ 1+ lruaesy uO) ePTV\t/iitf? same,(vs, Test) A Test € A(env)
. y (TChange - e TChangen, -Y);
1>\ Change Changenn 2 H;(v;) =7 N A(74.0) = A(Test.0) A

env = 7 [l{Ctockr Clock .} Fetock ‘{TCh"“‘gel} samey (v, Test) A (Test € A(env)) with: =1,2,3
Change1.Tchange, -0 H ||{TC'hangE7n}
Changem.Tchange,, -0 (Letay, as, as, 71, 2, v3 andn; be aliases for

for Tchange, Monitor the sensitivity list (if the posi- Assigncount vai=din, ASSi9Mcount val=count.vart+1s

tive or negative clock wedge is monitoregs;cr Of ASSIgNgout—counts 1 €Steount val=dins

TClock, May be needed)' TeStcount:ual=count;uar—i—1v Testgout=count, and
TeStload:true-)

4 Case stud Similar to section 2.2, denotational semantic®ahay
: y be depicted by a figure. Moreovér, contains the process

We demonstrate how to use event structure to represerfStantiation operator, which makes the figure much more

and deduce SystemC behaviors by the following case studg@MPlex. We describ& in Figure 7, but the basic version,

These codes were first seen in [9]. Let us show the Sys€-9-75 (L) for P, can be found irFigure 3.

temC codes (Seeigure 5, 6). Unabriged SystemC codes not only involve the system
Actually we have shown (the part of) the formal spec- descriptions (like inFigure 5 andFigure 6), but also the

ification of above codes in section 3.2 here the completdest-benchFigure 8 andFigure 9 show test-bench codes

version can beP := Toiock+-Pi1; Tend-v/ ||{rcka,nnd} of the above descriptions.

(TClock+ Tend-P) With The formal specification of the above test-bench part
Py = (1.01.0 + 02.0); 3.1/ is Q = Tciock+-Q1 (pictured inFigure 10, (a) forFp (L)
envp = 7 || (Clocky 0) | and (b) forQ) with Q1 = €;.0; €2.0; (ClockT.0+(00)7.0);
P {rcroens } T ClockT -2 [{an} €3.0; (ClockT.0 + (00)7.0); @1, and the environment,
(al-'71~0[H1D ||{042} (042~'72-O[H2]) ||{a3} envg = T ||{Tclock—r} (ClOCkT.TCZOCkT.O) H envb with
(a3.73.0[H3)) ||{m} (€1.11.0) || - envb =T H{el} €1.11.0[H,] ||{e2} €2.72.0[Hy] ||{53}
@© 2012 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.6, No. 2, 345-356 (2012) / www.naturalspublishing.com/Journals.asp % E.S =y 355

/I countsim.h
1 #include “systemc.h”
2 SC_.MODULE (countstim){

3 scout <bool> load;

4 scout <int> din;

5 scin <bool> clock;

6 scout <int> dout;

7 void stimgen();

8 SC.CTOR(countstim) {

9 SC_THREAD (stimgen);
10 sensitivepogclock);

11

12}

Figure 8 countsim.h

/I countsim.cc
1 #include “systemc.h”
2 #include “countstim.h”
3 void countstim::stimeg(){

4 while(true) {

5 load=true;
6 din=0;

7 wait();

8 load=false;
9 wait();

10 }

11 };

Figure 9 countsim.cc

Figure 10 Event structure of courgim

63.’[73.0[H3} || e, and

H;(Test) = Changecountvai N A(1;.0) # A(Test.0) A
samey, (n;, Test) A Test € A(env) withi =1,2
Hj3(Test) = Changegous N A(n3.0) # A(Test.0) A
samey(nz, Test) A Test € A(env)
H;(n;) =71 N A(1;.0) = A(Test.0) A same,(n;, Test) A
(Test € A(env)) withi =1,2,3
(Letey, ea, €3 andny, n2 andns be aliases for
A8519N0ad=trues ASSTIGNdin=0, AS51gN10ad=false AN
Testioad=trues Testain—0, TeStioad=false-)

Then the formalization for the whole codes will be
B = P;A./ |liay QA || env with env equals to

Figure 11 Event Structure of the case-study

T |[{Ctockr ,Clock, } Peiock || €envp || envg. Both P and@
involve the process instantiation, as a result, the scale of fi-
nal event structure is infinity, we depict the event structure
in Figure 11.

Then, let us introduce the operational semantics of this
case-study, we do not elaborate the verbose forf, dfut
show a typical form to depict the way of using transition
rules to deduce a system. Let us use the follows as an ex-
ample:Q1 (Q1 = €1.0;¢2.0; (ClockT.0 4+ (00)T0-0);
€3.0; (ClockT.0+ (00)7T.0); Q1). We first equip process
instantiation@; and all occurrences of action-prefix and
y/ with unique identifiers (Section 2.1), I€; := B that
B =€1,.05¢,.0; (ClockT .£.0 + (00)Teop.0); €3, .0;
(ClockT,.0+(00)7s,.0); Q1,. Then we can have the fol-
lowing derivation:

Q1
(0,e1,0) °
—— lea,.0; (ClockT.£.0 + (00)Toop.0); €3, .0;
(ClockT,.0 + (00)Ts, .0); Q1] (rule 2)

0
{eez0), [°[(ClockT.€.0 + (00)Teop-0); €3, .0;
(ClockT,.0 + (00)Ts, .0); Q1,]](rule 2)
(&.Clockt,2) 2 410 . _
———— ["[’[es,.0; (ClockT .0 4 (00)Two,.0);
Q1,]]](rule 3.1)

P[°[(ClockT, .0 4 (00)Ts,-0); Q1,]
N (rule 2

w CEELQ M (rule 3.1)
{0289 o0y, e 72)
(D oft P [p(20[Qs, I (rue 2

(Mess2) O
_—

Here we have introduced both the denotational seman-
tics and operational one of the case study, we do this in
a unified way, i.e., formalizing the codes and showing a
uniform denotational semantics and operational semantics
which do not distinguish processes and simulation envi-
ronment.

© 2012 NSP
Natural Sciences Publishing Cor.

356 % NS Y Xibin Zhao et al : A Mathematical Characterization of System Design and Modeling

5. Conclusion [9] Man, K. L., System&" : Formalization of System@n Proc.
of 12th IEEE Mediterranean Electrotechnical Conference

In this article, we have introduced the way of rewriting (MELECON), 2004.5, pp.12-15. . .
SystemC statements by process algebra and a unified folt0] Xiaoding Peng, Huibiao Zhu, Jifeng He and Naiyong Jin,
mal framework of simulation, and the event structure based A" OPerational Semantics of an Event-Driven System-Level
denotational, operational semantics and the correspondence Simulatog In 30th Annual IEEE/NASA Software Engineer-

; ing Workshop, 2006.4, pp. 190-202.
between them. At the end of this paper, we presented a ca ?1] A.gSaIem, Fo?mal Semgﬁtics of Synchronous SysteinC

study to show a way to model real SystemC codes reasor- Design Automation and Test in Europe (DATE), IEEE Com-

ably. o puter Society, 2003, pp. 10376-10381.
The work about the formalization of SystemC dose not1] 5. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl,

end. Our future research will focus on two valuable issues: "~ . Mueller, The Simulation Semantics of SystertCDe-

1. the action refinement for the top-down designithe sign Automation and Test in Europe (DATE), IEEE Press,
(event structure based) verification of unified process and piscataway, NJ, USA, 2001, pp. 64-70.
environment. [13] E. Riccobene, P. Scanduridpdeling SystemC Process Be-

havior by the UML Method State Machinda Rapid In-
tegration of Software Engineering Techniques, Vol. 3475
of Lecture Notes in Computer Science, Springer, 2005, pp.
112-121.
[14] A. He, J.Wu, L. Li,The causality based denotational seman-
The authors would like to thank to the NSF of China un- tics for systemdn Proc. of ICICTA, 2008, pp. 1215-1220.
der Grant No. 60873118, 60973147, 60773108, 90812001[15] K. L. Man, System&- : Formal Specification and Analysis
61073193, 61073168, 61133016 and 90912003, the 973 of Hardware/Software Co-designism Transactions on Cir-
Program of China (Grant No. 2010CB328000), the NSF cuits and Systems 3 (5) (2006), pp.361-368.
of Guangxi under Grant No. 2011-GXNSFA018154, the [16]K. L. Man, System€ : A Formalism for Hard-
Doctoral Fund of Ministry of Education of China under ware/Software Co-desigiin Proc. 17th European Confer-
Grant No. 20090009110006 the Science and Technology _€nce on Circuit Theory and Design 2005, pp. 193-196.
Foundation of Guangxi under Grant No. 10169-1, and Guall7] R. S. DubtsovStable Event Structures and Marked Scott
ngxi Scientific Research Project N0.201012MS274, Grants ~ Domains: An Adjunctiorin Lecture Notes in Computer Sci-
(HCIC-201110) of Guangxi Key Laboratory of Hybrid Com-___ &nce (Vol. 4378), Springer, 2007, pp. 443-450. .
putational and IC Design Analysis Open Fund, the Key[18] T Bolognesi, E. Brinksmdntroduction to the iso specifica-
science and technology Foundation of Gansu Province (110- 10" language LOTOSComputer Networks and ISDN Sys-

. . : tems, 14 (1). pp. 25-59.
2FKDAO010), Natural Science Foundation of Gansu Provmtffg] B. A. Davey, H. A. Priestleylntroduction to Lattices and

Acknowledgement

(1107RJZA188). Order, Cambridge University Press, 2002.
[20] R. Milner, A Calculus of Communicating Systerirs Lec-
ture Notes in Computer Science(Vol. 92), Springer-Verlag,
References 1982.

[1] R.M. Aiex, Conjectured statistics for the ¢-Catalan num-
bers Advances in Math. 208 (2003), pp. 13-26.

[2] SystemC 2.0.1 Language Reference MamDpkn SystemC
Initiative (OSCI), 2003.

[3] IEEE Standard SystemC Language Reference Mamt
computer Society, IEEE Std 1666-2005, 2005.

[4] Winskel, G.,An introduction to event structurek the lec-
ture notes for the REX summerschool in temporal logic,
May 88, in Springer Lecture Notes in C.S., vol.354, 1988.

[5] Joost-Pieter KatoeQuantitative and qualitative extensions
of event structure€TIT Ph. D-thesis series, 96-09.

[6] Chris J. MyersComputer Aided Synthesis and Verification
of Gate-Level Timed Circuit$hD Thesis, Stanford Univer-
sity, October, 1995

[7] Mila Majster-Cederbaum and Jinzhao WAction Refine-
ment for True Concurrent Real Timm proc. |IEEE Inter-
national Conf. Engineering of Complex Computer Systems
(ICECCS), 2001, pp58-68.

[8] van Glabbeek, R. JThe linear time-branching time spec-
trum (extended abstract)n Proc. on Theories of concur-
rency : unification and extension, 1990, pp 278-297.

(© 2012 NSP
Natural Sciences Publishing Cor.

