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Abstract: We have analyzed two-mode ring coupled laser equations, after transforming them to the corresponding two dimensional
coupled logistic equations. In our numerical experiment we find that for selected range of the three controlling parameters, chaotic
pattern may emerge out of an infinite sequence of period-doubling bifurcations. However, there exists large regions of controlling pa-
rameter space where the approach to irregular behavior appears to be consistent with the Newhouse-Ruelle-Takens scenario, as evident
by the appearance of two characteristics frequencies. As the ratio of controlling frequencies is varied, by changing the controlling
parameters, phase locking periodic and quasi-periodic motions are observed on the way to chaos..
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1. INTRODUCTION

One-dimensional maps are useful models not only for the
description of specific population evolution but also as a
kind of stroboscopic representation of the continuous solu-
tions of nonlinear differential equations [1]. The competi-
tion between two species has already been discussed in the
literature in term of coupled first order equations of form
similar to that governing the single species growth [4].
In this paper we explain the two-mode ring lasers as a
function of coupling strength, as the given equations re-
duce to coupled first order equations [5,6]. In coupled lo-
gistic maps, we found self-similarity stripe structure of
basins, distortion of torus and transition to chaos [7]. V.
A. Markelov in 1975, discussed fluctuations of two-mode
emission from a ring laser, and concluded that in the self-
locking of the difference frequencies, reduced the level of
their fluctuations [8].

M. M-Tehrani and L. Mandel in August 1977, found
that the weaker mode intensity did not grow with increase
in pump parameter above threshold and that its relative in-
tensity fluctuations did not die out, as in a conventional
laser, but became thermal instead [9], and then in 1978,
they explained intensity fluctuations. Shiqum Zhu in 1994,
studied and explained the saturation effect in two mode

ring lasers cavity [10,11]. The logistic map is natural a
dynamical system capable of orderly and chaotic behav-
ior depending on its parameters [12]. Coupling multiple
logistic maps can result in multidimensional multidynam-
ical behavior which is a powerful modeling tool in many
fields of science.

In this paper the coupled laser equations have been
transformed into coupled logistic equations. In 1983, Jian-
Min Yuan and Lorenzo M. Narducci worked on coupled
logistic maps and found that on changing controlling pa-
rameters, phase locking and quasi-periodic motion are ob-
served on the way to chaos [13]. The layout of the pa-
per is as follows. In the II section of the paper, we dis-
cuss the model and its corresponding mathematical equa-
tions, which are later transformed into coupled discrete
laser equations. In III section we obtained bilinear coupled
laser equations, we discuss analytically and numerically
the obtain results. In last section we present conclusions.

2. Model

We consider a two-mode ring cavity in which waves are
propagated in clockwise and anti-clockwise direction around
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Figure 1 The possible diagram of ring cavity in which two
waves are propagating in clockwise and anti-clockwise direction.

the ring [14,15], as shown in the Fig. 2.1. Mathematical
formulation and simplification of these two-mode travel-
ing waves in the cavity has been calculated [10,9]. These
equations, written for electric field E1 and E2 are also
called nonlinear coupled laser dynamical equation,

dE1

dt
=

[
A − C1 − B(|E1|2 + ξ|E2|2)

]
E1 (1)

dE2

dt
=

[
A − C2 − B(|E2|2 + ξ|E1|2)

]
E2 (2)

where A, B and C1, C2 are respectively, Einstein gain co-
efficient, nonlinear saturation, and losses in the system.
Moreover ξ is given as,

ξ =
1

[1 + (ΔωT1)2]
, (3)

Here T1 be natural life time of laser transitions, Δω
is detuning [9]. Multiplying 2E∗

1 and 2E∗
2 to Eqs. (3) and

(4), respectively, and simplifying provides,

dE1

dt
=

[
A − C1 − B(|E1|2 + ξ|E2|2)

]
E1 (4)

dE2

dt
=

[
A − C2 − B(|E2|2 + ξ|E1|2)

]
E2 (5)

İ1 = 2(A − C1)
[
1 − B

(A − C1)
(I1 + ξI2)

]
I1, (6)

İ2 = 2(A − C2)
[
1 − B

(A − C2)
(I2 + ξI1)

]
I2, (7)

where for real Ei, Ii = |Ei|2, and i = 1, 2. Since in-
tensity is proportional to the number of photons therefore,
our equations will take the form

ẋ = ṅ1 = 2(A − C1) [1 − (n1 + ξn2)] n1, (8)

ẏ = ṅ2 = 2(A − C2) [1 − (n2 + ξn1)] n2. (9)

Since
[

B
(A−Ci)

]−1

= are the steady state photon num-

ber in the absence of coupling and too small value nearly
equal to zero, we can get more simple equations, since
dx
dt = xj+1−xj

Δt .
If (A − Ci)Δt = λi, controlling parameter and Δt be

the cavity round trip time then t+ and t− are the times of
the waves which are moving clockwise and anticlockwise
directions respectively. Therefore, in general form,

xn+1 = xn + 2λ1xn [1 − (xn + ξyn)] , (10)

yn+1 = yn + 2λ2yn [1 − (yn + ξxn)] . (11)

It is our required solution in form of coupled logistic maps,
on the application of chaos theory and will be discussed in
detail in next section, in which value of ξ is complex.

3. Bilinear Coupled Laser Logistic Equations

The purpose of this article is to study the instability and
chaotic behavior of two-mode ring laser system governed
by the difference equations [16]. The symmetric two di-
mensional coupled laser logistic equations are,

xn+1 = F (xn, yn) = xn + 2λ1xn(1 − xn) + γynxn,(12)

yn+1 = F (xn, yn) = yn + 2λ2yn(1 − yn) + γxnyn, (13)

where γ = 2λiξ, λ1 and λ2 are controlling parameter
and γ is coupling constant, therefore, our system depends
on three parameters. We will see how our system show
chaotic behavior corresponding to change the parameters.

Stability of Fixed Points: It is not difficult to understand
the behavior of coupled functions for λi and γ. The key to
the structure of fi(λi, γ) is careful analysis of fixed point
of the mapping functions (1 and 2) as well as that iterate.
Since we have two coupled function and symmetrical so
we will discuss only one function. Therefore we have two
fixed points [6]. The Eq. (3.1) has four fixed points but
each is same. Therefore we calculate,

x
(1)
1 = 0, and x

(1)
2 =

2λ2(2λ1 + γ)
(4λ1λ2 − γ2)

, (14)

If λ1 = λ2 then fixed points are [6],

x
(1)
1 = 0, and x

(1)
2 =

1
(1 − γ

λ )
. (15)

A point is said to be a stable fixed point, if

‖(dxn+1

dxn
− dxn+1

dyn
)‖ < 1 (16)
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Figure 2 Phase space plots (xn, yn) of Eq. (3.1), corresponding
to λ1 = λ2 = 0.7; γ = 0.379. Isolated points in the phase space
are part of transient evolution; These maps have been constructed
for few thousand iteration and the plot on right side shows the
behavior of our system, which is unstable. Horizontal axis labels
the number of iterations. Vertical axis is the y axis of the phase
space, for the same parameter values given above.

A mapping of bilinear and linear coupling term [17,?],
have been shown to exhibit complicated dynamical be-
havior, including quasi periodicity, phase locking, inter-
mittency, period adding, long-lived chaotic transitions and
etc [19]. We have also found evidence for a boundary crises
in it like or similar to found in Henon’s maps by Grebogi,
Ott and Yorke [17] as selecting γ = 0.1 and varied the
λi. A boundary crises occurs in our case through the col-
lision of a chaotic attractor with the basin boundaries that
separate it from the several other coexistent periodic at-
tractors (an other chaotic attractor) [19]. Upon an increase
of λi beyond its critical value for the onset of crises, the
chaotic attractors and its basin disappear while the basins
of remaining attractors undergo a sudden expansion. This
in turn, produces hysteresis effects [18], in the dynamical
as λi decreases through it critical value. From the research
on basins of attraction and Mandelbrot-Julia set of cou-
pled logistic map, the following result indicate that: the
boundary between periodic and quasi-periodic regions is
fractal [20], (that indicates the impossibility to predict the
moving result of points in phase plane); the structure of
Mandelbrot-Julia sets are determined by control parame-
ters, and their boundaries have fractal characteristic [20].

Figure 3 Phase space plots (xn, yn) of Eq. (3.1), corresponding
to λ1 = λ2 = 0.7; γ = 0.389. The plot on right side shows the
behavior of our system, which is stable. Horizontal axis labels
the number of iterations. Vertical axis is the y-axis of the phase
space, for the same parameter values given above.

We will explain it by mean of two cases. In first case we
fixed λ1 = λ2 = 0.7 and vary the 0.1 ≤ γ ≤ 0.48 and
giving x = 0.1 and y = 0.11 [13]. For γ = 0.1 to 0.24
the trajectory of (x, y) in phase space converges to a fixed
point 1P. If, γ varies from 0.24 to 0.375 we get 2P charac-
ter, asymptotic solution of our system. At the upper value
of γ from this interval [0.34, 0.375], the transient solution
displays a curious three wing pattern before settle down
to asymptotic 2P state. When γ = 0.379 the two original
stable points become unstable and bifurcate into two in-
variant orbits and behavior of the system, in phase space
is quasi-periodic, as show in Fig. 3.2. The large value of γ
lead the same result but trajectory grow.

At certain values of coupling parameter strange attrac-
tors are mirror images of each other but different at certain
other value. Mirror image means they get synchronized
frequency locking. At γ = 0.391 suddenly the trajectory
converges to a periodic solution with period 6, as shown
in Fig. 3.3. This is interpreted as a phase-locking with a
quasi-periodic domain. The effect persists for a small, but
measurable range of γ value. Quasi-periodicity again ap-
peared at γ = 0.392, to replaced again by phase-locking
with a period of 20, 26, 14, 22 and 8 iterations, at γ = 0.4,
0.407, 0.415, 0.419 and 0.425 respectively, among each
interval except these values our dynamical lasing system
show quasi-periodic and chaotic behaviors.
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Figure 4 Phase space plots (xn, yn) of Eq. (3.1), corresponding
to λ1 = λ2 = 0.7; γ = 0.413. The plot below side shows the
behavior of our system, which is almost unstable. Horizontal axis
labels the number of iterations. Vertical axis is the y-axis of the
phase space, for the same parameters values given above.

As coupling between two waves propagating in counter-
clockwise direction in ring cavity is increased from γ =
0.41 to 0.424 the invariant orbit grow in size and became
distorted in shape; eventually develop ”ear” like shape, as
shown in Fig. 3.4. At γ = 0431 the system is again phase-
locked with a period of 18 iterations. As γ increased be-
yond 0.439, the two halves of the mapping grow and even-
tually overlap with each other (exterior crises occur be-
tween the boundary of two orbits) the orbital diagram, as
shown in Fig. 3.5. When γ = 0.475, the system is again
phase-locked with a period of 18P iterations. At the above
value of γ = 0.475 our dynamical system display of iter-
ated values of n Versus xn appear to be quite irregular.

If one analyzes these two dimensional plots as Poincare
surfaces of section for the discrete system, the sequence
can be describe as: The 1P corresponds to a stable limit
cycle [5]. As the γ increasing further, the limit cycle be-
comes unstable and bifurcates into a two-loop limit cycle
and then evolve into a two-loop torus through a Hopf bi-
furcation [7]. The torus represents quasi-periodic behavior
of our system and responsible for the two invariant orbit on
the Poincare surface of section. The two intermittence pe-
riodic behavior is obtained when the two characteristic fre-
quencies on the torus are in ratio of two small integers [13].
Higher bifurcation of the torus occurs as the system moves

Figure 5 Orbital diagram in phase space of Eq. (3.1) for λ1 =
λ2 = 0.7 and γ = 0.47. This orbital diagram is obtained due
to boundary crises, the plot on right side shows chaotic behavior,
for same parameter values given above

out of quasi-periodic region, by increasing γ. These bifur-
cations are characterized by the growing ear, folding of
the boundary onto itself, the merging of separate part into
a single one because of boundary crises, frequency locking
and eventually breakup the torus [13,?].

Case 2:When λ1 and λ2 are not equal to each other then
irregular behavior display by means of period doubling
bifurcation. We have to study in this region for which,
λ1 = 0.7 and λ2 = 0.2 and γ is varied from 0.2 to 0.4. For
γ = 0.37, the asymptotic solution has 6P and y is running
very small value. If γ is varied from 0.3 to 0.4, we detect
period doubling bifurcation which leads to 64P solutions
and then to chaos.

Thus from the above discussion, we can conclude that
when λ1 = λ2 and variation exist in γ chaos emerges
through quasi-periodicity. When λ1 �= λ2, different val-
ues to each other, so chaos emerges by mean of period
doubling bifurcation sequence. Since we have noted that
oscillatory behavior at λ1 = 0.7, λ2 = 0.2 and in range
of γ ∈ [0.35, 0.376], from 2P to 6P through quasi-periodic
state. The transition from 2P to quasi-periodic behavior is
one (as a function of γ) and is accompanied, during the
transient, by considerable noisier structure then observed
in pervious scans; furthermore the duration of the irregu-
lar transient is a sensitive function of the position of the
initial point [13], a feature which is reminiscent of the
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Figure 6 Phase space plots (xn, yn) of Eq. (3.1), corresponding
to λ1 = 0.7, λ2 = 0.2; γ = 0.379. The plot on right side shows
chaotic the behavior which is not denser. Horizontal axis labels
the number of iterations. Vertical axis is the y-axis of the phase
space, for the same parameters values given above.

metastable behavior observed in the Lorenz model for the
certain range of coupling parameter. An example of the
trajectories is shown in Fig. 3.6.

The general method to map out the different kind of dy-
namical behaviors existing in various regions of the three-
dimensional control-parameter space is to fix the param-
eter γ and to scan the (λ1, λ2) plane. We see again that
along and around the main diagonal λ1 = λ2 the transition
from periodic behavior to chaos takes place through inter-
mediary quasi-periodic motion, while away from the main
diagonal, chaos results from a series of period-doubling
bifurcations [13].

4. Conclusion

The coupling between the two laser logistic equations has
a profound effect on the character of the solutions and on
the approach to chaos that is observed for one dimensional
logistic map. In general, one may find it only natural that,
when complicated nonlinear system are coupled to each
other, they became more complicated. On the other hand,
at least locally, multidimensional systems are known to
exhibit essentially one-dimensional character, but depend-
ing on the linearized eigenvalues. To calculate the result

Figure 7 Bifurcation diagram for the coupled lasers Eqs. (3.1)
with λ1 = λ2 = 1.5 range from 1.6 to 2.2 and γ = 0.25. For
each value of λi we used the final point of the previous λi value
and 1600 iterates are plotted. This shows the period-doubling se-
quence as well as Quasi-periodic and chaotic regions.

from the above discussion, there are regions of controlling-
parameter space where indeed the qualitative behavior of
solutions is some identical to that predicated by the one
dimensional (laser) logistic equation. But here we have
looked that our coupled laser logistic system remain sta-
ble which mean period oscillation from period 2 to period
6 through quasi-periodic state. The cause of not getting pe-
riod 4 here is that, in phase space plots at λ1 = λ2 = 0.7
and γ = 0.379 each laser attractors, which are orthogonal,
has three wing pattern so cause period 6, corresponding to
change the frequency. So we can say that in laser coupled
system there exist period tripling-furcation.
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