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Abstract: The paper presents an effective, gradient-based procedureéinig the optimum for either constrained or unconstrained
response surfaces. The procedure is widely applicable coveringéindaurvilinear constraints as well as constraints with redundancy.
Each move of the sequence is made by pooling information from all th@osupoints in the feasible region, making the search a global
one and convergence to the global optimum almost certain.

Keywords: Optimization Problems, Line search algorithm, constrained and uncowstra Global Convergence, Least
squares—Minimum Norm.

1 Introduction

The problem considered here is one that occurs very frefyuientnany scientific enquiries; i.e. to locate the optimizer
(specifically the minimizer) of a multivariable objectiveniction, defined in a continuous, finite dimensional spaeg;s
e.g. Gass (1964, page 257) for a bibliography of applicatmovering several areas of practical optimization proklem
Dantniz (1964, page 63), Box and Wilson (1951).

The Ordinary Line Search Methods OLSM which originated fréauchy (1894), albeit modified severally over the
decades, are perhaps, the most frequently employed temmiin the search for the optimum of unconstrained functions
UCF. On the other hand, the Active set, the Lagrangian, thelsx methods, etc are the favoured techniques for
constrained functions CF. Interestingly, Fletcher (194 portraying these CF techniques as line search algorittans
shown that both the UCF and CF problems could be treated fnensame analytical framework, all of which make-up
the OLSM. Generally, each line search sequence is builtam four (4) composite parts:

(a) The starting point, which is ar-component vectak, (b) An n-component direction vecta, (¢) Computation of
the step—lengtlp, and (d) A movement to the iterate(= X+ pd).

This set of sequential activities applies as well to the remlinique herein introduced, albeit with some very sigmifica
differences.

First, exploration in the OLSM is made in a sub-regignc X;, and the starting point, is at the center of;
where X; is the entire feasible region, also known as the experinhepsae; see, e.g. Wilde and Beightler (1967, section
7.03, page 281). But in the new series, which may be calle@iSDpnvergent Line Series SCLS, the whole spécés
partitioned into non-overlapping segmeBtsand each segment is explored separately. The startingaiet the center
of the spacés, is then obtained as the arithmetic average of the segmemsn@aod convergence has also been reported
by Onukogu and Chigbu (2002, page 106) using the harmonin mthe segments. However, becal&eoften has a
regular geometric form the use fs generally satisfactory.

Second, the direction of search, under the OLSM is eithergtioen—component gradient vectgior along a deflected
gradientAg; with A as then x n deflection matrix; see, e.g. Wilde and Beightler (1967, [2@@). The gradient direction
vector, g (whereA = | is an identity matrix), doesn't take into account the biag tlu interactions and higher order
effects that may be present in the response function hemcpetformance is generally poorer than e direction.

In the SCLS however, the direction vector is a weighted ayefeom all the segments; the weights being proportional
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to the mean square errors from the segments. It is shown fiosdbree (3) that the SCLS direction vector has a least
squares-minimum norm LSMN property.

Third, the basic idea for obtaining the step-lengtis essentially the same for both OLSM and SCLS and this again
depends on whether or not the optimizér is expected to be an interior point or a boundary point. Wkieris an
interior point,p is obtained (i.e. after obtaining andd) by expressing the objective function as a functiopafnly and
solving the derivative equation that follows. On the conysahenx* is a boundary point (again after gettirgandd) the
step-length is computed for each constraint, giipg} ,k=1,2,...,K andp = ming {pk}f Detailed computations are
illustrated in section six (6) of this report.

Fourth, the SCLS is globally convergent, whereas the OLSMfiaifto converge or may converge to a local optimum.
After 200 iterations the gradient procedure failed to rethehminimum of the Rosenbrock function which is example 1,
section 6 of this paper. The gradient procedure obtaiged —0.605x; = 0.375), f(x1,X%2) = 2.578; see, Wilde and
Beightler table 7-1, page 312.

In the OLSM, difficulties could arise if some of the consttaiare redundant or curvilinear whereas no such difficulties
occur with the SCLS; see Onukogu and Chigbu (2002, page R2Zdundancy occurs when the set of constraints are not
linearly independent and this gives rise to the problemediision of matrices that are not of full rank; see, e.g. Fetc
starting from page 14. The curvilinear constraints oftere gise to feasible regions that have irregular geometrysamd
optimizerx*, that may now be an interior point. In such a situation, setiaslkemethods like the Simplex, Active Set, etc
are likely to fail to reach the optimizer. Indeed, in the SCtt& major role of the constraints is to ensure that the desig
in the segments are feasible, and that the iterate is alsibfea

Exploring new ways to tackle old problems on optimizatioméhaontinued to generate fascinating research interest:
interior point algorithm by Karmarker (1984) shows a reffiieg light on solution of constrained optimization, Umoren
(1996) has obtained solutions to linearly constrainednoigfition problems using experimental design techniques.
Taking all these efforts along with that of Concentric Baéishnique by Onukogu (2012), one can see an emergence of a
unified class of algorithms for solving optimization praile regardless of whether they occur in experimental designs
in Operations Research or in the diversity of practical fmots.

2 The Sequential Steps
The problem is to fin&k* the minimizer of am—variate,m—degree polynomial objective function;
f(x;m) =a'x=(a)x +aX,) +& m>1; 21

X .
where, @ = (a},a,), X = (1) , are respectivelyp—component row and column vectors of known parameters and
X2

input variables.
Thea;, a, are(n+1) and(p—n— 1) vectors of first and higher effects;, X, are their respective vector of input
variables g represents random observation error. For constrainethigatiion COP, the feasible region,

Xi = Xe = {X1,%, ..., Xn; CX <,=,> b, k=1,2,...,K};
whereas,
for unconstrained optimization UCOP,

Xt =Xy = {X1,%2, - % [Tq (tii —toi) s toi <% <tai};

is a product of intervals.

In Xe, G X is a polynomial of degreey > 1, ¢, is a pr—component vector of known constantg,its corresponding
vector of input variabledy, toi, t1; are scalars. Théx } are considered quantitative, non-stochastic variablscdXs is
a continuous, finite dimensional, compact, metric spacepsg Pazman (1986 starting from chapter two, page 15). The
sequential steps are therefore as follows:

(i)Partition X into S> 2, non-overlapping segmentg, Xs, ..., Xs

(iDRepresentf (x; m) in thesth segment by a first-order regression functjor- X0, +e& s=12....S
Thus, .
O, =&+ Xasdp; X€Xs

© 2013 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro2, No. 3, 243-250 (2013)www.naturalspublishing.com/Journals.asp NS 2 245

Y, & are respectivelyNs—component vectors of unknown responses and random okiserearors,
Xsis Ns x (n+ 1) design matrixNs is the number of support points in thélh segmentNs > n+1
g, is (n+1)—component vector of unknown parameters

Xgsis Ns x (p—n— 1) bias matrix corresponding &, the bias vector in (2.1)
(iiiyFrom (i) above, computex, the arithmetic mean vector in each segment, the grand meanS 53 | X, the
normalized information matrixXyls = N_;lxgxs and the bias matrix,
Bs = Mg !+ Mg X&XasaahXhsXsMst, s= 1,2, ...,S

(iv)From (3.1) through (3.5) compute the direction veda@nd the step-length from (3.6a) or (3.6b).
(v)Move tox = x— pd, and at thejth iterate, move ta; = Xj_; — pj,]_gjil

(i)ls || f (xj_;m) —f (x;;m) [[<3?;6>0
Yes: Stop, and set = X"

No: Letx; fall into thetth segment and define for this segment the information matrix
Mji =M +Xx%j; M =X%

Xt
xjt = eee B

/
X

and the mean square matrix,
Bt = M+ My X Xerapah X Xje My .

Return to step (iii) above, taking notice of the fact thatMs andBs remain unchanged for &l t.

3 Thedirection vector and step-L ength
By pooling the segmented models in section 2, step (ii) waiolz single model,

y=Xq+¢ 31

/
y= <¥1,¥2, .. 7315) is anN—component column vector of unknown responses(e;, &,,. .. ,€s)’ is anN—component

!/
vector of random observation errof. = diag{Xy, Xz, ..., Xs} is anN x §(n+ 1)design matrixq = (91’92""’9s> is

an §(n+ 1)—component column vector of unknown parameters. We defméntiv 1)—-component direction vectal =
(do,ds,...,d,) as a vector of convex combinations,

S S
di = hisQis; hisZ O; hiS: 17 i = 07 17 27"'an 32
& &

s
with mean square errom(d;) = ¥ hizsrﬁi(s); M (s is theith diagonal element of the matrBs. We minimizem(d)
s=1

from the partial derivative equations
{om(d;)/ohis}s 1 =0.
Hence, the matrix equation,

(Di+migd) b =mygl; i=01,....n 33

© 2013 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

246 NS 2 I. B. Onukogu: Global Convergent Sequence for Solving Optimizatioilems

In (3.3),D; = diag {Mi(1), Mi(2), - .., Mi(s_1) } is an(S—1) x (S— 1) diagonal matrixh; = (hi1, hiz, .. -,hi(s-l))/,,:
(1,1,...,1) is an(S— 1)—component vector of unit elements. Therefdte= (D; +rﬁi(S)J)*ln_1i(S)1; J=11is an
(S—1) x (S— 1) matrix with unit elements,

(Di +Mygd) " =Dyt — Dty gl (141D 1) DL And define,
h.

h= <h,|3> D his=1-3y 1 he
n
By re-arranging the vectorsh, } we obtain the matrices of coefficients of convex combination
=i

H = (Hy,Ha,...,Hs) of dimension(n+ 1) x S(n+ 1); Hs = diag{hos, h1s,...,hns},s=1,2,...,S which is now
normalised such thadH’ = I, | is an identity matrix. In vector notations, (3.2) is written

g: qu

which from above normalization of the matrix impliesq = H'd.
Then, from (3.1) we get the model
z=Mud+U; 34

z=HX'y, My = HX'XH’, v = HX'e of dimensiongn+ 1), (n+ 1) x (n+ 1) and(n+ 1) respectively.
To obtain the least squares estimate &fom (3.4); first, we writeMy in expanded form:

n’bo rTbl ...... rrbn
Mo M1 ... ... Min ]

My = (mg) = : and obtain from (2.1),
Molmy ... ... Mon

7o = f(mo1,Mo2,...,Mon; M), z1 = f(Myy,My2,... .MM, ... 20 =
f(Mn1, M2, ..., Man;m); which are obtained by replacingxi} in f(x1,%2,..., %, m) with {mg} in the kth row of
My,k=0,1,....nji=212...,n.

Hence the least squares estimate

do &1

: N d

d=Mlz= | & | =d=| 35
dn h

and normalize tal'd = 1.
Notice, the optimal properties of the direction vector:

(a)No more thar(n + 1) independent responsé¢s} are needed to obtain the estimate, as may be expected from

Brooks and Mickey (1961).
(b)The estimatod, has a least squares—minimum norm property being solutitireto

Lagrangian function,

L(d,A) = min(d'Bd), subject taz = Myd;

B = Hdiag{By,By,...,Bs} H’ is an(n+ 1) x (n-+ 1) matrix.
A is a vector of Lagrangian multiplier.

This derivation of the direction vectal, applies to constrained, as well as, unconstrained probleavgever, for the
step-lengthp, the computational procedure depends on whether the optixiizs an interior or a boundary point.
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4 Computation of p

WhenX; is a convex set, as is true, when the constraints are firgtdirbar,x* is a boundary point and the step-length
is obtained from the equation:

p= mkin {Qlk (X_* pkg) - bk} = mkln{ (glk)f(_f bk) /Qlkg} ) k= 17 27 sy K. 41
Now, for constrained problems with non-linear constraagsvell as unconstrained problemsjs expected to be an
interior point, p is obtained by solving for the roots of tlle— 1 degree polynomial from the derivative equation of the

objective function in (2.1);

df((x—pd);m)/dp=0 4.2

5 Global Convergence
From Section 2, step (vi) we notice thdf; = M; +xjx§, and from (3.4),
Mitj = Myj1 + (Hjix) (Hjex))'s
Hjt is @ matrix of convex combinations at tith step whery; falls into thetth segment.
= {Mh;j }T:l is a non-decreasing sequence.
Consequently,
det(MH jM,;jlfl) =1+ wj;
wj = (H,-)f(j)'M,]jlil (Hjx;) is the jth step variance incremental factor; hence
det( M My ) < det(Muj 1M1 ,)
= {w }Tzl is an non-increasing sequence.
Therefore, Kolmogorov’s criterion for absolute convergeis satisfied; see e.g. Feller (1966, page 259). Now, since

exploration at each step is global, encompassing the eetisible regionX; (see section 2) the convergencextois
global as well.

6 Numerical Examples

Two examples are covered in this section. The first is the nstcained Rosenbrock test function taken from Onukogu
(1997). The second is a tri-variate constrained quadratictfon from Fletcher (1981, page 101).

6.1 Example 1. (Rosenbrock function)

The problem is defined in Wilde and Beightler (1967, page 331)
min f(x1,%2) = 100(x2 — x2)2 4 (1—x1)?.
And to reflect the biasing vector, we re-writ€x;, x2) thus;

f(x1,%2) = 1— 2% + (X2 + 1003 — 2002, + 100x7),

and letX = {x1,%; —2.2<x; < —0.2, 0 < %o < 2}.
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Hence, the bias vectary = (1, 100, —200, 100)’

For two segment6S= 2), usingx;to create segments, we define,

X1 = {x1,%; —1.2<x3 < 0.2, 0< xp < 2}

Xo = {X1,%0; 2.2 < x1 < —1.2,0< X2 < 2}

The design matrices for the two segments are, respectfeelys = ags + a1sX1 + axeXo + €5, S= 1,2,

1-1200 1-1200

1-0200 1-2200
Xu=17 _192920 | adXe=|7 _1550|"

1-0220 1-2220

from which we derive the bias matrices,

14400 0.0 20736 14400 0.0 20736

| 0.04 00 0.0 0.0016 | 48400 0.0 234256
Xe1 = 1.44 40 2.88 20736 |’ Xe2 = 144 40968 20736
0.04 40 0.08 00016 4.84 40 9.68 234256

The mean square error matrices are obtained by

My = (X/11X11)71 +b,b'y

and B .
Mz = (X'12X12) 4 byb)

for segments 1 and 2 respectively.
Where,
b, = (Xilxll)’lxilelgB, b, = (X’12X12)71X{2X3293- Let, q, andg2 be the gradient vectors given in step (i),

section 2, the direction vector,
do
d=|d | = Hq, + (- H)gz;

hip 0 O 0.9992 00 0.0
H=| 0 hy 0 | = 0.0 10 00
0.0 0008201

and
HH + (1 —H)(I—H) =1.

with the information matrices for the segments as
My = HX{,X11H’

and
Mz = (I = H)X{oXa2(l —H)',

the pooled information matrices from the segments is

4.000 sym
My =M1+My= | —2.7978 29600
1.7840 —1.1482 46204
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Hence, the response vector,
!
z= (2, 21, 2o)’,

7o = f(—2.7978 1.7840 = 3.667.0359
7 = f(2.960Q —1.1482 = 98250284

73 = f(—1.1482 4.6204) = 10949594

Therefore, the direction vector R
do

dp
d>
_(di\ [ 09997
—-d= (az) - <0.0245) !
The step-lengtip is obtained from the derivative function
df (x—pd) /do =0 — p = 2.174

A move is now made to
-1.2 0.9997 0.97
%= < 10 )*2'174(—0.0245) = (o.95)

o (10
=110

Since, the optimizer

a second move is considered unnecessary.

6.2 Constrained Tri-Variate Objective Quadratic
The example is taken from Fletcher (1981, page 101) andnejtiie minimum of

f (X1,X2,X3) = 2X1 — X — X1X2 — XoXa + X4 + X3 + X5

S.t.

Xi = {X1,X2,X3; 31 — X2 + X3 > 0,2%1 — Xp — X3 < O} .
With two segment$S= 2) defined by

v . 1 7 . 1
X1 = {X1,%2,X3; X1 < 3,%2, %3} andXo = {X1,%,X3;X1 > 5.%2,X3}

We develop the design matrices

10 00

10 L1

2 2
1-101 1310 I
X_1%10X_1201 . o
11— 10 00l 12 = 17%71 y 2B — 1
10-33 1243 1

11 01

1 1

1-1-1}
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Just as in (6.1) the other matrices; M@z, Xy, B_lt, §2t, H, My are similarly generated. The direction vector,
d=(0.8136-0.2419 0.5287; g’g =1 p=0.1999 x= (0.1806 0.44440.5417),

X; = X— pd = (0.01800.4927,0.4360/
f(x;) = —0.2472

Since, the minimizex* = (0, 3, 3) and f (x*) = —% a second iterate is considered unnecessary.

7 Summary and Conclusions

The paper introduces a method, named SCLS for solving e@thestrained or unconstrained objective function that
frequently occur in different areas of scientific reseafidie method is shown to be more effective than other line searc
techniques. The SCLS can be identified by the following prige

(iExploration at each move is global, covering the entiasible region through segmentationXgf
(i) The direction vector is along the least-square, mimmgorm direction;
(ili)No more than maximum ofn+ 1) independent responses are needed at each iteration paint; a
(iv)Convergence is global.
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