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Abstract: The paper presents an effective, gradient-based procedure for locating the optimum for either constrained or unconstrained
response surfaces. The procedure is widely applicable covering linear and curvilinear constraints as well as constraints with redundancy.
Each move of the sequence is made by pooling information from all the support points in the feasible region, making the search a global
one and convergence to the global optimum almost certain.
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1 Introduction

The problem considered here is one that occurs very frequently in many scientific enquiries; i.e. to locate the optimizer
(specifically the minimizer) of a multivariable objective function, defined in a continuous, finite dimensional space;see,
e.g. Gass (1964, page 257) for a bibliography of applications covering several areas of practical optimization problems,
Dantniz (1964, page 63), Box and Wilson (1951).

The Ordinary Line Search Methods OLSM which originated fromCauchy (1894), albeit modified severally over the
decades, are perhaps, the most frequently employed techniques in the search for the optimum of unconstrained functions
UCF. On the other hand, the Active set, the Lagrangian, the simplex methods, etc are the favoured techniques for
constrained functions CF. Interestingly, Fletcher (1981)by portraying these CF techniques as line search algorithmshas
shown that both the UCF and CF problems could be treated from the same analytical framework, all of which make-up
the OLSM. Generally, each line search sequence is built-up from four (4) composite parts:

(a) The starting point, which is ann–component vectorx, (b) An n-component direction vectord, (c) Computation of
the step–lengthρ , and (d) A movement to the iterate,x(= x±ρd) .

This set of sequential activities applies as well to the new technique herein introduced, albeit with some very significant
differences.

First, exploration in the OLSM is made in a sub-regionSp ⊂ X̃ f , and the starting point, ¯x, is at the center ofSp;
where,X̃ f is the entire feasible region, also known as the experimental space; see, e.g. Wilde and Beightler (1967, section
7.03, page 281). But in the new series, which may be called Super Convergent Line Series SCLS, the whole spaceX̃ f is
partitioned into non-overlapping segmentsS, and each segment is explored separately. The starting pointx̄, i.e. the center
of the spacẽX f , is then obtained as the arithmetic average of the segment means. Good convergence has also been reported
by Onukogu and Chigbu (2002, page 106) using the harmonic mean of the segments. However, becauseX̃ f often has a
regular geometric form the use of ¯x is generally satisfactory.

Second, the direction of search, under the OLSM is either along then–component gradient vectorg or along a deflected
gradientAg; with A as then×n deflection matrix; see, e.g. Wilde and Beightler (1967, page293). The gradient direction
vector,g (whereA = I is an identity matrix), doesn’t take into account the bias due to interactions and higher order
effects that may be present in the response function hence the performance is generally poorer than theAg direction.
In the SCLS however, the direction vector is a weighted average from all the segments; the weights being proportional
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to the mean square errors from the segments. It is shown in section three (3) that the SCLS direction vector has a least
squares-minimum norm LSMN property.

Third, the basic idea for obtaining the step-lengthρ is essentially the same for both OLSM and SCLS and this again
depends on whether or not the optimizerx∗, is expected to be an interior point or a boundary point. Whenx∗, is an
interior point,ρ is obtained (i.e. after obtaining ¯x, andd) by expressing the objective function as a function ofρ only and
solving the derivative equation that follows. On the contrary,whenx∗ is a boundary point (again after getting ¯x, andd) the
step-length is computed for each constraint, giving{ρk} ,k = 1,2, . . . ,K andρ = mink {ρk}

K
1 . Detailed computations are

illustrated in section six (6) of this report.
Fourth, the SCLS is globally convergent, whereas the OLSM may fail to converge or may converge to a local optimum.

After 200 iterations the gradient procedure failed to reachthe minimum of the Rosenbrock function which is example 1,
section 6 of this paper. The gradient procedure obtainedx1 = −0.605,x2 = 0.375), f (x1,x2) = 2.578; see, Wilde and
Beightler table 7-1, page 312.

In the OLSM, difficulties could arise if some of the constraints are redundant or curvilinear whereas no such difficulties
occur with the SCLS; see Onukogu and Chigbu (2002, page 127).Redundancy occurs when the set of constraints are not
linearly independent and this gives rise to the problem of inversion of matrices that are not of full rank; see, e.g. Fletcher
starting from page 14. The curvilinear constraints often give rise to feasible regions that have irregular geometry andan
optimizerx∗, that may now be an interior point. In such a situation, sequential methods like the Simplex, Active Set, etc
are likely to fail to reach the optimizer. Indeed, in the SCLS, the major role of the constraints is to ensure that the designs
in the segments are feasible, and that the iterate is also feasible.

Exploring new ways to tackle old problems on optimization have continued to generate fascinating research interest:
interior point algorithm by Karmarker (1984) shows a refreshing light on solution of constrained optimization, Umoren
(1996) has obtained solutions to linearly constrained optimization problems using experimental design techniques.
Taking all these efforts along with that of Concentric Ballstechnique by Onukogu (2012), one can see an emergence of a
unified class of algorithms for solving optimization problems regardless of whether they occur in experimental designs,
in Operations Research or in the diversity of practical problems.

2 The Sequential Steps

The problem is to findx∗ the minimizer of ann–variate,m–degree polynomial objective function;

f (x;m) = a′x =
(

a′1x1+a′2x2

)

+ e; m ≥ 1; 2.1

where,a′ = (a′1,a
′
2) , x =

(

x1
x2

)

, are respectively,p–component row and column vectors of known parameters and

input variables.
The a1, a2 are(n+ 1) and(p− n− 1) vectors of first and higher effects,x1, x2 are their respective vector of input

variables,e represents random observation error. For constrained optimization COP, the feasible region,

X̃ f ≡ X̃c =
{

x1,x2, . . . ,xn; c′kxk ≤,=,≥ bk, k = 1,2, . . . ,K
}

;
whereas,

for unconstrained optimization UCOP,

X̃ f ≡ X̃u = {x1,x2, . . . ,xn; ∏n
i=1 (t1i − t0i) ; t0i < xi < t1i} ;

is a product of intervals.
In X̃c, c′kxk is a polynomial of degreemk ≥ 1, ck is a pk–component vector of known constants,xk its corresponding

vector of input variables,bk, t0i, t1i are scalars. The{xi} are considered quantitative, non-stochastic variables; hence,X̃ f is
a continuous, finite dimensional, compact, metric space; see e.g. Pazman (1986 starting from chapter two, page 15). The
sequential steps are therefore as follows:

(i)PartitionX̃ f into S ≥ 2, non-overlapping segments̃X1, X̃2, . . . , X̃S
(ii)Representf (x;m) in thesth segment by a first-order regression functiony

s
= Xsqs

+ es, s = 1,2, . . . ,S.
Thus,
q

s
= a1+XBsa2; x ∈ X̃s
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y
s
, es are respectively,Ns–component vectors of unknown responses and random observation errors,

Xs is Ns × (n+1) design matrix;Ns is the number of support points in thesth segment,Ns ≥ n+1

q
s

is (n+1)–component vector of unknown parameters

XBS is Ns × (p−n−1) bias matrix corresponding toa2, the bias vector in (2.1)
(iii)From (ii) above, compute ¯xs, the arithmetic mean vector in each segment, the grand mean, ¯x = S−1 ∑S

s=1 x̄s, the
normalized information matrix,Ms = N−1

s X ′
sXs and the bias matrix,

BS = M−1
S +M−1

S X ′
SXBSa2a′2X ′

BSXSM−1
S , s = 1,2, . . . ,S

(iv)From (3.1) through (3.5) compute the direction vectord and the step-lengthρ from (3.6a) or (3.6b).
(v)Move tox = x̄−ρd, and at thejth iterate, move tox j = x̄ j−1−ρ j−1d

j−1

(vi)Is ‖ f
(

x j−1;m
)

− f
(

x j;m
)

‖≤ δ ?; δ ≥ 0

Yes: Stop, and setx j = x∗

No: Let x j fall into thetth segment and define for this segment the information matrix,
M jt = Mt + x jx

′
j; Mt = X ′

t Xt

X jt =





Xt
. . .
x′ j



 ,

and the mean square matrix,

Bt = M−1
t +M−1

t X ′
jtXBta2a′2X ′

BtX jtM
−1
t .

Return to step (iii) above, taking notice of the fact that ¯xs,Ms andBs remain unchanged for alls 6= t.

3 The direction vector and step-Length

By pooling the segmented models in section 2, step (ii) we obtain a single model,

y = Xq+ e; 3.1

y =
(

y
1
,y

2
, . . . ,y

S

)′
is anN–component column vector of unknown responses,e = (e1,e2, . . . ,eS)

′ is anN–component

vector of random observation error.X = diag{X1,X2, . . . ,XS} is anN × S(n+ 1)design matrixq =
(

q
1
,q

2
, . . . ,q

S

)′
is

an S(n+1)–component column vector of unknown parameters. We define the (n+1)–component direction vectord =
(d0,d1, . . . ,dn)

′ as a vector of convex combinations,

di =
S

∑
s=1

hisqis; his ≥ 0,
S

∑
s=1

his = 1, i = 0,1,2, . . . ,n 3.2

with mean square error, ¯m(di) =
S
∑

s=1
h2

ism̄ii(s); m̄ii(s) is theith diagonal element of the matrixBs. We minimizem̄(di)

from the partial derivative equations
{∂ m̄(di)/∂his}

S−1
s=1 = 0.

Hence, the matrix equation,

(

Di + m̄ii(S)J
)

hi = m̄ii(S)1; i = 0,1, . . . ,n. 3.3
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In (3.3),Di = diag
{

m̄ii(1), m̄ii(2), . . . , m̄ii(S−1)
}

is an(S−1)× (S−1) diagonal matrix,hi =
(

hi1,hi2, . . . ,hi(S−1)
)′
, 1=

(1,1, . . . ,1)′ is an (S− 1)–component vector of unit elements. Therefore,hi =
(

Di + m̄ii(S)J
)−1

m̄ii(S)1; J = 11′ is an
(S−1)× (S−1) matrix with unit elements,

(

Di + m̄ii(S)J
)−1

= D−1
i −D−1

i m̄ii(S)1
(

1+1′D−1
i 1

)−1
1′D−1

i . And define,

h
i
=

(

hi
hiS

)

; hiS = 1−∑S−1
s=1 his.

By re-arranging the vectors
{

h
i

}n

i=0
we obtain the matrices of coefficients of convex combinations,

H = (H1,H2, . . . ,HS) of dimension(n + 1)× S(n + 1); Hs = diag{h0s,h1s, . . . ,hns} , s = 1,2, . . . ,S, which is now
normalised such thatHH ′ = I, I is an identity matrix. In vector notations, (3.2) is written,

d = Hq,

which from above normalization of theH matrix impliesq = H ′d.
Then, from (3.1) we get the model

z = MHd +υ; 3.4

z = HX ′y, MH = HX ′XH ′, υ = HX ′e of dimensions(n+1), (n+1)× (n+1) and(n+1) respectively.
To obtain the least squares estimate ofd from (3.4); first, we writeMH in expanded form:

MH = (mki) =









m00
m10

mn0

∣

∣

∣

∣

∣

∣

∣

m01 · · · · · · m0n
m11 . . . . . . m1n

...
...

mn1 . . . . . . mnn









and obtain from (2.1),

z0 = f (m01,m02, . . . ,m0n;m), z1 = f (m11,m12, . . . ,m1n;m), . . . ,zn =
f (mn1,mn2, . . . ,mnn;m); which are obtained by replacing{xi} in f (x1,x2, . . . ,xn; m) with {mki} in the kth row of
MH ,k = 0,1, . . . ,n, i = 1,2, . . . ,n.

Hence the least squares estimate

d̂ = M−1
H z =















d̂0
...
d̂1
...

d̂n















→ d =











d̂1

d̂1
...

d̂n











3.5

and normalize tod′d = 1.
Notice, the optimal properties of the direction vector:

(a)No more than(n+ 1) independent responses{zi} are needed to obtain the estimate,d̂ , as may be expected from
Brooks and Mickey (1961).

(b)The estimator̂d, has a least squares–minimum norm property being solution tothe
Lagrangian function,

L(d,λ ) = min(d′B̄d), subject toz = MHd;

B̄ = Hdiag{B1,B2, . . . ,BS}H ′ is an(n+1)× (n+1) matrix.

λ is a vector of Lagrangian multiplier.

This derivation of the direction vectord, applies to constrained, as well as, unconstrained problems; however, for the
step-lengthρ , the computational procedure depends on whether the optimizer x∗ is an interior or a boundary point.
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4 Computation of ρ

WhenX̃c is a convex set, as is true, when the constraints are first-order linear,x∗ is a boundary point and the step-lengthρ
is obtained from the equation:

ρ = min
k

{

c′k
(

x̄−ρkd
)

−bk
}

= min
k

{(

c′kx̄−bk
)

/c′kd
}

, k = 1,2, . . . ,K. 4.1

Now, for constrained problems with non-linear constraintsas well as unconstrained problems,x∗ is expected to be an
interior point,ρ is obtained by solving for the roots of them−1 degree polynomial from the derivative equation of the
objective function in (2.1);

d f ((x̄−ρd);m)/dρ = 0 4.2

5 Global Convergence

From Section 2, step (vi) we notice thatMt j = Mt + x jx
′
j, and from (3.4),

MH j = MH j−1+
(

H jtx j

)(

H jtx j

)′
;

H jt is a matrix of convex combinations at thejth step whenx j falls into thetth segment.

⇒
{

MH j
}∞

j=1 is a non-decreasing sequence.

Consequently,

det
(

MH jM
−1
H j−1

)

= 1+ω j;

ω j =
(

H jx j

)′
M−1

H j−1

(

H jx j

)

is the jth step variance incremental factor; hence

det
(

MH jM
−1
H j−1

)

< det
(

MH j−1M−1
H j−2

)

⇒
{

ω j
}∞

j=1 is an non-increasing sequence.
Therefore, Kolmogorov’s criterion for absolute convergence is satisfied; see e.g. Feller (1966, page 259). Now, since

exploration at each step is global, encompassing the entirefeasible regionX̃ f (see section 2) the convergence tox∗ is
global as well.

6 Numerical Examples

Two examples are covered in this section. The first is the unconstrained Rosenbrock test function taken from Onukogu
(1997). The second is a tri-variate constrained quadratic function from Fletcher (1981, page 101).

6.1 Example 1. (Rosenbrock function)

The problem is defined in Wilde and Beightler (1967, page 301)as
min f (x1,x2) = 100(x2− x2

1
)2+(1− x1)

2.

And to reflect the biasing vector, we re-writef (x1,x2) thus;

f (x1,x2) = 1−2x1+(x2
1+100x2

2−200x2
1x2+100x4

1),

and letX̃ = {x1,x2; −2.2< x1 <−0.2, 0< x2 < 2} .
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Hence, the bias vector,cB = (1, 100,−200, 100)′

For two segments(S = 2), usingx1to create segments, we define,

X̃1 = {x1,x2; −1.2< x1 <−0.2, 0< x2 < 2}

X̃2 = {x1,x2; −2.2< x1 <−1.2, 0< x2 < 2}

The design matrices for the two segments are, respectively,for ys = a0s +a1sx1+a2sx2+ es; s = 1,2,

X11 =







1 −1.2 0.0
1 −0.2 0.0
1 −1.2 2.0
1 −0.2 2.0






andX12 =







1 −1.2 0.0
1 −2.2 0.0
1 −1.2 2.0
1 −2.2 2.0






,

from which we derive the bias matrices,

XB1 =







1.44 0.0 0.0 2.0736
0.04 0.0 0.0 0.0016
1.44 4.0 2.88 2.0736
0.04 4.0 0.08 0.0016






, XB2 =







1.44 0.0 0.0 2.0736
4.84 0.0 0.0 23.4256
1.44 4.0 9.68 2.0736
4.84 4.0 9.68 23.4256







The mean square error matrices are obtained by

M̄1 =
(

X ′
11X11

)−1
+b1b′1

and
M̄2 =

(

X ′
12X12

)−1
+b2b′2

for segments 1 and 2 respectively.
Where,
b1 = (X ′

11X11)
−1X ′

11XB1cB, b2 = (X ′
12X12)

−1X ′
12XB2 cB. Let, q

1
and q

2
be the gradient vectors given in step (ii),

section 2, the direction vector,

d =





d0
d1
d2



 = Hq
1
+ (I − H)q

2
;

H =





h10 0 0
0 h11 0
0 0 h12



 =





0.9992 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.8201





and
HH ′+(I −H)(I −H)′ = I.

with the information matrices for the segments as

M1 = HX ′
11X11H ′

and
M2 = (I −H)X ′

12X12(I −H)′,

the pooled information matrices from the segments is

MH = M1+M2 =





4.000 sym
−2.7978 2.9600
1.7840 −1.1482 4.6204



 .
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Hence, the response vector,
z = (z0, z1 , z2)

′,

z0 = f (−2.7978, 1.7840) = 3.667.0359

z1 = f (2.9600,−1.1482) = 9825.0284

z1 = f (−1.1482, 4.6204) = 1094.9594

Therefore, the direction vector

d =









d̂0
· · ·
d̂1

d̂2









= M−1
H z

→ d =

(

d̂1

d̂2

)

=

(

0.9997
−0.0245

)

;

The step-lengthρ is obtained from the derivative function

d f
(

x̄−ρd
)/

dρ = 0 → ρ = 2.174

A move is now made to

x1 =

(

−1.2
1.0

)

+2.174

(

0.9997
−0.0245

)

=

(

0.97
0.95

)

Since, the optimizer

x∗ =

(

1.0
1.0

)

a second move is considered unnecessary.

6.2 Constrained Tri-Variate Objective Quadratic

The example is taken from Fletcher (1981, page 101) and requires the minimum of

f (x1,x2,x3) = 2x1− x2− x1x2− x2x3+ x2
1+ x2

2+ x2
3

s.t.

X̃ f = {x1,x2,x3;3x1− x2+ x3 ≥ 0,2x1− x2− x3 ≤ 0} .

With two segments(S = 2) defined by

X̃1 =
{

x1,x2,x3;x1 ≤
1
2,x2,x3

}

andX̃2 =
{

x1,x2,x3;x1 ≥
1
2,x2,x3

}

We develop the design matrices

X11 =

























1 0 0 0
1 0 1

2
1
2

1 −1
3 0 1

1 1
2 1 0

1 0 0 0
1 0 −1

2
1
2

1 1
3 0 1

1 −1
2 −1 1

2

























, X12 =









1 1
2 1 0

1 1
2 0 1

1 2
3

1
3 −1

1 1
2 4 3









, cB =











−1
−1
1
1
1










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Just as in (6.1) the other matrices; i.e.XB1, XB2, B̄1t , B̄2t , H, MH are similarly generated. The direction vector,
d = (0.8136,−0.2419,0.5287)′; d′d = 1, ρ = 0.1999, x̄ = (0.1806,0.4444,0.5417),
x∗1 = x̄−ρd = (0.0180,0.4927,0.4360)′

f (x∗1) =−0.2472.

Since, the minimizerx∗ = (0, 1
2,

1
2) and f (x∗) =−1

4 a second iterate is considered unnecessary.

7 Summary and Conclusions

The paper introduces a method, named SCLS for solving eitherconstrained or unconstrained objective function that
frequently occur in different areas of scientific research.The method is shown to be more effective than other line search
techniques. The SCLS can be identified by the following properties:

(i)Exploration at each move is global, covering the entire feasible region through segmentation ofX̃ f ;
(ii)The direction vector is along the least-square, minimum-norm direction;

(iii)No more than maximum of(n+1) independent responses are needed at each iteration point; and
(iv)Convergence is global.
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