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Abstract: We investigate the dynamics of the two-mode Jaynes–Cummings model with generalized nonlinear coupling including
intrinsic noise as described by the Milburn equation. Based on a general analytic solution of the corresponding master equation, we
calculate the growth of entropy in the system at the special case of two Raman–coupled long lived atomic states as well as the partial
entropies of the atom and field subsystem. We see that the system is very sensitive to phase noise, if both fields are initially in a coherent
state. The dynamics then rapidly leads to suppression of quantum revivals and a steady entanglement between the fields and the atom.
This hints for serious limitations for the use of Raman induced transitions in quantum information processing setups. For an alternative
entanglement measure we calculate the negativity of the eigenvalues of the partially transposed density matrix and compare it to the
difference of the total entropy to the sum of field and atom partial entropies.
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1 Introduction

Entanglement is one of the key properties distinguishing
quantum theory from classical descriptions of the world
and arises in almost any coherent interaction between
distinct subsystems. Naturally it has been a subject of
study for decades. Recently there has been a very intense
renewed interest in the fundamental properties of
entanglement as it plays a central role in quantum
information processing. Examples are quantum
teleportation [1], quantum dense coding [2], quantum
secret sharing [3] or quantum computation[4]. New
measures on quantifying entangled states has been
developed by several authors [5-7]. Beyond this still many
problems to fully understand the concept of entanglement
rather than to knowing its mathematical definition remain.

Entanglement is ubitiquous in multipartite systems.
An important practical aspect is, however, the study of
systems that can be used to generate entanglement in a
controlled way. The prototype system in quantum optics
to generate and observe entanglement consists of a single
field mode coupled to a single atom, i.e. the
Jaynes–Cummings (JC) model [8-11], where the

unperturbed time evolution implies a continuous
generation and annihilation of entanglement. As is well
known this can be easily monitored quantitatively by the
size of the partial entropies of the field S f or the atom Sa
[7]. One finds that the higher the entropies (S f ,Sa), the
greater the entanglement. Starting from an initial
atom-field product state one can find perfectly entangled
states between field and atom at certain later times even
for initial coherent states with large photon number [8-10]
which almost vanishes again at the revival time.

It is important to note that the time evolution of the
field (atomic) entropy reflects the time evolution of the
degree of entanglement only, if one deals with a pure state
of the system with zero total entropy S = 0. Any
environmental coupling introduces entropy growth in the
observed subsystem. Naturally some damping is always
present experimentally and it is conventionally modelled
by weak coupling to an external thermal reservoir
including energy exchange. In such a dissipative quantum
system the interaction leads to a slow thermalization of
the system and a decay of any entanglement. As is well
known damping has a very severe effect on quantum
coherences of the system involving superposition states of
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well distinguishable components [12-14]. These damp out
on a much faster time scale. From this one can expect a
strong sensitivity of entanglement generation on noise
even on a shorter time scale. Several authors have thus
studied the JC model with damping by the use of analytic
approximations [15-17] and numerical calculations
[18-21]. Recently it has been demonstrated that
entanglement is generated in a JC model for a pure state
of one of its subsystems and the other in a mixed state
[22].

In a practical implementation to generate
entanglement between two subsystems one tries to reduce
the environmental energy exchange and coupling with the
rest of the world as much as possible. Any generated
entanglement between the environment and the
considered systems is a potential information leak and
degrades the quality of the generated entanglement.
Unfortunately besides energy input–output, there are
other kinds of environmental influences, which do not
involve energy exchange, but rather induce fluctuations of
the system energy levels and coupling phases. A
prototype dynamics to study the dynamics of this so
called phase damping has been proposed by Milburn [23].
Here the system-environment interaction Hamiltonian
commutes with that of the system. Dynamically only the
phase of the quantum state is changed in the interaction.
This implies that off diagonal elements of the density
matrix in the energy basis decay at a given rate. Apart
from providing a consistent frame to study such
couplings, including effective phase damping terms often
well describes unaccounted decay of coherences in
experimental setups as found e.g in a single mode micro
maser[24]. In addition, it has been shown recently, that
phase damping seriously reduces the fidelity of the
received qubit in quantum communication[25]. Of course
phase damping has been investigated not only in the JC
model but also in other more complex quantum systems
as quantum computers transport phenomena in
mesoscopic system [26].

Here we study the influence of phase noise on the
growth of the system entropy and the formation of
entanglement at the analytically solvable example of
multi-quanta two-mode JC model. Nonlinear couplings
between two modes are typical ingredients to build
quantum gate operations. As the simplest nontrivial
example we will then consider a Raman-type coupling
between two long lived atomic states by the two modes,
which we like to manipulated in a well defined way. Such
a Raman coupling can be used to generated controlled
entanglement between the two modes. However, at the
same time during this process also entanglement between
the modes and the atom is generated, which is often
neglected but degrades the entanglement between the two
fields. This complicates e.g. the achievement of perfect
entanglement of the two modes. By a suitable choice of
coupling strengths and time this problem can be
circumvented in principle. In the following we will
investigate, how the addition of phase noise generates

even more stringent conditions to reach this goal. In
particular we consider the case, when one uses weak
coherent fields instead of photon number eigenstates to
perform the task.

As said before due to the growth of the total entropy,
calculating simply the partial atomic entropy does not
provide for a good quantitative measure of entanglement
[6]. Fortunately a number of alternative possibilities to get
a measure of entanglement have been developed recently
[6], which can be very well used in our case. In particular
we will use the negativity of the eigenvalues of the partial
transpose of the density matrix as introduced by Vidal
[27] recently, which provides for a convenient,
computable measure of entanglement. As an extra point
in our work this allows to compare the two entanglement
measures quantitatively via the study of the sensitivity of
entanglement formation on the amount of phase noise.

This paper is organized as follows: In section 2, we
present the master equation to describe the phase
damping of a quantum system under the Markovian
approximation. In section 3, we obtain an exact solution
of the multi-quanta two-mode JC model with phase
damping and give the explicit expression of this solution
in the two-dimensional basis of the particle. Section 4 is
devoted to an investigation of the sensitivity of the
particle-field entanglement generation an entropy growth
to the amount of phase noise and also we compare
different measures of entanglement.

2 Master equation describing phase damping

We consider a system described by the Hamiltonian H and
interacting with the heat-bath environment (the reservoir)
which consists of an infinite set of harmonic oscillators. we
assume that the system interacting with the environment
can be described by the total Hamiltonian

ĤT = Ĥ + ∑
i
(

p2
i

2mi
+

1
2

miω2
i x2

i )

+h̄Ĥ ∑
i

Cixi + h̄2Ĥ2 ∑
i

|C2
i |

2miω2
i
, (1)

where the second term is the Hamiltonian of the reservoir,
the third represents the interaction between the system
and the reservoir with the coupling constant h̄Ci, and the
last is the renormalization term [28]. Obviously, the
system Hamiltonian Ĥ commutes with the interaction
Hamiltonian in Eq.(1). The form of coupling between the
system and the reservoir which we adopt here is also of
importance in the back-action-evading and quantum-non
demolition schemes [29]. From Louisell’s approach [30],
under the Markovian approximation we can obtain the
following master equation describing the phase damping
in the interaction picture:

d
dt

ρ̂(t) =
1
ih̄
[Ĥ, ρ̂(t)]− γ[Ĥ, [Ĥ, ρ̂(t)]], (2)
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where γ is an effective constant depending on the
temperature and spectral density of the reservoir [31].
Obviously, the master equation (2) has the same form as
the Milburn’s equation [31] under the diffusion
approximation.

3 Analytic solution of the master equation

In this section, we shall consider a Hamiltonian model
that consists of two modes interacting with a three-level
particle (atom or trapped ion) via Raman transition. We
consider the nondegenerate case in which pairs of
photons with two different frequencies are created or
annihilated. The atomic levels have identical parities such
that each dipole is coupled with different modes of the
field and to the set of intermediate states. If we assume
that the intermediate states do not admit dipole transitions
between themselves and the interaction field modes are
far off-resonance from those intermediate states, then the
particle can be seen as an effective two-level system by
means of adiabatic elimination of the intermediate state
[32,33]. The Hamiltonian for the system, in the rotating
wave approximation, is written as:

Ĥ =
ω◦
2

σ̂z +
2

∑
j=1

ω jâ
†
j â j +λ (â†k1

1 âk2
2 σ̂−+ âk1

1 â†k2
2 σ̂+)

= ω1[n̂1 +
k1

2
(I + σ̂z)]+ω2[n̂2 +

k2

2
(I − σ̂z)]

−1
2
(k1ω1 + k2ω2)I +

∆
2

σ̂z +λ (â†k1
1 âk2

2 σ̂−

+âk1
1 â†k2

2 σ̂+), (3)

where the detuning parameter ∆ = ω◦− k1ω1 + k2ω2, â j

(â†
j) and n̂ j = â†

j â j are the annihilation (creation) and
number operators for the jth mode, λ is the particle-field
coupling constant, ω1 and ω2 are the field frequencies for
the two modes, ω◦ is the transition frequency of the
particle (atom or trapped ion), σ̂z is the population
inversion operator, while k1 and k2 are the multi-quanta
parameters and σ̂± are the ’spin flip’ operators which
satisfy the relation [σ̂+, σ̂−] = σ̂z and [σ̂z, σ̂±] =±2σ̂±.

Now, we look for the exact solution for the density
operator ρ̂(t) of the master equation (2) taking into
account the Hamiltonian (3).

For convenience, we introduce three auxiliary
superoperators [34-36] Ĵ, Ŝ and L̂ defined by

exp(Ĵτ)ρ̂(t) =
∞

∑
k=0

(2τγ)k

k!
Ĥkρ̂(t)Ĥk, (4)

exp(Ŝτ)ρ̂(t) = exp(−iĤτ)ρ̂(t)exp(iĤτ), (5)

exp(L̂τ)ρ̂(t) = exp[−γτĤ2]ρ̂(t)exp[−γτĤ2], (6)

where the Hamiltonian Ĥ is given by Eq. (3).

It is straightforward to obtain the formal solution of the
master equation (Eq. 2) as follows:

ρ̂(t) = exp(Ĵt)exp(Ŝt)exp(L̂t)ρ̂(0), (7)

where ρ̂(0) is the density operator of the initial
particle-field system. We assume that the initial two
modes of the field inside the cavity are in a coherent state
and the particle in its excited state | e > or ground state
| g >, so that:

ρ̂e(0) =| α1,α2 >< α1,α2 | ⊗ | e >< e |, (8)

or
ρ̂g(0) =| α1,α2 >< α1,α2 | ⊗ | g >< g |, (9)

with | α1,α2 >=| α1 >⊗ | α2 > defined by

| α1,α2 >=
∞

∑
n1,n2=0

qn1 qn2 | n1 >⊗ | n2 >, (10)

where qn j = e−α2
j /2 α

n j
j√
n j!

, ( j = 1,2).

Following essentially the same procedures as in Refs.
[34-36], we arrive at the explicit expression of the exact
solution of the master equation (2) for multi-quanta two-
mode JC model in the following form:

ρ̂(t) =
∞

∑
k=0

(2γt)k

k!

[
M̂(k)

ee (t) | e >< e |+M̂(k)
eg (t) | e >< g |

+ M̂(k)
ge (t) | g >< e |+M̂(k)

gg (t) | g >< g |
]
, (11)

where

M̂(k)
ee (t) = ÂΨ̂11(t)Â+ ÂΨ̂12(t)Ĉ+ B̂Ψ̂21(t)Â+ B̂Ψ22(t)Ĉ,

(12)

M̂(k)
gg (t) = ĈΨ̂11(t)B̂+ĈΨ̂12(t)D̂+ D̂Ψ̂21(t)B̂+ D̂Ψ̂22(t)D̂,

(13)

and

M̂(k)
ge (t) = [M̂(k)

eg (t)]† = ĈΨ̂11(t)Â+ĈΨ̂12(t)Ĉ

+D̂Ψ̂21(t)Â+ D̂Ψ̂22(t)Ĉ,

(14)

with

Â =

[
f̂ (k)1 +(

∆
2λ

)ĝ(k)
′

1

]
, B̂ = âk1

1 â†k2
2 ĝ(k)

′

2 ,

Ĉ = ĝ(k)
′

2 â†k1
1 âk2

2 , D̂ =

[
f̂ (k)2 − (

∆
2λ

)ĝ(k)
′

2

]
, (15)

where

Ψ̂i j(t) =| Ψ̂i(t)>< Ψ̂j(t) | (i, j = 1,2), (16)

If the particle starts from its excited state, i.e., with the
initial condition (8), then

| Ψ̂1(t)>=

[
R̂1(t)− (

∆
2λ

)
V̂1(t)

F̂1

]
| Ψ̂(t)>, (17)
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| Ψ̂2(t)>=−â†k1
1 âk2

2

[
V̂1(t)

F̂1

]
| Ψ̂(t)>, (18)

| Ψ̂(t)> = exp
[
−γt[Ŵ 2

1 +λ 2F̂2
1 ]

]
×exp[−iŴ1t] | α1,α2 > . (19)

While if the particle starts from its ground state, i.e., with
the condition (9), then

| Ψ̂1(t)>=−âk1
1 â†k2

2

[
V̂2(t)

F̂2

]
| Ψ̂ ′(t)>, (20)

| Ψ̂2(t)>=

[
R̂2(t)+(

∆
2λ

)
V̂2(t)

F̂2

]
| Ψ̂ ′(t)>, (21)

| Ψ̂ ′(t)> = exp
[
−γt[Ŵ 2

2 +λ 2F̂2
2 ]

]
×exp[−iŴ2t] | α1,α2 > (22)

and

ĝ(k)
′

2 =
ĝ(k)2

F̂2
, Ŵ1 = w1(n1 + k1)+w2n2, (23)

where the operators f̂ (k)2 , ĝ(k)2 and Φ̂2(±) are defined by

f̂ (k)2 =
1
2
[Φ̂k

2(+)+ Φ̂k
2(−)]

ĝ(k)2 =
1
2
[Φ̂k

2(+)− Φ̂k
2(−)] Φ̂2(±) = Ŵ2 ±λ F̂2, (24)

with
R̂2(t) = Ĉ2(t)X̂2(t)+ iŜ2(t)Ŷ2(t) (25)

V̂2(t) = Ĉ2(t)Ŷ2(t)+ iŜ2(t)X̂2(t) (26)

Ĉ2(t) = cosλ tF̂2 Ŝ2(t) = sinλ tF̂2 (27)

X̂2(t) = cosh
[

2λ tγŴ2F̂2

]
Ŷ2(t) = sinh

[
2λ tγŴ2F̂2

]
(28)

F̂2
2 = (

∆
2λ

)2 + ν̂2
2 , ν̂2

2 =
n1!

(n1 − k1)!
(n2 + k2)!
(n2)!

. (29)

Note that in the above equations (15-29), we have used
the subscript 1 instead of (n1 + k1,n2) and 2 instead of
(n1,n2 + k2). We can obtain the reduced density operator
for the particle by taking the trace over the states of the
field. Thus the reduced density particle operator becomes

ρ̂a(t) = Tr f ρ̂(t) =
[

Cee(t) Ceg(t)
Cge(t) Cgg(t)

]
, (30)

where

Ci j(t) =
∞

∑
k,n=0

(2γt)k

k!
< n1,n2 | M̂(k)

i j (t) | n1,n2 >,

(i, j = e,g), (31)
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Fig. 1: The population inversion for the particle initially prepared
in the ground state | g >, for various values of the parameter γ .

while the reduced density operator for the field is given by

ρ̂ f (t) = Traρ̂(t) =
∞

∑
k=0

(2γt)k

k!

[
M̂(k)

ee (t)+ M̂(k)
gg (t)

]
. (32)

Employing the density operator and the reduced density
operators for the particle or the field are given by equations
(11), (30), and (32), we investigate the properties of the
evolution of the degree of entanglement.

4 Degree of entanglement

Let us first have a look on the typical time evolution of
the system by calculating the population inversion as
function of time for the atom starting in the lower state
and the fields being in weak coherent states. Here (Fig.1
-solid curve) one finds the well known Rabi oscillations
of the atomic population which damp out fast due to the
uncertainty in the photon number but show a revival after
some longer time. These revivals prove to be very
sensitive to even a small amount of phase noise
(dot-dashed and dashed curves) and the system reaches a
steady state, where both levels are similarly populated.

The field of quantum information and computing is
based on the manipulation of quantum coherent states
[37]. Existing device of quantum optics has been
proposed as experimental implementation and is
employed to realize quantum computers. This in fact
encouraged us to extend the previous work [38] to the
case of two modes interacting with a two-level atom, to
discuss the effect of the entropy and entanglement where
the multiphoton processes are involved. Therefore, our
target in the present paper is to concentrate on the
two-mode case rather than the case of one-mode, which
has been previously considered.
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Fig. 2: Partial entropy Sa for the atom (upper solid curve), S f
the field (dotted curve) as well as the total entropy S (dashed
curve) and Sa +S f (dot-dashed curve) as a function of the scaled
time λ t of the particle initially prepared in the excited state | e >
and the field initially prepared in a coherent state | α1,α2 >
(n̄1 = 2, n̄2 = 3), for small phase noise γ = 10−6. The lower
solid curve shows the sum of the negative eigenvalues Eneg of
the partially transposed density matrix ρTA in comparison to the
entropy difference Edi f f (lower dot-dashed curve).

In the previous work[38], we studied how intrinsic
decoherence leads to growing entropy and a strong
degradation of the maximal generated entanglement in the
single mode JC model. Also, we observed an increase in
the values of the entropies S and S f , while Sa converges
to 0.5 as t develops.

In this article, we investigate the dynamics of the
two-mode JC model with generalized nonlinear coupling
including intrinsic noise as described by the Milburn
equation. Based on a general analytic solution of the
corresponding master equation, we calculate the growth
of entropy in the system at the special case of two
Raman–coupled long lived atomic states as well as the
partial entropies of the atom and field subsystem. We see
that the system is very sensitive to phase noise, if both
fields are initially in a coherent state. For an alternative
entanglement measure we calculate the negativity of the
eigenvalues of the partially transposed density matrix and
compare it to the difference of the total entropy to the sum
of field and atom partial entropies. As we see in the next
sec., we observe increase in the values of the entropies S
and S f , while Sa converges to 0.7 after short time. In this
case the field subsystem has higher sub-entropy for
increased γ which can be taken as a stronger degree of
correlation than for smaller value of γ . On the other hand
the atomic subsystem shows slight decrease in its
sub-entropy as γ increases. Also, one notes that the
entanglement for the field subsystem grows faster for the

initial ground state of the atom than the initial excited
state.

Let us now investigate the influence of phase damping
on the evolution of the fields, the atomic and the total
entropy for two-mode JC model at the hand of numerical
examples.

It is now in interesting question whether and how
much the atom and the fields get entangled in this
process[6]. Here we will compare two methods to
quantify this. One the one hand we get a qualitative
estimate of the entanglement by calculating the relative
size of the total entropy of the system and the sum of the
entropies in each subsystem. Alternatively we use the
recently proposed measure involving the sum of negative
eigenvalues Eneg of the partially transposed density matrix
ρTA as a proven quantitative measure [27].

Let us now briefly repeat some of key underlying
definitions. The entropy S of a quantum-mechanical
system described by the density operator ρ̂ is defined as
follows:

S =−Tr{ρ̂lnρ̂}, (33)
where we have set the Boltzmann constant K equal to
unity . If ρ̂ describes a pure state, then S = 0, and if ρ̂
describes a mixed state, then S ̸= 0. Entropies of the
atomic and field sub-systems are defined by the
corresponding reduced density operators:

Sa( f ) =−Tra( f ){ρ̂a( f )lnρa( f )}. (34)

For the entropy of a general two-component system
one has the Araki-Lieb theorem [39]:
| Sa − S f |≤ S ≤ Sa + S f . One immediate consequence of
this inequality is that if the total system is in a pure state,
then the component systems have equal entropies [8,10].
If these are nonzero, it clearly proves entanglement in this
case as for any product density operator the total entropy
is the sum of the subsystem entropies. For a general state
one has entanglement, if the subsystem entropies have a
sum bigger than the total entropy well established.

We shall consider the entropy difference Edi f f defined
by Edi f f = 1

4 (S − Sa − S f ). Negative values of this
quantity means a degree of entanglement. We will
compare this difference with the sum of negative
eigenvalues of the partially transposed density matrix as a
recently proposed quantitative entanglement measure
[27]. The negative eigenvalues of the partially transposed
matrix ρTA of the density ρ . This partial transpose takes
the form of a direct sum, such that the spectrum of ρTA

can be evaluated from the spectrum of each block. The
negative eigenvalues of this spectrum are then summed to
give the value Eneg. However, the question of quantifying
the degree of entanglement for general mixed states is
still under discussion [22].

5 Numerical results and discussion
We display the evolution of the entropies when the atom
initially in the excited state as functions of the scaled time
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Fig. 3: Same as Fig. 2 for the phase noise γ = 5×10−3.
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Fig. 4: Same as Fig. 2 for the phase noise γ = 5×10−2.

λ t for various values of the phase damping parameter γ .
Here we assume a coherent field state with fixed initial
mean numbers of quanta of n̄1 and n̄2 (n̄1 = 2, n̄2 = 3) for
two-quanta (k1 = k2 = 1) in the exact resonance i.e., the
detuning parameter ( ∆

2λ ) = 0.
In Figures 2- 4 (for the initial excited state of the

atom) and 5-7 (for the initial grounded state of the atom ),
we display the entropy for the atom Sa, field entropy S f as
well as the total entropy S of the system, sum of the
partial entropies, entropy difference Edi f f and sum of the
negative eigenvalues of the partially transposed density
matrix Eneg for three small values of the noise parameter
γ: (a) 10−6, (b) 5×10−3 and (c) 5×10−2 for both cases
the atom initially in excited state and grounded state,
respectively.
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Fig. 5: Partial entropy Sa for the atom (upper solid curve), S f
the field (dotted curve) as well as the total entropy S (dashed
curve) and Sa +S f (dot-dashed curve) as a function of the scaled
time λ t of the particle initially prepared in the ground state | g >
and the field initially prepared in a coherent state | α1,α2 >
(n̄1 = 2, n̄2 = 3), for small phase noise γ = 10−6. The lower
solid curve shows the sum of the negative eigenvalues Eneg of
the partially transposed density matrix ρTA in comparison to the
entropy difference Edi f f (lower dot-dashed curve).
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Fig. 6: Same as Fig. 5 for the phase noise γ = 5×10−3.

In Figures 2 and 5, we show the temporal evolution of
the partial atomic and field entropies (Sa,S f ) and the total
entropy S for very weak noise in both cases. As entropy
measures we plot the sum of the negative eigenvalues of
the partially transposed density matrix Eneg and the
entropy difference Edi f f .

From these figures the entropies (S f (upper dotted
curve), Sa (upper solid curve)), we observe that both S f
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Fig. 7: Same as Fig. 5 for the phase noise γ = 5×10−2.

and Sa are equal and the total entropy S = 0 (see Figures 2
and 5). They start from the value Sa = S f = 0, which
means disentanglement then both of these subsystem
show entanglement. The degree of entanglement
fluctuations when time progresses as can be demonstrated
in these figures.

By increasing of the phase noise parameter γ , we note
that the total entropy increases monotonically, and no
longer equals to zero. The partial entropies for the atom
and the field are no longer equal, and hence can not be
used as measure for entanglement. It is remarked that the
field attains higher entropy than the atom. However, the
atomic entropy is less than the total entropy for this value,
while the field entropy is higher than the total entropy. We
observe increase in the values of the entropies S and S f ,
while Sa converges to 0.7 as t develops (see Figures 3, 4,
6, and 7). In this case the field subsystem has higher
sub-entropy for increased γ which can be taken as a
stronger degree of correlation than for smaller value of γ .
On the other hand the atomic subsystem shows slight
decrease in its sub-entropy as γ increases.

This sensitivity becomes even more clearly visible,
when we show the total entropy of the system S and
compare it to the sum of partial entropies Sa + S f and the
sum of negative eigenvalues Eneg of ρTA . This is shown in
these figures for both cases.

Also from these figures, we show the time evolution
of the entropy difference Edi f f (lower dotted-dashed
curve) and sum of the negative eigenvalues of the partially
transposed density matrix Eneg (lower solid curve) when
the atom in both cases (excited and ground state). As we
see from these figures, we get a degree of entanglement,
which is well reflected as a very good measure.

Here again we note that Eneg and Edi f f show the same
characters for the maxima and minima for small γ . But
as γ increases to 5× 10−2 it is observed that Edi f f shows

more fluctuations than Eneg. However, in both cases as γ
increases neither Eneg nor Edi f f reaches the value zero for
any time t > 0 which means that disentanglement does not
occur at any time later.

To visualize the influence of phase damping on the
evolution of the entropies, we set different values of the
parameter γ (5× 10−3,5× 10−2) (see Figures (3, 4), (6,
and 7)) and all the parameter are the same as in Figures 2
and 5.

These figures show that with the increasing of the
parameter γ , we observe rapid deterioration of the
fluctuations of the field and atom entropy. This shows a
faster approach to the steady state due to phase damping
in the nonlinear coupling case.

6 Conclusions

In this paper we calculated the influence of phase
damping on the evolution of the field, atom and total
entropy for two-mode JC model. We find a large amount
of generated entanglement in the steady state limit. It
shows a strong sensitivity on the amount of phase noise
described by the parameter γ . Numerical studies show
that the entanglement for the atomic subsystem with the
atom starting in its excited state exhibits faster approach
steady state than when the atom starts in its ground state .
On the other hand one notes that the entanglement for the
field subsystem grows faster for the initial ground state of
the atom than the initial excited state. This could imply
strong restrictions on the time scale of quantum gate
operations, if one has fluctuating energy levels, phase
noise or not well defined interaction times. We find that
the relative size of partial system and total entropies
provides for qualitatively correct estimate of
entanglement but shows only limited quantitative
agreement with the alternative entanglement measure
using the negative eigenvalues of the partially transposed
density matrix.
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