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Abstract: Mixed logit is a highly flexible model that can approximate any random utility model. In this paper, two kinds of
mixed multinomial logit models were considered. The main aim was to introduce a locally D-optimal criterion to obtain an optimal
combination of the levels of attributes for producing alternatives and an optimal combination of alternatives in choice sets. Thus, a
design including choice sets as the support points was designed.
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1 Introduction

Like probit logit models, the mixed logit model has been
known for many years; but, it has just become fully
applicable since the advent of simulation. The first
application of mixed logit was apparently in automobile
demand models created jointly by [4] and [6]. In these
studies, the explanatory variables did not vary over
decision makers, and the observed dependent variable was
market shares rather than individual customer’s choices.
As a result, the computationally intensive integration that
is inherent in the mixed logit was needed to be performed
only once for the market as a whole rather than for each
decision maker in a sample. Early applications on
customer-level data, such as [15] and [1], included only
one or two dimensions of integration, which could be
calculated by quadrature. Improvements in computer
speed and in the understanding of simulation methods
have allowed the full power of mixed logit to be utilized.

Among the studies to evidence this power are those
conducted by [2] and [5] on cross-sectional data, and [7],
[12] and [3] on panel data.

Mixed logit models can be derived under a variety of
different behavioral specifications and each derivation
provides a particular interpretation. The mixed logit
model is defined on the basis of the functional form for its
choice probabilities. Any behavioral specification,
derived choice probability take this particular form, is
called a mixed logit model. Mixed logit probabilities are

the integrals of standard logit probabilities over a density
of parameters. In this paper, the information matrix was
required to be known which was calculated by the choice
probabilities related to both random and fix attributes.
Then, it a design based on choice sets was introduced in
order to obtain the best choice of the alternatives
produced by combining the levels of the attributes.

Therefore, this paper is composed of three sections.
First of all, model specifications are described. The
optimal criterion is introduced in the second section. At
last, conclusion is presented.

2 Model Specifications

Considering the random utility of the standard MNL
model [9], if heterogeneity is taken into account in the
parameter across consumers, then the following utility
function can be defined:

Ui js = fT
i (a js)β i + εi js;

{
i = 1,2, . . . ,N, the number of Individuals;
j = 1,2, . . . ,J, the number of Alternatives;
s = 1,2, . . . ,S, the number of Choice sets.

(1)
where,

fi(a js) = (fT
i1(a js), fT

i2(a j2), . . . , fT
iK(a js))

T ,

fik(a js) = ( fik1(a js), fik2(a js), . . . , fikLk(a js))
T

characterize the levels of attribute k and
Cis = [fik(a js)]

k=1,...,K
j=1,...,J denotes the choice set with J
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alternatives. Thus, it is assumed that the parameter vector
β i = (β T

i1,β
T
i2, . . . ,β

T
iK)

T is different from all individuals
and has multivariate normal distribution with mean
µ i = (µT

i1,µT
i2, . . . ,µT

iK)
T and variance Σi, where there are

K attributes, each with Lk;k = 1, ...,K levels. Since β i is
said to be different from all individuals, then β i is a
random variable. Each individual selects a part of levels
of attributes, not all of their levels. Thus, the following
can be considered:

β ik = (βik1,βik2, ...,βikLk)
T ,

where Lk ≤ Lk;k = 1, ...,K. Considering the effects-type
coding, the following can be given:

Lk

∑
ℓ=1

βikℓ = 0,
Lk

∑
ℓ=1

βikℓ ̸= 0.

Now, it is supposed that βikℓ and βikℓ′ ;
∀ℓ ̸= ℓ′ (ℓ= 1,2, ...,Lk) are not correlate; thus:

cov(βikℓ,βikℓ′) =

{
σ2

ikℓ, ℓ= ℓ′;
0, ℓ ̸= ℓ′.

Also:

Cov(β ik,β ik′) =

{
Σik, k = k′;
0, k ̸= k′.

where Σik = diag
(

σ2
ik1,σ

2
ik2, . . . ,σ

2
ikLk

)
. Thus,

Σi =
⊕K

k=1 Σik.
In this kind of situation, the following case should be

concentrated on:

β ik ∼ NLk (µ ik,Σik) and β i ∼ Np(µ i,Σi), (2)

where p = ∑K
k=1 Lk. Now, with respect to (2):

β i = µ i +Vσ i, (3)

where V =
⊕K

k=1 Vk; Vk = diag(vk1,vk2, ...,vkLk) is a
diagonal matrix with pair wise with independent standard
normal elements on the diagonal and

σ i =(σT
i1,σT

i2, . . . ,σT
iK)

T ;σ ik =(σik1,σik2, . . . ,σikLk)
T .

According to the above description, the obtained
model is called the mixed or heterogeneous logit model
[5]. Since β i is random variable, then it can be written as
follows:

pi(a js|β i) =
exp(fT

i (a js)β i)

∑J
j′=1 exp(fT

i (a j′s)β i)
, (4)

where pi(a js|β i) = P(Yi js = 1|β i) is the conditional
probability in which individual i selects alternative a j in
the choice set s and (with respect to (1));

Yi js =

{
1, i f Ui js = maxa j′∈Cs Ui j′s;
0, otherwise.

.

But in the MMNL models,

Pi(a js|θ i) = P(Yi js = 1|θ i);θ i = (µT
i ,σ

T
i )

T

the unconditional probability that alternative a j is selected
by individual i (4) so that:

Pi(a js|θ i) =

=
∫

ℜp
pi(a js|β i)g( β i|θ i)dβ i (5)

=
∫

ℜp
pi(a js|(µi +Vσi))ϕ(V1) . . .ϕ(VK)dV (6)

=
∫

ℜp

exp(fT
i (a js)(µi +Vσi))

∑J
j′=1 exp(fT

i (a j′s)(µi +Vσi))
ϕ(V1) . . .ϕ(VK)dV(7)

where ϕ(.) is the normal standard density function. There
is not an analytical method for calculating integral (5). In
these kinds of situations, Quadrature (Gauss-Hrmite
quadrature) technique can be used; but, it must be noted
that if the dimension of integration is greater than two,
Quadrature technique can not compute the integrals in
sufficient speed and precision for maximum likelihood
estimation. Thus, simulation techniques are usually
applied for estimating Mixed Logit models. According to
the previous description, the integrals in the choice
probabilities are approximated using a Mote-Carlo
technique; then, the resulting simulated log-likelihood
function is maximized. For a given θ i, a vector of values
for β i is drawn from g(β i|θ i) for individual. the values of
this draw can then be used to calculate p̂i(a js|β i). This
process is repeated R times, meaning that:

β (1)
i , . . . ,β (R)

i ∼i.i.d Np(µ i,σ i);

β (r)
i = µ i +V(r)σ i ; ∀i = 1,2, . . . ,N, r = 1,2, . . . ,R,

where integration over g(β i|θ i) is approximated by
averaging the R draws. If it is supposed that

p̂i(a js|β (r)
i ) =

exp
(

fT
i (a js)β

(r)
i

)
∑J

j′=1 exp
(

fT
i (a j′s)β

(r)
i

) (8)

is the realization of the choice probability related to the
choosing alternative a j by individual i for the rth draw of
β i, then this can be written;

P̂i(a js|θ i) =
1
R

R

∑
r=1

p̂i

(
a js|β (r)

i

)
, (9)

where P̂i (a js|θ i) is the simulated choice probability of
individual i choosing alternative a j given θ i. In this
situation, the Simulated Log-Likelihood function can be
defined as follows;

S ℓs(θ i) =
N

∑
i=1

J

∑
j=1

Yi js ln
(
P̂i(a js|θ i)

)
. (10)
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The estimated parameter vector θ̂ is the vector that
maximizes the Simulated Log-Likelihood.

Additionally, it is supposed that there are two kinds of
attributes. One part has fixed parameters which include
K1 attributes, each with Lk;k = 1, ...,K1 levels. Another
group has random parameters which consist K2 attributes,
each with Lk;k = K1 + 1, ...,K (Lk ≤ Lk, K1 + K2 = K)
levels. Therefore, the utility function is introduced as
follow,

Ui js = fT
i (a js)β +hT

i (a js)bi + εi js. (11)

where β = (β T
1 ,β

T
2 , . . . ,β

T
K1
)T (according to effects-type

coding ∑Lk
ℓ=1 βkℓ = 0) is fixed for all individuals; but

bi = (bT
i1,b

T
i2, . . . ,b

T
iK2

)T (according to effects-type coding

∑Lk
ℓ=1 bikℓ ̸= 0) is not the same for all the individuals and is

a random variable, for example, with the multivariate
normal distribution;

bi ∼ Np2(µbi
,σbi) : ∀i = 1,2, . . . ,N

where p1 = ∑K1
k=1(Lk − 1) and p2 = ∑K

k=K1+1 Lk are the
dimension of the fixed and random parameters,
respectively.

Similar to (8) and (9), this can be written:

pi(a js|bi) =
exp(fT

i (a js)β +hT
i (a js)bi)

∑J
j′=1 exp(fT

i (a j′s)β +hT
i (a j′s)bi)

.

If η i is assumed to be the parameter vector of the
distribution function of bi, meaning that g(bi|η i); thus,
two type parameters, β and η i, will be present so that:

Pi(a js|η i) =
∫

ℜp2
Pi(a js|V) ϕ(V1) . . .ϕ(VK)dV,

where

Pi(a js|V) =
exp(fT

i (a js)β+hT
i (a js)(µbi

+Vσ (b)i)

∑J
j′=1 exp(fT

i (a j′s)β+hT
i (a j′s)(µbi+Vσ (b)i))

.

Similar to (8) and (9), a vector of values for bi is
drawn from g(bi|η i) for individual. The values of this
draw can then be used for calculating p̂i(a js|bi). This
process repeated R times and integration over g(bi|η i) is
approximated by averaging the R draws. If it is supposed
that p̂i(a js|b(r)

i ) is the realization of the choice probability
of individual i for selecting alternative a j for the rth draw
”b”, then the following can be given:

P̂i(a js|β ,η i) =
1
R

R

∑
r=1

p̂i(a js|b(r)
i ),

where P̂i(a js|β ,η i) is the simulated choice
probability of individual i choosing alternative a j given
η i. Thus, the Simulated Log-Likelihood function is
defined as follows;

S ℓs(β ,ηi) =
N

∑
i=1

J

∑
j=1

Yi js ln
(
P̂i(a js|β ,η i)

)
. (12)

The estimated parameter vectors β̂ and η̂ are the vectors
that maximize the Simulated Log-Likelihood function.

3 Optimal Criterion
In this section, the D-optimal criterion is introduced for
the Mixed MNL (MMNL) model. For this purpose, the
information matrix of the MMNL model should be
evaluated. Since it is assumed that the choices in different
choice sets are independent, the information matrix based
on (12) for each choice set, s, is as follow;

I(β ,η i|Cis)=−E


∂ 2S ℓs(β ,η i)

∂β T
∂β

∂ 2S ℓs(β ,η i)

∂β T
∂ µ i

∂ 2S ℓs(β ,η i)

∂β T
∂σ i

∂ 2S ℓs(β ,η i)

∂ µT
i ∂β

∂ 2S ℓs(β ,η i)

∂ µT
i ∂ µ i

∂ 2S ℓs(β ,η i)

∂ µT
i ∂σ i

∂ 2S ℓs(β ,η i)

∂σ T
i ∂β

∂ 2S ℓs(β ,η i)

∂σ T
i ∂ µ i

∂ 2S ℓs(β ,η i)

∂σ T
i ∂σ i

 .

where E(.) denotes the expectation of the random variable.
Now, for simplicity, the above matrix is rewritten as

follow;

I(β ,η i|Cis) =

 DT
isP

−1
is Dis DT

isP
−1
is Mis DT

isP
−1
is Qis

M T
is P

−1
is Dis M T

is P
−1
is Mis M T

is P
−1
is Qis

QT
isP

−1
is Dis QT

isP
−1
is Mis QT

isP
−1
is Qis


(13)

along with

Dis =
∫

ℜp2

[
Pis(V)−pis(V)pT

is(V)
]

Fisϕ(V1) . . .ϕ(VK)dV
Mis =

∫
ℜp2

[
Pis(V)−pis(V)pT

is(V)
]

Hisϕ(V1) . . .ϕ(VK)dV
Qis =

∫
ℜp2

[
Pis(V)−pis(V)pT

is(V)
]

HisVϕ(V1) . . .ϕ(VK)dV
(14)

where, η i = (µT
i ,σT

i )
T ,

pis(V) =(pi(a1s|η i), pi(a2s|η i), . . . , pi(aJs|η i))
T

Pis(V) =diag(pi(a1s|η i), pi(a2s|η i), . . . , pi(aJs|η i))
Pis =diag(Pi(a1s|η i),Pi(a2s|η i), . . . ,Pi(aJs|η i))

Fis = [fik(a js)]
k=1,...,K1
j=1,2,...,J and His = [hik(a js)]

k=K1+1,...,K
j=1,2,...,J are

design matrix. See appendix A.
To calculate integrals (14), there are no analytical

techniques; thus, they should be calculated by the
Monte-Carlo technique. Now, the distribution of the
matrix V and the random sample with size n from its
distribution mean that;

V(1),V(2), ...,V(n) ∼i.i.d Np2(0,Ip2),

where, Ip2 is a p2-dimensional identically matrix; thus,
(14) can be rewritten as;

D
(n)
is = 1

n ∑n
m=1[Pis(V(m))−pis(V(m))pT

is(V(m))]Fis

M
(n)
is = 1

n ∑n
m=1[Pis(V(m))−pis(V(m))pT

is(V(m))]His

Q
(n)
is = 1

n ∑n
m=1[Pis(V(m))−pis(V(m))pT

is(V(m))]HisV(m)

P
(n)
i (a js|η i) =

1
n ∑n

m=1 p(m)
i (a js|η i)

p(m)
i (a js|η i) =

exp
(

fT
i (a js)β+hT

i (a js)(µ i+V(m)σ i)
)

∑J
j′=1 exp

(
fT
i (a j′s)β+hT

i (a j′s)(µ i+V(m)σ i)
) .
(15)

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



726 H. Jafari: On Locally Optimal Criterion for a Logit Model with Random Parameters

Now, based on Equations (15), the following can be
presented:

I(n)(β ,η i|Cis) =

 D
(n)T
is P(n)−1

is D
(n)
is D

(n)T
is P(n)−1

is M
(n)
is D

(n)T
is P(n)−1

is Q
(n)
is

M
(n)T
is P(n)−1

is D
(n)
is M

(n)T
is P(n)−1

is M
(n)
is M

(n)T
is P(n)−1

is Q
(n)
is

Q
(n)T
is P(n)−1

is D
(n)
is Q

(n)T
is P(n)−1

is M
(n)
is Q

(n)T
is P(n)−1

is Q
(n)
is

.

(16)

In this situation and based on the number of the levels
of the fixed and random attributes:
L1,L2, . . . ,LK1 ,LK1+1, . . . ,LK . The total number of
alternatives can be obtained as follows;

J =
K1

∏
k=1

Lk

K

∏
k=K1+1

Lk.

In this paper, since the designs with the same number of
choice sets are considered for each individual; thus these
designs have S choice sets as support points.

Consequently, since S =

(
J
J

)
denotes the total

number of choice sets, each with J alternatives, then just a

part of them is considered where
(

S
S

)
denotes the total

number of choice sets, each with J alternatives.
Similar to classical MNL models [9], a criterion can be

defined in order to obtain a locally D-optimality criterion
as follow (for individual i);

Ψ(Mixed)(ξi|β ,η i) =− ln
(

det
(

I(n)(β ,η i|ξi)
))

(17)

where, I(n)(β ,η i|ξi) = ∑S
s=1 wis · I(n)(β ,η i|Cis) for design

ξi which includes S support points as follows;

ξi =

{
Ci1 Ci2 . . . CiS
wi1 wi2 . . . CiS

}
∈ Ξi; ∀i = 1,2, . . . ,N. (18)

Now, based on (18) and to obtain the locally D-optimal
design, a new design can be defined in the following way
(because they are identifiable for the parameters of the
model);

ξ =
N

∑
i=1

αi ·ξi, (19)

where (Convex combination property);

Ψ(Mixed)(ξ |β ,η)≤
N

∑
i=1

αi ·Ψ(Mixed)(ξi|β ,η i), (20)

such that:

ξ =

{
C1 C2 . . . CS
w1 w2 . . . CS

}
∈ Ξ , (21)

where
C1 =C11, . . . ,CS =CNS,
w1 = α1w11,w2 = α1w12 . . . ,wS = αNwNS.
Also, it can be written as;

Ψ(Mixed)(ξ |β ,η) =− ln
(

det
(

I(n)(β ,η |ξ )
))

,

where

I(n)(β ,η |ξ ) =
S

∑
s=1

ws · I(n)(β ,η |Cs);

η = (ηT
1 ,ηT

2 , . . . ,ηT
N)

T

and

η i = (µi11, . . . ,µiKLK ,σi11, . . . ,σiKLK )
T ; i = 1,2, . . . ,N.

With respect to (11), the number of parameters is
p = p1 +2p2, where p1 denotes the number of parameters
for fix attributes and 2p2 is the number of parameters for
random attributes. Thus, to obtain the optimal
combination of the levels of attributes for producing
alternatives and the optimal combination of alternatives in
choice sets, design (21) can be considered, where S can
be hold in interval [p, p(p+1)

2 ] (Caratheodory ’ theorem
[8]). In this case, ξ ∗ is the locally D-optimal design if:

ξ ∗ = argmin
ξ∈Ξ

Ψ(Mixed)(ξ |β 0,η0), (22)

where β 0,η0 denote the true values of parameters and Ξ =∪N
i=1 Ξi;∀i = 1,2, . . . ,N, where;

Ξi =

{
(Cis,wis)|0 ≤ wis ≤ 1;

S

∑
s=1

wis = 1, Cis =
[
Fis His

]}
.

4 Conclusion

In marketing and business, there are many important
things like the quality on which the combination of
attributes (products or services) depends. But, there exist
an important thing, without which all these products or
services are meaningless; that is the customer. If
customers needs are satisfied, then, success will be
achieved; otherwise; not.

It is known that a customer tends to choose an
alternative (product or service) which has the highest
utility; thus, a model is required which can show this
situation. One of the most important introduced model is
the MNL model which belongs to the logit family. Of
course, this model (MNL) can be used when all
alternatives are independent; in other words, when IIA
[14] is hold; otherwise, other models of the logit family
should be used which include two-level or three-level
NMNL models [10].

In this kind of models, the focus should be on the
combination of the levels of attributes (alternatives) and
the combination of alternatives in choice sets.

To obtain the best combination, the levels of attributes
and the most suitable combination of choice sets, the
optimal design can be a nice idea.
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There are many criteria to obtain optimal design for do
this idea; but, in this paper, only the D-optimal criterion
was introduced because this criterion was not affected by
reparameterizations of the model [13].

The D-optimal criterion for the MMNL model is a
function of the determinate of information matrix,
depending on unknown parameters as the standard MNL
model [9]. But, there is a different situation from the
standard MNL model. With respect to the MMNL model
and dependence of the information matrix on unknown
parameters, a difficult task was encountered. To obtain the
information matrix, some integrals were solved which did
not have a closed form. In this situation, the Monte-Carlo
technique was used for obtaining the information matrix
and D-criterion based on a sample from a vector with
multiple standard normal distribution. Of course, in most
cases, a locally optimal design should be obtained which
acts as a linear model instead of an optimal design.
Sometimes, the D-criterion can not be obtained because
there is not any suitable software which can calculate the
determinant of the information matrix. Although, it could
be done for several examples, considering some
conditions and limitations on the parameters. For
example, in this paper, the optimal design was discussed
for the standard MNL model [9]. Also, different designs
were introduced and the one which is locally more
suitable was given.
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Appendix A:

According to (14):
∂Sℓ(β ,η i)

∂β =

=
J

∑
j=1

Yi j ·
∂ ln(Pi(a j|η i))

∂β

=
J

∑
j=1

Yi j.P
−1
i (a j|η i)

(
fi(a j)Pi(a j|η i)−

∫
ℜ2p2

pi(a j|η i)p
T
i (V)Fi dΦ(V)

)

=
J

∑
j=1

Yi jfi(a j)−
∫

ℜ2p2

J

∑
j=1

Yi j pi(a j|η i)P
−1
i (a j|η i)p

T
i (V)Fi dΦ(V)

= YT
i Fi −

∫
ℜ2p2

YT
i P−1

i pi(V)pT
i (V)Fi dΦ(V)

= YT
i P−1

i

(
PiFi −

∫
ℜ2p2

pi(V)pT
i (V)Fi dΦ(V)

)
= YT

i P−1
i

(∫
ℜ2p2

Pi(V)Fi dΦ(V)−
∫

ℜ2p2
pi(V)pT

i (V)Fi dΦ(V)

)
= YT

i P−1
i

(∫
ℜ2p2

(
Pi(V)−pi(V)pT

i (V)
)

Fi dΦ(V)

)
︸ ︷︷ ︸

Di

Similarly;

∂Sℓ(β ,η i)

∂β T =

(∫
ℜ2p2

(
Pi(V)−pi(V)pT

i (V)
)

Fi dΦ(V)

)T

︸ ︷︷ ︸
DT

i

P−1
i Yi,

thus;

E
(

∂Sℓ(β ,η i)

∂β T
∂Sℓ(β ,η i)

∂β

)
=DT

i P−1
i E

(
YiYT

i
)︸ ︷︷ ︸

Pi

P−1
i Di =DT

i P−1
i Di
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where
∫

ℜ2p2 Pi(V ) dΦ(V ) = Pi and;

YiYT
i =


Y 2

i1 Yi1Yi2 · · · Yi1YiJ
Yi1Yi2 Y 2

i2 · · · Yi2YiJ
...

...
. . .

...
Yi1YiJ Yi2YiJ · · · Y 2

iJ

⇒E(YiYT
i )=


Pi(a1|β i) 0 · · · 0

0 Pi(a2|β i) · · · 0
...

...
. . .

...
0 0 · · · Pi(aJ |β i)

=Pi

Similarity, the following can be given:

∂Sℓ(β ,η i)

∂ µ i
= YT

i P−1
i

(∫
ℜ2p2

(
Pi(V)−pi(V)pT

i (V)
)

Hi dΦ(V)

)
︸ ︷︷ ︸

Mi

= YT
i P−1

i Mi

∂Sℓ(β ,η i)

∂σ i
= YT

i P−1
i

(∫
ℜ2p2

(
Pi(V)−pi(V)pT

i (V)
)

HiV dΦ(V)

)
︸ ︷︷ ︸

Qi

= YT
i P−1

i Qi.

Hence;

E
(

∂Sℓ(β ,η i)

∂β T
∂Sℓ(β ,η i)

∂ µ i

)
= DT

i P−1
i E

(
YiYT

i
)︸ ︷︷ ︸

Pi

P−1
i Mi = DT

i P−1
i Mi

E
(

∂Sℓ(β ,η i)

∂β T
∂Sℓ(β ,η i)

∂σ i

)
= DT

i P−1
i E

(
YiYT

i
)︸ ︷︷ ︸

Pi

P−1
i Qi = DT

i P−1
i Qi

E
(

∂Sℓ(β ,η i)

∂ µT
i

∂Sℓ(β ,η i)

∂σ i

)
= M T

i P−1
i E

(
YiYT

i
)︸ ︷︷ ︸

Pi

P−1
i Qi = M T

i P−1
i Qi
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