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Abstract: In this paper, we developed an approach for active vibration control of flexible rectangular plate structures using control
theory. The flexible rectangular plate system is firstly modelled and simulated via a finite element method; and secondly, a new type
of modelling method, and the state-space model are involved in the development of the equation of motion in state-space, which is
efficiently used for the analysis of the system and design of control laws with a modern control framework. Then, the validity of the
obtained new model is investigated by comparing the plate natural frequencies and forced vibration response analysis predicted by the
finite element model with the calculated values obtained from new model. After validating the model, nominal model-based sliding
mode robust MIMO controller is applied to the plate dynamics via the MATLAB/Simulink platform. The simulation results clearly
demonstrate an effective vibration suppression capability that can be achieved using nominal model-based sliding mode robust MIMO
controller.

Keywords: Flexible Rectangular Plate, Active Vibration Control, Modelling Method, Nominal Model-Based Sliding Mode Robust
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1 Introduction

Since the first earth orbiting satellite, Sputnik 1, was
launched by the Soviet Union in 1957, more and more
lightweight materials and larger structures have been used
in the field of aerospace, especially for antennas and solar
panels in aircraft design. Many vibration problems have
been caused due to the characteristics of lighter
structures, including the following contents: low natural
frequencies with high modal density, small material
damping, geometric and material nonlinearities.
Therefore, active vibration control method is the most
effective for vibration control of flexible structures, and
many scholars devoted much work to do research about
active vibration control of flexible structures.

The AVC problem of flexible plate structures has
attracted considerable attention during the last two
decades. Many researchers proposed different control
strategies for the purpose of AVC of flexible plate
structures. Hu et al [1].applied LMI (Linear Matrix
Inequality)-based robust control for AVC of a flexible

plate structure. They used specific transformations of
Lyapunov variable with appropriate linearizing
transformations of the controller variables, which give
rise to a tractable and practical LMI formulation of the
vibration control problem. Based on LMI, a robust output
feedback controller was designed to suppress the
low-frequency vibrations caused by external disturbances.
The simulation results showed that the proposed robust
active control method is efficient for active vibration
sup-pression. Other researches on the effectiveness of the
robust robust control for AVC of the flexible structures
have been addressed in [2]-[3].

Variable structure system (VSS) is based on the
concept of an attractive manifold of the underlying state
or error vector space on which the desired dynamic
behavior is assured. These systems are a special class of
nonlinear systems characterized by a discontinuous
control action which changes structure upon reaching a
sliding surface s(s) = 0. A fundamental property of VSS is
the sliding motion of the state on the attractive manifold.
During this sliding motion the system has invariance

∗ Corresponding author e-mail: jingyu220@163.com
c⃝ 2013 NSP

Natural Sciences Publishing Cor.



672 J. Yang, G. Chen: Sliding Mode Robust vibration Control of Plate

properties, yielding motion which is independent of
certain system parameter variations and disturbances. The
concept of sliding mode control was first presented by
K.D.Young [4] in 1978. Since then, many researchers
employed the sliding mode control for different control
problems such as robot motion control. However, a few
papers can be found about the application of the sliding
mode control for AVC of the flexible structures. Among
developed control algorithms using the theory of VSS,
several approaches have been considered. Some use the
method of the hierarchy [4], others do use the Lyapunov
stability method [5]-[6], and the linearizable method
[7]-[8].

Based on the previously outlined literature, there is no
published report in which the nominal model-based
sliding mode robust MIMO control is used for the
purpose of intelligent AVC of a flexible rectangular plate
system. In this research, a nominal model-based sliding
mode robust MIMO control strategy is applied to the
problem of AVC of a rectangular flexible rectangular
plate. First, the flexible rectangular plate system is
modeled using the FEM method and new modelling
method. Then, the validity of the obtained new model is
investigated by comparing the plate natural frequencies,
mode shape, static analysis and forced vibration response
analysis predicted by the finite element model with the
calculated values obtained from new model. After
validating the model, nominal model-based sliding mode
robust MIMO controller is applied to the plate dynamics
via the MATLAB/Simulink platform. The algorithms
were then coded in MATLAB to evaluate the performance
of the control system. Disturbances were employed to
excite the plate system at different excitation points and
the controller ability to attenuate the vibration of
observation point was investigated. The simulation results
clearly demonstrate an effective vibration suppression
capability that can be achieved using nominal
model-based sliding mode robust MIMO controller.

2 Modelling of Flexible Rectangular Plate
System

Cartesian coordinate system (x,y,z) is introduced,
consider a thin flexible rectangular plate of length a, along
x-axis, width, b, along y-axis and thickness, h along
z-axis. This condition is illustrated in Fig. 1. The quality
and flexibility of plate structure is a continuous
distribution, the system has an infinite number of degrees
of freedom. To simplify the re-search and facilitate the
calculation, construct spring-mass system and make the
system discrete, the system is simplified as multi-freedom
vibration system. After the process of discrete, the
flexible rectangular plate is shown in Fig.2. m j j for
i ∈ {1,2,3} and j ∈ {1,2,3} are masses; kst for
s ∈ {1,2,3,4,5} and t ∈ {1,2,3} are stiffness
coefficients; crp for r ∈ {1,2,3,4,5} and p ∈ {1,2,3} are
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Fig. 1 A flexible rectangular plate
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Fig. 2 A discrete flexible rectangular plate

Fig. 3 A flexible cantilever plate

damping coefficients. F11 is a concentrated force which is
applied to m j j, θ is generalized coordinate, L is the length
between the adjacent mass; ∇L is the variable value of L.
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Fig. 4 A discrete flexible cantilever plate

y is the elastic displacement of mass. This condition is
illustrated in Fig.5.
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Fig. 5 Dynamic analysis of deformed plate

11 11

11

11 11

sin
y y

L L L L

11 12 11 12

12

12 12

sin
y y y y

L L L L (1)

11 21 11 21

21

21 21

sin
y y y y

L L L L

11
L L ;

12
L L ;

21
L L ; 0L (2)

11 11

11

11

sin
y y

L L
;

11 12 11 12

12

12

sin
y y y y

L L
;

11 21 11 21

21

21

sin
y y y y

L L (3)

Letting

11 11 12 21
( ) 3k k k k ;

12 11 22 13
( ) 3k k k k  ;

13 12 23
( ) 2k k k ;

22 21 12 23 32
( ) 4k k k k k ;

23 22 13 33
( ) 3k k k k ;

31 31 21 32
( ) 3k k k k ;

32 31 22 33
( ) 3k k k k ;

33 32 23
( ) 2k k k (4)

Supposed:

11 12 21 1

11 11 11 11

L L L L
k k k k

L L L L
;

1311 22 2

12 12 12 12

LL L L
k k k k

L L L L
;

23 312

13 13 13

L LL
k k k

L L L
;

3121 22 11 4

21 21 21 21 21

LL L L L
k k k k k

L L L L L
;

23 32 521 12

22 22 22 22 22

L L LL L
k k k k k

L L L L L
;

13 33 622

23 23 23 23

L L LL
k k k k

L L L L
;

31 32 721

31 31 31 31

L L LL
k k k k

L L L L
;

31 33 822

32 32 32 32

L L LL
k k k k

L L L L
;

32 23 3

33 33 33

L L L
k k k

L L L (5)

Letting

1

11 11

L
k K

L
; 2

12 12

L
k K

L
; 4

21 21

L
k K

L
;

5

22 22

L
k K

L
; 6

23 23

L
k K

L
; 7

31 31

L
k K

L
;

8

32 32

L
k K

L
; 9

33 33

L
k K

L
;

11 11
c C ;

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



674 J. Yang, G. Chen: Sliding Mode Robust vibration Control of Plate

13 13
c C ;

22 22
c C ;

23 23
c C ;

31 31
c C ;

32 32
c C ;

33 33
c C

(6)

We now apply Newton’s second law of motion to the mass
m j j = m for i ∈ {1,2,3, . . . ,7}and j ∈ {1,2,3, . . . ,7}

11 11 11 11 12 21 11 11 12 21 11
3 3M y C y y y K y y y F

(7)

12 12 12 11 12 21 12 12 13 22 11 12
3 3M y C y y y K y y y y F

(8)

13 13 13 11 12 21 13 13 12 23 13
3 2M y C y y y K y y y F

(9)

21 21 21 11 12 21 21 21 11 31 22 21
3 4M y C y y y K y y y y F

(10)

22 22 22 11 12 21 22 22 21 12 32 22
3 4M y C y y y K y y y y F

(11)

23 23 23 11 12 21 23 23 13 33 22 23
3 3M y C y y y K y y y y F

(12)

31 31 31 11 12 21 31 31 32 21 31
3 3M y C y y y K y y y F

(13)

32 32 32 11 12 21 32 32 33 22 31 32
3 3M y C y y y K y y y y F

(14)

33 33 33 11 12 21 33 33 32 23 33
3 2M y C y y y K y y y F

(15)
As a convention, we denote a dot as a first derivative with
respect to time(i.e., ẏ=dx/dt), and a double dot as a
second derivative with respect to time (i.e., ÿ=d2x/dt2).
Let nd be a number of degrees of freedom of the system
(linearly independent coordinates describing the
finite-dimensional structure), let r be a number of outputs,
and let s be a number of inputs. A flexible structure in
nodal coordinates is represented by the following
second-order matrix differential equation:

[ ][ ] [ ][ ] [ ][ ] [ ][ ]M Y P Y K Y L F (16)

In this equation X is the nd × 1 nodal displacement
vector; ẏ is the nd × 1 nodal velocity vector; ÿ is the
nd × 1 nodal acceleration vector; F is the s × 1 input
vector; [M] is the mass matrix, nd × nd ; [P] is the
damping matrix, nd × nd ; [K] is the stiffness matrix,
nd × nd ; [L] is input matrix, nd × s;. The mass matrix is
positive definite (all its eigenvalues are positive), and the
stiffness and damping matrices are positive semi-definite
(all their eigenvalues are nonnegative).

3 Modelling of Flexible Cantilever Plate

The idea of the paralleled semi-extension rule based
algorithm is as follows. Firstly, the algorithm decomposes
the maximum terms space of the clause set into several
partial maximum terms spaces, which convert the SAT
problem of the clause set into the SAT problem of the
partial maximum terms spaces. If there is a certain partial
maximum terms space that is satisfiable, then the clause
set is satisfiable. If all the partial maximum terms spaces
are unsatisfiable, then the clause set is unsatisfiable. In
other words, the clause set is satisfiable. In the following,
the concept of the partial maximum terms space will be
given. Finite element analysis for
10m×10mplate,ρ=7800kg/m3. Thickness is 0.001m.
This condition is illustrated in Fig. 6. Considering

Fig. 6 Finite element model

flowchart of modelling method (Fig.7.), we have [M], [P],
[K], [L]

4 Validity of the New Model

A. Natural frequency comparison analysis The results of
natural frequency contrastive analysis are shown in
Table.1.

Table.1. Contrastive Analysis Result
Natural Frequence 1 2 3 4 5

FEA Reslut 0.17 0.41 1.06 1.35 1.54
New Model 0.17 0.41 1.06 1.35 1.54

Absolute Error 0.06 0.03 0.06 0.06 0.43
Natural Frequence 6 7 8 9

FEA Reslut 2.71 3.19 3.32 3.70
New Model 2.82 2.94 3.29 3.61

Absolute Error 0.11 0.11 0.03 0.09
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Fig. 7 Modelling method

B. Forced vibration response analysis When system is
excited by a harmonic force, the vibration response of 39th
node is shown by Fig.8.
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Fig. 8 Vibration response of flexible rectangular plate system
(Acting point of force is 39 node) (a) Result of FEM model (b)
Result of New model
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Fig. 9 Vibration response of flexible rectangular plate system
(Acting point of force is 57 node) (a) Result of FEM model (b)
Result of New model
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Fig. 10 Vibration response of flexible rectangular plate system
(Acting point of force is 21 node) (a) Result of FEM model (b)
Result of New model

5 Nominal Model-Based Sliding Mode
Robust MIMO Controller Design

,M q q C q q q K q w (17)

where q = [q1, . . . qn]
T is an n×1 vector of node position,

q̇ = [q̇1, . . . q̇n]
T is an n × 1 vector of node velocity,

q̈ = [q̈1, . . . q̈n]
T is an n× 1 vector of node acceleration, τ

is an n× 1 vector of the control input, [M(q)] is an n× n
inertial matrix, [P(q, q̇)] is an n× n damping matrix and

[K(q)] is an n× n stiffness matrix. The inertial matrix is
symmetric and positive de-finite. It is also bounded as a
function of q : µ1I ≤M(q)≤ µ2I, m1 ≤M(q)≤ m2. The
stiffness matrix K(q) is bounded as a function of
q : K(q) ≤ gh, where gh is a function of q. For
simplification,M(q), P(q, q̇) and K(q) are written as M, P
and K,respectively. It is noticed that M, P and K are only
partly known and therefore exists uncertainly in the
system model. ω disturbance vector. The control
objective is to drive the node position q to the desired
position qd . Define the tracking error

de q q (18)

Define the sliding surface

S e Ce
1
, , nC diag c c 0ic (19)

To prove the stability of the system, choose the Lyapunov
function candidate to be

1

2

T
V S MS

(20)

Consider the derivative of V

1

2

T T
V S MS S MS

T
S M e Ce

T

d
S M q q MCe

T

d
S Mq Cq K q w T MCe                               

T

dS M q Ce Cq K q w T
(21)

Choose the control input T :

0 0 0 0 sgndT M q Ce C q K q w T S

(22)
where, C0, K0 and ω0 are the estimations of M, P and K and
ω respectively, ∆M=M-M0, ∆B=B-B0, ∆K=K-K0, ∆ω=ω-
ω0, In this case, V̇ (21)can be rewritten as

T

dV S M q Ce Cq K q w S

(23)
where Γ = diag(γ1,γ2, . . . γn),(γi > 0). Let

max max maxi dM q Ce C q w K

(24)
This yields

0V (25)

6 Simulation Example

Considering [M], [P], [K], [L] and letting M(q) = [M],
C(q, q̇) = [P], K(q) = [K][Y ], τ = [L][F ]
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The desired joint

trajectory is given by q1d = sin(t);q2d = sin(t);q3d =
sin(t);q4d = sin(t);q5d = sin(t);q6d = sin(t);q7d =
sin(t);q8d = sin(t);q9d = sin(t);

The displacements and velocities are chosen as

x=[y1; ẏ1;y2; ẏ2;y3; ẏ3;y4; ẏ4;y5; ẏ5;y6; ẏ6;y7; ẏ7;y8; ẏ8;y9; ẏ9]

The initial displacements and velocities are chosen as
x0 =
0.001[0.6;0.3;0.5;0.5;0.6;0.3;0.5;0.5;0.6;0.3;0.5;0.5;
0.6;0.3;0.5;0.5;0.5;0.5].

Using control laws (22), Fig.11 shows the simulation
model. Fig.12 shows position tracking of 57 node , 59
node, 61 node, 39 node, 41 node, 43 node, 21 node, 23
node, 25 node respectively. Fig.13 shows control law
output results.
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Fig. 11 Simulation model
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Fig. 12 Position tracking of 57 node, 59 node, 61 node, 39 node,
41 node, 43 node ,21 node, 23 node, 25 node respectively.
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Fig. 13 Control law output results
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7 Perspective

Nominal model-based sliding mode robust MIMO control
strategy for the active vibration control of a flexible
rectangular plate structure was developed. It was shown
that the new modelling method was a kind of
development with respect to the plant modelling theory of
current control theory. It provides theoretical basis for
low order controller design of high order plant with
unknown parameters, adaptive controller design and
intelligent controller design. It also brings about great
convenience for engineering design. The first nine natural
frequencies, forced vibration response analysis of the
flexible rectangular plate structure considered in this
study were pre-dicted accurately and compared by the
FEM method and new modelling method and thus, the
validity of the proposed new model was confirmed. A
nominal model-based sliding mode robust MIMO
controller was then employed to attenuate the unwanted
vibration of a rectangular flexible plate system simulated
using the MATLAB/Simulink platform. The simulation
results demonstrated the effectiveness of the proposed
control technique. Future works will be directed towards
the development of an experimental rig to validate the
theoretical results obtained in the study.
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