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Abstract: A stochastic stabilization problem for a class of discrete-time switched linear singular system is considered in this paper. By
using the Bernoulli variable, a kind of stochastic controller is developed, which ensures the discrete-time switched linear singular system
stochastically stable. Based on a linear matrix inequality technology, a sufficient existence condition for such new controller is proposed,
which bridges the gain-scheduled and gain-common controller design methods. Finally, an example is provided to demonstrate the
effectiveness of the proposed approach.
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1 Introduction

Switched systems belong to a special class of hybrid
control systems, which consist of a finite number of
subsystems and a logical rule that orchestrates switching
between these subsystems. And singular systems (also
referred to as descriptor systems, implicit systems,
generalized state-space systems, differential-algebraic
systems) have comprehensive practical background, great
progress have been made in the theory and its
applications since 1970s. Both of them have attracted
much attention in recent years because of their ability to
capture the dynamical behaviour of many natural
phenomena [1]-[6].The stabilization problem is one of the
most important control problems. It consists of designing
a controller which guarantees that the closed-loop system
will be stable and has some desired specifications. This
problem has attracted a lot of researchers and many
results have been reported in the literature either for the
deterministic systems and the stochastic ones [7]-[10].

On the other hand, switched linear singular (SLS)
systems are an important class of switched systems,
which arises from, for example, electrical networks and
economic systems [11-14, 21, 22]. This kind of systems is
switching among a set of singular systems. In recent
years, more and more attention has been paid to SLS

systems due to their theoretical and practical significant.
However, to the best of the authors’ knowledge, few
results exist for the class of discrete-time SLS systems.
There are two reasons that account for this situation. One
is singular systems are difficult to tackle since stability,
regularity and causality should be considered at the same
time [16]; the other is switching between several
discrete-time singular systems makes the problem more
complicated. Ref. [19] and [21] studied the reachable and
observability problems respectively. Moreover, Ref. [16,
17, 20, 22-25] studied the stability problem. Ref. [11, 18,
22] gave methods to design controllers for SLS systems
and the controllers designed there are all gain-scheduled
controllers (where different controllers are designed for
each operating point and controllers are switched when
the operating condition change).

It is very known that for discrete-time SLS systems,
the traditional controller design methods are generally
classified into two categories: a gain-common (GC)
controller and a gain-scheduled (GS) controller. A GC
controller is to design a common gain for each subsystem
and a GS controller is to design different controllers for
each subsystem. But as we know criteria obtained through
the GS controllers are less conservative than the ones
obtained by the GC controller because it’s difficult to find
the common gain to satisfy the different subsystems.
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However in many practical applications, such as network
control systems, the signal is transmitted through an
unreliable network and suffers induced time-delay and
packet drop. Based on this fact, it is claimed that the GS
controller is very ideal, which has the application scope
limited. As a result, it is seen that both of them are two
extreme design methods. Motivated by the above
investigations, we will consider the stabilization problems
for discrete-time SLS systems via a stochastic approach,
which will make a bridge between them.

In this paper, the stabilization problem of
discrete-time SLS systems via exploiting a stochastic
controller is studied, where the resulting closed-loop
system is stochastically stable. For discrete-time SLS
systems, it is known that the switching property and
singular derivative matrix will lead to a strong coupling
between the switching Lyapunov matrix and common
controller, which make the controller design complicated.
In order to deal with such problems, sufficient condition
for the existence of a kind of stochastic controller (SC) is
obtained as strict linear matrix inequalities (LMIs).
Compared with traditionally GS and GC controllers, the
accessible probability of mode is taken into consideration
in the presented design method, whose advantages are
also illustrated by an example.

Notation: Rn denotes the n-dimensional Euclidean
space, andRm×n is the set of allm× n real matrices.ε(·)
is the expectation operator with respect to some
probability measure.N(X) denotes the right zero
subspace of X for a given vector or matrixX .We use′∗′

as an ellipsis for the terms induced by symmetry in
symmetric block matrices anddiag{· · ·} in a
block-diagonal matrix, and(M)∗ , M+MT .

2 Problem Formulation

Consider a class of discrete-time SLS systems described
as

Eix(k+1) = Aix(k)+Biui(k) (1)

wherei : {0,1, · · ·} → Λ = {1,2, · · · ,N} is the switching
law; x(k) ∈ Rn is the state vector,ui(k) ∈ Rm is the control
input. MatrixEi ∈Rn×n may be singular, which is assumed
to berank(Ei) = r ≤ n. Ai andBi are known matrices of
compatible dimensions.

For discrete-time SLS systems, the traditional
controller design methods are generally classified into
two categories:

ui(k) = Kix(t),ui(k) = Kx(t)

where both of them are two extreme design methods. In
this paper, a stochastic controller is developed as follows:

u(k) = α(k)Kix(k)+(1−α(k))Kx(k) (2)

whereKi andK are controller gains to be determined and
α(k) is an indicator function satisfying the Bernoulli

process and is described as

α(k) =

{

1 if the subsystem is activated successfully
0 otherwise

(3)
Then, we have

Pr{α(k) = 1}= ε(α(t)) = α
Pr{α(k) = 0}= 1−α (4)

Moreover, it can be readily verified that

ε((1−α(k))) = 1−α (5)

ε((α(k)−α)) = 0 (6)

ε((1−α(k))2) = (1−α)2 (7)

Remark 1
In this paper, Bernoulli variableα(k) is introduced to

express the activated probability of the subsystem of
discrete-time SLS systems available to controller
operation. It is the first time thatα(k) is used for the
stabilization problem in discrete time SLS systems.
Contrary to other papers such as in [29,30] whereα(k)
was used, the problem is more complicated for
discrete-time SLS systems, because the model in this
paper has multiple subsystems. In addition, controller (2)
is less conservative than GC, which also has more
application scope than GS and whose superiorities are
illustrated by a numerical example.

Remark 2
Compared with the traditional controller design

methods, controller (2) is more advantageous. Because
the GC controller design method finds a common
controller for all subsystems, the solvable solution set is
smaller than the one generated by (2). When the mode is
accessible with some probability and there is no solution
to a GC controller, we may still get an effective controller
of form (2). In this sense, it is said that the GC controller
design method is an overdesign and is more conservative.

Applying controller (2) to system (1) results in the
following discrete-time closed-loop switched singular
system of the form

Eix(k+1) = Ãx(k)+(α(k)−α)Âx(k) (8)

where

Ãi = {Ai +Bi[(1−α(k))K +αKi]}
Âi = BiKi

(9)

let
Āi = {Ai +Bi[(1−α)K +αKi]} (10)

Definition 1. The set of finite or countable time and active
subsets is called a switching sequence, that is{(τ0, i0),
(τ1, i1), · · · ,(τs, is)} andτ0 < τ1 < · · ·< τs < ∞,i j ∈ (1,2,
· · · ,N), j = 1,2, · · · ,n.

Definition 2.Consider the system (8)
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1)For a giveni∈Λ , the pair(Ei, Ãi) is said to be regular
if there exists a constant scalars ∈ C such thatdet(sEi −
Ãi) 6= 0.
The discrete-time SLS system (8) is said to be regular if
every pair(Ei, Ãi), i ∈ Λ is regular.

2)For a giveni ∈ Λ , the pair (Ei, Ãi) is said to be
causal if there exists a constant scalars ∈ C such that
deg(det(sEi − Ãi)) = rank(Ei).
The discrete-time SLS system (8) is said to be causal if
every pair(Ei, Ãi), i ∈ Λ is causal.
Definition 3. Consider the system (8)

1) Discrete-time SLS system (8) is said to be
stochastically stable if there exist symmetric matrices
Vi > 0 and correspondent switching law, such that

ε(∆Vi(Eix(k))) =Vi[Eix(k+1)]−Vi[Eix(k)]< 0

2) Discrete-time SLS (8) is said to be stochastically
admissible if it is regular, causal and stochastically stable.
Assumption1[22]. For anyi ∈ Λ , N(Ei) is the same.

3 Stochastically Stabilization Analysis and
Design

Theorem 1.
Suppose Assumption 1 holds, then the resulting

closed-loop system (8) via given controller (2) is
stochastically admissible for arbitrary switching laws if
there exist symmetric matricesVi > 0 , such that the
following coupled inequalities hold for alli ∈ Λ .

ET
i ViEi ≥ 0 (11)

ĀT
i ViĀi −ET

i ViEi (12)

Proof:
First, we show that discrete-time SLS (8) is regular and
causal. It is known by reference [22] that there always exist
nonsingular matricesMi andN, such that

MiEiN =

[

I 0
0 0

]

,MiĀiN =

[

Âi1 Âi2

Âi3 Âi4

]

M−T
i ViM

−1
i =

[

V̂i1 V̂i2

V̂ T
i2 V̂i4

]

(13)

From (11), we haveVi1 ≥ 0 .Similarly, by pre-multiplying
and post-multiplying (12) byNT andN , respectively, one
concludes that

[

∗ ∗
∗ ÂT

i2Vi1Âi2+H +HT

]

< 0 (14)

where

H = ÂT
i2Vi2Âi4+

1
2

ÂT
i4Vi4Âi4 (15)

where∗ denotes the terms that are not used in (15). Taking
into account (14) andVi1 ≥ 0 , it is obtained

H +HT < 0 (16)

which implies thatÂT
i4 is nonsingular. Then, for eachi ∈Λ

, pair(Ei,Ai) is regular and causal.
Because inequality (12) holds, the following inequality is
satisfied

ε(∆Vi) = {xT (k)AT
i ViAix(k)

+(1−α)xT (k)AT
i ViBiKx(k)

+αxT (k)AT
i ViBiKix(k)

+(1−α)xT (k)KT BT
i ViAix(k)

+(1−α)2xT (k)KT BT
i ViBiKx(k)

+α(1−α)xT (k)KT BT
i ViBiKix(k) (17)

+αxT (k)KT
i BT

i ViAix(k)

+α(1−α)xT (k)KT
i BT

i ViBiKx(k)

+α2xT (k)KT
i BT

i ViBiKix(k)

− xT (k)ET
i ViEix(k)< 0

That is

∆Vi = xT (k+1)ET
i ViEix(k+1)

− xT (k)ET
i ViEix(k)

=

{

xT (k){AT
i +[(1−α(k))KT +αKT

i ]B
T
i }

+(α(k)−α)xT (k)KT
i BT

i

}

Vi (18)
{

{Ai +Bi[(1−α(k))K +αKi]x(k)}
+(α(k)−α)BiKix(k)

}

− xT (k)ET
i ViEix(k)< 0

Then system (8) via given controller (2) is stochastically
admissible.
Remark 3

Via giving controller (2) before hand, theorem 2 gives
a sufficient condition for stabilization of discrete-time
SLS system (8). BecauseEi is singular, andET

i ViEi is
positive semi-definite. Then the inequality (12) can only
be transformed to a non-strict LMI inequality, therefore
we can’t obtain the controller. So we apply congruent
transformation method to get solve the problem.
Theorem 2.

Suppose Assumption 1 holds, then the resulting
closed-loop system (8) via given controller (2) is
stochastically admissible for arbitrary switching laws if
there exist matrixG and symmetric matricesVi > 0 , such
that the following LMIs hold for alli ∈ Λ .

ET
i ViEi ≥ 0 (19)

following














(AiG)∗− (1−α)(BiY )∗

−α(BiYi)
∗− (G)∗

♯ ♯ ♯

AiG− (1−α)BiY
−αBiYi −GT −2(G)∗ ♯ ♯

0 G+ I Vi −2I ♯

G+ I 0 0 −ET
i ViEi −2I















< 0

(20)
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Then the desired controller gain of form (2) is given as

Ki =−YiG
−1,K =−Y G−1 (21)

Proof:

Taking into account (21), it is obtained by (20) that



















{AiG+Bi[(1−α)(−YG−1)+α(−YiG−1)]G}
+GT{Ai +Bi[(1−α)(−YG−1)
+α(−YiG−1)]}T −GT −G}
{Ai +Bi[(1−α)(−YG−1)
+α(−YiG−1)]}G−GT

0
G+ I

♯ ♯ ♯

−2G−2GT ♯ ♯
G+ I Vi −2I ♯

0 0 −ET
i ViEi −2I






(22)

=







ĀiG+GT
i ĀT

i −GT −G ♯ ♯

ĀiG−GT −2G−2GT ♯
0 G+ I Vi −2I

G+ I 0 0

♯
♯
♯

−ET
i ViEi −2I






< 0 (23)

Let















ĀiG+GT
i ĀT

i −GT −G ♯ ♯ ♯

ĀiG−GT −2G−2GT ♯ ♯
0 G+ I Vi −2I ♯
0 0 0 −I
0 0 0 0

G+ I 0 0 0

♯ ♯
♯ ♯
♯ ♯
♯ ♯
−I ♯

0 −ET
i ViEi −2I















(24)

then, it is concluded that

Ω1(k) = ZT
1 ZT

2 ZT
3 Ω4(k)Z3Z2Z1 < 0 (25)

Ω1 =





ĀT
i ViĀi −ET

i ViEi ĀT
i Vi 0

ViĀi −I 0
0 0 −I



< 0 (26)

where

Z1 =







G−1 0 0
G−1Āi 0 0

0 I 0
0 0 I






,Z2 =











I 0 0 0
0 I 0 0
0 G 0 0
0 0 I 0
0 0 0 I











Z3 =















I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
G 0 0 0 0















So we get

ĀT
i ViĀi −ET

i ViEi < 0 (27)

Then it implies that Theorem 1 holds, which means that
closed-loop system (8) via controller (2) is stochastically
admissible.
Corollary 1

Suppose Assumption 1 holds, then resulting
closed-loop system (8) via an GCui(k) = Kx(t) is
stochastically admissible for arbitrary switching laws if
there exist matrixG and symmetric matricesVi > 0 , such
that the following LMIs hold for alli ∈ Λ .

ET
i ViEi ≥ 0 (28)







(AiG)∗− (BiY )∗− (G)∗ ♯ ♯ ♯

AiG−BiY −GT −(2G)∗ ♯ ♯
0 G+ I Vi −2I ♯

G+ I 0 0 −ET
i ViEi −2I







< 0 (29)

Then a desired controller gain of form (2) is given as

K =−Y G−1 (30)

Corollary 2
Suppose Assumption 1 holds, then resulting

closed-loop system (8) via an GSui(k) = Kix(t) is
stochastically admissible for arbitrary switching laws if
there exist matrixG and symmetric matricesVi > 0 , such
that the following LMIs hold for alli ∈ Λ .

ET
i ViEi ≥ 0 (31)







(AiG)∗− (BiYi)
∗− (G)∗ ♯ ♯ ♯

AiG−BiYi −GT −(2G)∗ ♯ ♯
0 G+ I Vi −2I ♯

G+ I 0 0 −ET
i ViEi −2I







< 0 (32)

Then a desired controller gain of form (2) is given as

Ki =−YiG
−1 (33)
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Remark 4
It is noticed that the criteria obtained in this paper are

related to the stochastically stabilization problem of
discrete-time SLS systems. However, because of system
derivative matrix Ei satisfying rank(Ei) = r ≤ n, the
results of normal switching systems can also be obtained
easily via similar methods.

4 Numerical Examples

Example: Consider a discrete-time SLS system of form
(1) with

E1 =

[

0.5 0.6
1 1.2

]

,E2 =

[

1 0.6
1 1.2

]

,A1 =

[

1.8 2
0.15 1

]

A2 =

[

1 2
0.15 1

]

,B1 =

[

−1 0.5
0.2 5

]

,B2 =

[

−1 0
0 1

]

By Corollary 1, it is known that there is no solution to a
GC. It means that one cannot design a stabilizing
controller without any mode information. On the other
hand, by Corollary 2, it is obtained that

G =

[

0.4274−0.0143
0.0716 0.4268

]

,Y1 =

[

−0.4610−0.7415
0.0485 0.0292

]

Y2 =

[

−0.1433−0.7676
0.1501 −0.0021

]

V1 =

[

0.5522 −0.0521
−0.0521 0.5034

]

V2 =

[

0.5247 −0.0409
−0.0409 0.6045

]

Then, one has the controller gains of form (2) as

K1 =

[

−0.7832−1.7636
0.1014 0.0718

]

,K2 =

[

−0.0338−1.7996
0.3501 0.0068

]

For such desired controller, it is said that it needs the
system mode available on-line. But in many practical
applications, such as network control systems, the signal
is transmitted through an unreliable network and suffers
induced time-delay and packet drop. Based on this fact, it
is claimed that the afore-referred controller is very ideal,
which has the application scope limited. By the method
proposed in this paper, one can design a stochastic
controller whose operation mode signal is not necessary.
That is if α = 0.8, based on Theorem 2, we have the
controller gains of form (2) as

K1 =

[

0.0174 1.8166
−0.1388 0.1554

]

,K2 =

[

−0.9278 1.8623
−0.3839 0.2476

]

K =

[

3.8016 1.8951
0.1166−0.9876

]

Then we get a closed-loop system of the form (8) with

E1 =

[

0.5 0.6
1 1.2

]

,E2 =

[

1 0.6
1 1.2

]

Ã1 =

[

1.0653 2.9755
0.3076 0.2125

]

, Ã2 =

[

−0.5026 3.1108
−0.1338 1.0006

]

By theorem 1 in reference [29], it is known that there exist

V1 =

[

0.5536 −0.0541
−0.0541 0.5039

]

,V2 =

[

0.5269 −0.0476
−0.0476 0.5913

]

such that the closed-loop system is stable.
From this example, it is concluded that the operation

mode signal of the desired controller can suffer 20% loss.

5 Conclusion

In this paper, we have investigated the stochastically
stabilization problem for a class of discrete-time SLS
systems. Instead of a GC Lyapunov function method, a
new kind of design method referred to be a CS controller
is proposed, which bridges the following two extreme
cases: GS and GC controller design methods. Sufficient
criteria for CS controller are given in terms of strict LMIs.
Finally, the utility of the developed theories are illustrated
by a numerical example.
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